Technical Memorandum No. 3:

CHIRONOMID HEAD CAPSULE DEFORMITIES

CHICAGO AREA WATERWAY SYSTEM

HABITAT RESTORATION EVALUATION AND IMPROVEMENT STUDY

Prepared by

Baetis Environmental Services, Inc.

Chicago, Illinois

For

LimnoTech, Inc.

Ann Arbor, Michigan

In support of

Metropolitan Water Reclamation District of Greater Chicago

Chicago, Illinois

March 2009

Table of Contents

Background	
Methods and Materials	
Results and Discussion	
References	

Summary and Conclusion

A seven-year macroinvertebrate database was developed by the Metropolitan Water Reclamation District of Greater Chicago (District). The database includes the percent of head capsule deformities of larvae of the Chironomidae family (midges) of Dipera insects. Deformities in midge larvae head capsules have been frequently observed in contaminated sediments. Deformity is generally considered to be a sublethal, teratogenic response to contamination. Herein we summarize the data on chironomid larvae head capsule deformities at sampling stations throughout the Chicago Area Waterway System (CAWS).

Across all 177 samples of midge larvae head capsules that were examined, 10.9% were deformed ($\pm 2.8\%$). Mean rates of head capsule deformities ranged from none at Ambient Water Quality Monitoring (AWQM) Station 55 (Calumet River at 130th Street) to 30.2% at AWQM 100 (Chicago River at Wells Street). In an analysis of variance test, we concluded that there is no significant difference between mean rates of head capsule deformities for those collected on hester-dendy samplers and those collected in ponar dredge samples (F=2.89, p=0.0911).

We performed correlation analysis to examine the influence of sediment contaminants on head capsule deformities. Based upon Spearman correlation coefficients, the strengths of correlation were significant (p<0.05) in the hester-dendy samples for ammonia-N (r=-0.399), iron (r=0.361), and DDx (DDT + DDE + DDD) (r=-0.396). Spearman correlation coefficients were significant for the ponar samples for mercury (r=0.659), cadmium (r=0.339), copper (r=0.439), simultaneously extracted metals (SEM) (r=0.455), SEM-acid volatile sulfides (r=0.454), total PCB (r=0.316) and semi-volatile organic compounds (r=0.323). No contaminants displayed strong correlations for both collection methods. This may reflect differences in exposure routes or pathways for macroinvertebrates in ponar samples and hester-dendy samples.

Background

Morphological deformities in midge larvae have been frequently observed in contaminated sediments. Deformity formation is generally considered to be a sublethal, teratogenic response to contamination, and there is a large body of literature on midge head and mouthpart deformities. The results of these studies suggest a relationship between increased incidence of head capsule deformation with toxic stress, but substrate type, season, radioactivity, and genetic factors also contribute to the rate of deformation (Hamilton and Saether 1971; Jeyasingham and Ling 2000; Williams *et al.* 2001). Wiederholm (1984), studying Swedish lakes, found the occurrence of deformed mouth parts in recent and subfossil material of mostly Chironomus, Micropsectra and

Tanytarsus species increased from less than one percent of the larvae at unpolluted sites or time periods to approximately five to 25% at strongly polluted sites. Cushman (1984) studied larval *Chironomus decorus* in experimental ponds and found that head capsule deformations were significantly dose-related to a contaminant, but that the occurrence of deformities appeared to be a less sensitive measure of pollution than changes in abundance, biomass, number of taxa, and species diversity of benthic insects.

Under contract to LimnoTech, Inc., Baetis Environmental Services, Inc. (Baetis) has been retained to analyze macroinvertebrate data collected from the Chicago Area Waterway System (CAWS) between 2001 and 2007. The analysis supports the CAWS Habitat Evaluation and Improvement Study sponsored by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). This technical memorandum is intended to:

- Review the data characterizing head capsule deformities in representatives of the dipteran family Chironomidae, a group of non-biting midges
- Examine correlations of the rate of head capsule deformities with sediment contamination in the CAWS.

Methods and Materials

Macroinvertebrates were collected annually each summer from the CAWS from 2001-2007 by MWRDGC, with enumeration, identification and head capsule examination by EA Engineering, Science, and Technology, Inc. (EA) of Deerfield, IL. Figure 1 shows the locations of macroinvertebrate and sediment sampling stations. Macroinvertebrate collection methods included both hester-dendy sampler (artificial substrate) and a ponar (grab) sampler. Most macroinvertebrates were identified to genus; where possible species-level identifications were completed. A detailed description of the methodology is provided by EA in their 2006 report (EA 2006). LimnoTech, Inc. compiled EA's datasets, including head capsule deformities data, into one relational database for this project.

