

Metropolitan Water Reclamation District of Greater Chicago

MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 21-37

RESULTS OF ACUTE TOXICITY TESTING WITH Ceriodaphnia dubia
AND Pimephales promelas ON AN AUGUST 2021 EFFLUENT SAMPLE
FROM THE CALUMET WATER RECLAMATION PLANT OF THE
METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER
CHICAGO

Metropolitan Water Reclamation District of Greater Chicag	
100 East Erie Street Chicago, Illinois 60611-2803 (312) 751-560	0
DECLUTE OF A CUTE TOVICITY TECTING WITH C J J A.	VD D: 1 1
RESULTS OF ACUTE TOXICITY TESTING WITH Ceriodaphnia dubia An promelas ON AN AUGUST 2021 EFFLUENT SAMPLE FROM THE CALU	
RECLAMATION PLANT OF THE METROPOLITAN WATER RECLA	
DISTRICT OF GREATER CHICAGO	
D.	
$\mathbf{B}\mathbf{y}$	
EA Engineering, Science, and Technology, Inc., PBC	
231 Schilling Circle	
Hunt Valley, Maryland 21031	
Manifesia and Danasah D	
Monitoring and Research Department Edward W. Podczerwinski, Director	eptember 2021
Luwaiu W. I duczei willski, Directul	prember 2021

Metropolitan Water Reclamation District of Greater Chicago

CECIL LUE-HING RESEARCH AND DEVELOPMENT COMPLEX 6001 WEST PERSHING ROAD CICERO, ILLINOIS 60804-4112

Edward W. Podczerwinski, P.E.

Director of Monitoring and Research

September 17, 2021

BOARD OF COMMISSIONERS

Eira L. Corral Sepúlveda

Mariyana T. Spyropoulos

Kari K. Steele

President Barbara J. McGowan Vice President Marcelino Garcia Chairman of Finance Cameron Davis Kimberly Du Buclet Josina Morita

Debra Shore

Illinois Environmental Protection Agency Compliance Assurance Section CAS # 19 1021 North Grand Avenue P.O. Box 19276 Springfield, IL 62794-9276

> Subject: Biomonitoring Report for 2021 – Acute Toxicity Test Results for the Calumet Water Reclamation Plant, National Pollutant Discharge Elimination System Permit Number IL0028061

The subject Biomonitoring Report including Acute Whole Effluent Toxicity test results for *Pimephales promelas* and *Ceriodaphnia dubia* is submitted in compliance with National Pollutant Discharge Elimination System Permit Number IL0028061, Special Condition 10. The report covers the monitoring done for samples collected in the eleventh month before the expiration of the permit.

The subject report prepared by EA Engineering, Science, and Technology, Inc., PBC includes copies of all bench sheets, chain-of-custody forms, sample receipt, preparation forms, summary of final results and test information, and quality assurance record.

If you have any questions concerning this report, please contact Mr. Thomas Minarik, Principal Environmental Scientist, at (708) 588-4223.

Very truly yours,

Albert Cox

Albert Con

Environmental Monitoring and Research Manager

Monitoring and Research Department

AC:TM:NK:mb Enclosure

cc: E. Podczerwinski/J. Murray

P. Connolly/H. Zhang

T. Minarik/N. Kollias

Via electronic mail

RESULTS OF ACUTE TOXICITY TESTING WITH Ceriodaphnia dubia AND Pimephales promelas ON AN AUGUST 2021 EFFLUENT SAMPLE FROM THE CALUMET WATER RECLAMATION PLANT OF THE METROPOLITAN WATER RECLAMATION DISTRICT (MWRD)

Prepared for:

Metropolitan Water Reclamation District of Greater Chicago 6001 W. Pershing Road Cicero, Illinois 60804

Prepared by:

EA Engineering, Science, and Technology, Inc., PBC
231 Schilling Circle
Hunt Valley, Maryland 21031
For questions, please contact Michael Chanov
ph: 410-584-7000

Results relate only to the items tested or to the samples as received by the laboratory.

This report shall not be reproduced, except in full, without written approval of EA Engineering, Science, and Technology, Inc., PBC

This report contains 8 pages plus 2 attachments

Michael K. Chanov II Laboratory Director 10 September 2021

Date

INTRODUCTION

At the request of Metropolitan Water Reclamation District (MWRD), EA Engineering, Science, and Technology performed acute toxicity testing on a composite sample of Outfall 001 final effluent from MWRD's Calumet Water Reclamation Plant in Chicago, Illinois. The effluent composite sample was collected on 9-10 August 2021. The test organisms, *Ceriodaphnia dubia* (water flea) and *Pimephales promelas* (fathead minnow), were exposed to 100, 50, 25, 12.5 and 6.25 percent effluent, and a laboratory water control. The objective of this study was to assess the acute lethality of the effluent sample to the test species, expressed as a 48-hour (*C. dubia*), or 96-hour (*P. promelas*) median lethal concentration (LC50). This toxicity testing was conducted under the Section 10 biomonitoring requirements of Metropolitan Water Reclamation District's discharge permit number IL0028061.

This toxicity testing was conducted following EA's standard operating procedures (EA 2018) which are in accordance with US EPA guidance (2002). The results of the acute toxicity tests were analyzed using the ToxCalc statistical software package (Version 5.0, Tidepool Scientific Software) and followed US EPA guidance (2002). Summaries of sample and test information are presented on pages 5-6 for *C. dubia* and on pages 7-8 for *P. promelas*. Copies of raw data sheets and statistics are included in Attachment I. The Report Quality Assurance Record is included as Attachment II.

SUMMARY OF RESULTS

The results of the acute toxicity tests indicated that the 9-10 August 2021 Outfall 001 final effluent sample was not acutely toxic to *Ceriodaphnia dubia* or *Pimephales promelas*. The results of these toxicity tests comply with current NELAC standards.

The results of the *C. dubia* acute toxicity test are presented on page 6. After 48 hours, there was 100 percent survival in all of the effluent concentrations and 100 percent survival in the dilution water control. The 48-hour *C. dubia* LC50 for this test was >100 percent effluent (<1.0 TU_a). In the *P. promelas* acute toxicity test (page 8), at the end of 96 hours there was a minimum of 95 percent survival in all of the effluent concentrations. The laboratory control had 100 percent survival. The resulting 96-hour LC50 for *P. promelas* was >100 percent effluent (<1.0 TU_a).

In conformance with EA's quality assurance/quality control program, monthly reference toxicant tests using sodium chloride (NaCl) and potassium chloride (KCl) were performed on the inhouse cultured test species. The results of the *C. dubia* reference toxicant test was acceptable, with a 48-hour LC50 of 1,912 mg/L NaCl, and acceptable control chart limits of 1,623-2,264 mg/L NaCl. The results of the *P. promelas* reference toxicant test was acceptable, with a 48-hour LC50 of 1,139 mg/L KCl, and acceptable control chart limits of 563-1,230 mg/L KCl.

REFERENCES

- EA. 2018. EA Ecotoxicology Laboratory Quality Assurance and Standard Operating Procedures Manual. EA Manual ATS-102. Internal document prepared by EA's Ecotoxicology Laboratory, EA Engineering, Science, and Technology, Inc., PBC, Hunt Valley, Maryland.
- US EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