Descriptive and inferential statistics were derived for the 2001-2007 macroinvertebrate database using SAS software (Vers. 9.1, SAS Institute Inc. Cary, NC). In all cases, data were examined for normality using the Shapiro-Wilks test. Because very little of the macroinvertebrate abundance data are normally distributed, nor could they be transformed to approximate a normal distribution, we generally used nonparametric statistical methods, which are independent of the population distribution. Correlation analyses, for example, relied on Spearman correlation coefficients unless otherwise indicated. For all inference tests, conclusions have been based on a significance level, α , of 0.05.

Figure 1. Locations of AWQM Stations in the Chicago Area Waterway System

Results and Discussion

From 2001 through 2007, EA examined 177 CAWS macroinvertebrate samples for chironomid head capsule deformities. Overall, head capsule deformities were observed in 10.9% of

chironomid samples ($\pm 2.8\%$). Sampling statistics over the seven-year study period are given in Table 1. Mean rates of head capsule deformities ranged from none at Ambient Water Quality Monitoring (AWQM) Station 55 (Calumet River at 130th Street) to 30.2% at AWQM 100 (Chicago River at Wells Street).

Station_ID	Ν	Mean	Minimum	Maximum
AWQM 100	6	30.2	0	100
AWQM 101	3	7.0	0	13.3
AWQM 102	8	1.7	0	6.9
AWQM 108	6	9.8	0.66	27.3
AWQM 35	7	6.3	0	33.3
AWQM 36	12	3.3	0	16.7
AWQM 37	3	23.7	0	52.4
AWQM 39	4	4.1	0.6	14.3
AWQM 40	6	12.8	1.0	33.3
AWQM 41	15	19.3	0	100
AWQM 43	8	4.3	0.5	12.5
AWQM 46	12	23.3	0	100
AWQM 49	4	7.3	0.7	20.0
AWQM 55	2	0	0	0
AWQM 56	10	19.0	1.7	66.7
AWQM 58	4	7.8	0.4	15.0
AWQM 59	14	4.5	0	11.1
AWQM 73	6	8.0	0	40.0
AWQM 74	10	24.6	0	100
AWQM 75	8	3.0	0	6.9
AWQM 76	10	10.1	0	50.0
AWQM 92	15	4.0	0	16.7
AWOM 99	4	2.4	1.6	3.4

Table 1HEAD CAPSULE DEFORMITY STATISTICS

Macroinvertebrate samples were collected using two methods, the hester-dendy multi-plate sampler (HD) and the ponar dredge (PN). Table 2 displays the head capsule deformity statistics by collection method. There were 107 samples collected by the hester-dendy method that were examined for chironomid head capsule deformities; the mean rate was 8.9%. There were 70 samples collected using the ponar dredge and the mean rate of deformities was 13.9%. In an ANOVA (analysis of variance) test, we concluded that there is no significant difference between mean rates of head capsule deformities for the two collection techniques (F=2.89, p=0.0911).

Table 2

Station_ID	Method_Code	Ν	Mean	Minimum	Maximum
AWQM100	HD	6	30.2167	0	100
AWQM101	PN	3	7.0333	0	13.3
AWQM102	HD	5	0.6600	0	1.8
AWQM102	PN	3	3.3667	0	6.9
AWQM108	HD	4	3.1700	0.7	4.9
AWQM108	PN	2	23.0100	18.8	27.3
AWQM35	HD	4	8.5750	0	33.3
AWQM35	PN	3	3.3667	0	8.7
AWQM36	HD	7	0.8800	0	2.8
AWQM36	PN	5	6.6520	0	16.7
AWQM37	PN	3	23.6667	0	52.4
AWQM39	HD	4	4.1000	0.6	14.3
AWQM40	HD	4	2.5875	1.0	3.9
AWQM40	PN	2	33.3300	33.3	33.3
AWQM41	HD	12	17.4042	0	100
AWQM41	PN	3	26.7833	0	42.8
AWQM43	HD	4	4.6550	0.5	12.5
AWQM43	PN	4	3.8150	1.1	6.7
AWQM46	HD	9	26.9444	0	100
AWQM46	PN	3	12.2200	0	20
AWQM49	HD	2	11.5600	3.1	20
AWQM49	PN	2	2.9750	0.7	5.3
AWQM55	HD	1	0.0000	0	0
AWQM55	PN	1	0.0000	0	0
AWQM56	HD	6	8.3650	1.7	20
AWQM56	PN	4	34.9225	3.0	66.7
AWQM58	HD	2	0.5000	0.4	0.6
AWQM58	PN	2	15.0000	15	15.0
AWQM59	HD	6	1.6000	0	4.8
AWQM59	PN	8	6.7600	0	11.1
AWQM73	HD	3	0.3667	0	0.6
AWQM73	PN	3	15.5667	0	40.0
AWQM74	HD	6	9.9550	0	25.0
AWQM74	PN	4	46.6650	16.7	100
AWQM75	HD	7	3.4143	0	6.9
AWQM75	PN	1	0.0000	0	0
AWQM76	HD	1	0.0000	0	0
AWQM76	PN	9	11.2144	0	50.0
AWQM92	HD	10	4.2570	0	16.7
AWQM92	PN	5	3.5580	0	9.1
AWQM99	HD	4	2.4175	1.6	3.4

HEAD CAPSULE DEFORMITIES BY COLLECTION METHOD

During the examination of chironomids for head capsule deformities, EA recorded the lowest taxa. Unfortunately the taxa identifier was inconsistently recorded, so not all samples have taxa labels. Table 3 summarizes the chironomid taxa, by the method of their collection. Twelve taxa were identified and recorded from the hester-dendy samples. Six taxa were found in the ponar samples. One group, Chironomus sp., was found in sufficient numbers through both sampling methods, and, we found the Chironomus sp. data to be normally distributed. This allows for another ANOVA testing of equal means for the two methods, this test using a lowest taxa group. There were 7 Chironomus sp. samples collected using the hester-dendy technique and the mean rate of deformities was 34.3%. There were 10 Chironomus samples collected using the ponar dredge and the mean rate of deformities was 31.1%. Figure 1 is a box plot of the Chironomus sp. data. An ANOVA test found no significant difference between mean rates of Chironomus head capsule deformities for the two collection techniques (F=0.06, p=0.8055).

Table 3							
LOWEST	TAXA	OF	CHIRONOMIDS				

Method_Code	Lowest_Taxa	Ν	Mean	Minimum	Maximum
HD	Chironomus	7	34.3	0	66.6
HD	Dicrotendipes fumidus	2	15.0	10.0	20.0
HD	Dicrotendipes lucifer	2	3.2	2.1	4.2
HD	Dicrotendipes modestus	3	0	0	0
HD	Dicrotendipes neomodestus	3	41.6	4.8	100
HD	Dicrotendipes simpsoni	17	2.4	0	6.6
HD	Glyptotendipes	4	3.7	0	12.5
HD	Nanocladius distinctus	1	9.1	9.1	9.1
HD	Parachironomus	2	23.8	14.3	33.3
HD	Procladius	1	0	0	0
HD	Procladius (Holotanypus)	1	20.0	20.0	20.0
HD	Xenochironomus xenolabis	1	100	100	100
PN	Chironomus	10	31.1	0	75.0
PN	Dicrotendipes lucifer	1	8.3	8.3	8.3
PN	Dicrotendipes modestus	1	11.1	11.1	11.1
PN	Dicrotendipes simpsoni	3	26.0	0.8	50.0
PN	Procladius	13	9.2	0	33.3
PN	Procladius (Holotanypus)	2	5.8	1.1	10.4

Figure 2. Box Plot of Chironomus sp. Head Capsule Deformities Rates, Grouped by Collection Method.

The Appendix is SAS output from the proc corr procedure and includes a correlation matrix between sediment contamination and the percent head capsule deformities in hester-dendy and ponar samples ($26 \le N \le 53$). Based upon Spearman correlation coefficients, the strengths of correlation were significant (p<0.05) in the hester-dendy samples for ammonia-N (r=-0.399), iron (r=0.361), and DDx (DDT + DDE + DDD) (r=-0.396). Spearman correlation coefficients were significant for the ponar samples for mercury (r=0.659), cadmium (r=0.339), copper (r=0.439), simultaneously extracted metals (SEM) (r=0.455), SEM-acid volatile sulfides (r=0.454), total PCB (r=0.316) and semi-volatile organic compounds (r=0.323). No contaminants displayed strong correlations for both collection methods. This may reflect differences in exposure routes or pathways for macroinvertebrates in ponar samples and hester-dendy samples.

References

- Cushman, R.M. 1984. Chironomid Deformities as Indicators of Pollution from a Synthetic, Coalderived Oil. Freshwater Biology 14(2): 179-182.
- EA Engineering, Science and Technology, Inc. (EA). 2006. A Study of the Benthic Macroinvertebrate Community in Selected Chicago Metropolitan Area Waterways during 2003 and 2004. Metropolitan Water Reclamation District Report #07-47.
- Hamilton, A.L. and O.A. Saether. 1971. The Occurrence of Characteristic Deformities in the Chironomid Larvae of Several Canadian Lakes. Can. Ent. 103:363-368.
- Jeyasingham, K. and N. Ling 2000. Seasonal Influence on Head Capsule Deformities in Chironomus zealandicus (Hudson) (Diptera: Chironomidae). Hydrobiologia 427: 75-82.
- Wiederholm, T. 1984. Incidence of Deformed Chironomid Larvae (Diptera: Chironomidae) in Swedish Lakes. Hydrobiologia 109: 243-249.
- Williams, D.D., A.I. Nesterovitch, A.F. Tavares, and E.G. Muzzatti. 2001. Morphological Deformities Occurring in Belarusian Chironomids (Diptera: Chironomidae) Subsequent to the Chernobyl Nuclear Disaster. Freshwater Biology 46(4): 503-512.

Appendix

SIMPLE STATISTICS AND CORRELATION ANALYSES FOR SEDIMENT CONTAMINANT CONCENTRATIONS AND CHIRONOMIDAE HEAD CAPSULE DEFORMATION

Correlation Analysis of % Head Capsule Deformities and Sediment Contamination, 2001-20071By Station_ID and Year07:57 Monday, February 23, 2009

26 With	NH3_N	Tot_	Phos	CN	Hg	Cd	Cr	Cu		Fe	l	Ni
Variables:	Pb	Zn	Hv_	Mtls	Ag	As	AVS	SEM		SEM_	AVS	
	gravel	sand	si	lt	clay	Heptachlor_	epoxide Total_	PCB	DDx		SVOC	
	VOC				-	-	-					
2	HD_Per_c	leformed	PN_Per_	deforme	d							
Variables:												

Simple Statistics								
Variable	N	Mean	Std Dev	Median	Minimum	Maximum		
NH3_N	80	96.16916	176.16207	43.34971	1.29326	1400		
Tot_Phos	81	2495	2841	1750	3.70000	19994		
CN	82	1.95096	2.77954	0.87532	0	15.58542		
Hg	82	0.85720	1.17186	0.48665	0	6.39700		
Cd	82	6.65126	13.99237	3.49000	0.20000	121.87000		
Cr	82	86.92561	77.91650	63.95000	12.80000	580.85000		
Cu	82	150.05890	136.72495	101.55000	8.70000	825.40000		
Fe	79	22919	9309	21727	3921	51809		
Ni	82	39.14512	28.57443	30.24500	6.60000	204.60000		
Pb	82	256.71061	230.46992	181.70000	21.36000	1255		
Zn	82	563.46110	426.26106	484.26500	64.00000	2427		
Hv_Mtls	82	1104	775.57662	951.36725	171.04300	4628		
Ag	79	2.55354	5.08267	0.74500	0	34.80000		
As	81	1.51358	2.15770	0.50000	0	10.30000		
AVS	63	26.30032	42.10495	8.66000	0.24000	273.40000		
SEM	65	54.19267	169.83660	10.20000	0.18000	1030		
SEM_AVS	59	4.87216	12.43565	0.80679	0.01363	88.79310		
gravel	64	3.95313	6.67713	1.00000	0	35.80000		
sand	64	64.06875	23.43388	70.00000	7.40000	97.80000		
silt	64	22.55312	17.21450	20.70000	0	63.00000		
clay	64	9.41094	10.19695	4.95000	0.80000	48.00000		
Heptachlor_epoxide	82	6.93639	5.41567	5.36776	2.00000	36.00000		
Total_PCB	82	1763	2664	749.00000	5.37866	13722		
DDx	82	143.26389	166.20820	103.67282	9.52744	1095		
SVOC	78	159341	497970	53291	2868	3652353		
VOC	81	150.84256	886.52013	39.96004	21.51463	8020		
HD_Per_deformed	74	7.61331	10.96338	3.90000	0	56.53333		
PN_Per_deformed	55	14.58059	15.44069	7.03333	0	60.00000		

Correlation Analysis of % Head Capsule Deformities and Sediment Contamination, 2001-2007 2 By Station_ID and Year 07:57 Monday, February 23, 2009

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations						
	HD_Per_deformed	PN_Per_deformed				
NH3_N	-0.24142 0.0816 53	0.03515 0.8340 38				
Tot_Phos	-0.15525 0.2718 52	-0.02509 0.8811 38				
CN	-0.13891 0.3212 53	-0.07480 0.6554 38				
Hg	0.06281 0.6550 53	0.39290 0.0147 38				
Cd	0.1055 0.4519 53	0.16073 0.3350 38				
Cr	0.16002 0.2524 53	0.12053 0.4710 38				
Cu	0.20516 0.1406 53	0.51139 0.0010 38				
Fe	0.22335 0.1079 53	-0.25561 0.1214 38				
Ni	0.27805 0.0438 53	0.31248 0.0561 38				
РЬ	0.32453 0.0177 53	0.25282 0.1257 38				
Zn	-0.02060 0.8836 53	-0.01367 0.9351 38				
Hv_Mtls	0.19018 0.1726 53	0.14445 0.3869 38				
Ag	-0.05779 0.6810 53	0.09043 0.5892 38				
As	0.00589 0.9666 53	-0,09038 0,5894 38				
ANS	-0.18526 0.2177 46	-0.24213 0.2237 27				

Correlation Analysis of % Head Capsule Deformities and Sediment Contamination, 2001-20073By Station_ID and Year07:57 Monday, February 23, 2009

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations							
	HD_Per_deformed	PN_Per_deformed					
SEM	0.03160 0.8330 47	0.25169 0.1964 28					
SEM_AVS	-0.02316 0.8828 43	0.34413 0.0852 26					
gravel	-0.06253 0.6763 47	-0.10294 0.6022 28					
sand	0.03897 0.7948 47	0.05337 0.7874 28					
silt	0.12267 0.4114 47	-0.08985 0.6493 28					
clay	0.15072 0.3119 47	0.08766 0.6574 28					
Heptachlor_epoxide	-0.04874 0.7289 53	0.05794 0.7225 40					
Total_PCB	0.16859 0.2275 53	0.11309 0.4872 40					
DDx	-0.19253 0.1672 53	-0.00505 0.9753 40					
SVOC	0.26487 0.0553 53	-0.01296 0.9385 38					
voc	-0.17874 0.2003 53	-0.07384 0.6507 40					

Correlation Analysis of % Head Capsule Deformities and Sediment Contamination, 2001-2007 4 By Station_ID and Year 07:57 Monday, February 23, 2009

Spearman Correlation Coefficients Prob > |r| under H0: Rho=0 Number of Observations HD_Per_deformed PN_Per_deformed NH3_N -0.39857 0.19067 0.0031 0.2515 53 38 -0.20595 0.22574 Tot_Phos 0.1730 0.1430 52 38 CN -0.15316 0.06071 0.7173 0.2736 53 38 Hg 0.19060 0.65907 0.1716 <.0001 53 38 Cd 0.02178 0.33892 0.8770 0.0374 53 38 Cr 0.11819 0.12077 0.3993 0.4701 38 53 Cu 0.08475 0.42869 0.5463 0.0072 53 38 0.36146 Fe -0.26475 0.0078 0.1082 53 38 0.13759 0.27725 Ni 0.3259 0.0920 38 53 Pb 0.06337 0.25314 0.6521 0.1252 53 38 Zn -0.05897 0.13720 0.4114 0.6749 38 53 Hv_Mtls 0.07587 0.20887 0.5892 0.2082 53 38 0.18532 Ag -0.25105 0.0698 0.2653 53 38 -0.05396 0.01897 As 0.7012 0.9100 53 38 AVS -0.00426 -0.27754 0.9776 0.1610

46

27

Correlation Analysis of % Head Capsule Deformities and Sediment Contamination, 2001-20075By Station_ID and Year07:57 Monday, February 23, 2009

Spearman Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations						
	HD_Per_deformed	PN_Per_deformed				
SEM	0.21117 0.1542 47	0.45512 0.0150 28				
SEM_AVS	0.22775 0.1419 43	0.45416 0.0198 26				
gravel	0.17874 0.2293 47	0.15412 0.4336 28				
sand	0.08875 0.5530 47	0.19327 0.3244 28				
silt	-0.13372 0.3702 47	-0.11862 0.5477 28				
clay	0.16272 0.2745 47	-0.06595 0.7388 28				
Heptachlor_epoxide	-0.21028 0.1307 53	0.09130 0.5753 40				
Total_PCB	0.17543 0.2090 53	0.31599 0.0470 40				
DDx	-0.39639 0.0033 53	0.09506 0.5596 40				
SVOC	-0.18769 0.1784 53	0.32305 0.0479 38				
VOC	-0.18967 0.1738 53	-0.03607 0.8251 40				

Correlation Analysis of % Head Capsule Deformities and Sediment Contamination, 2001-2007 6 By Station_ID and Year 07:57 Monday, February 23, 2009

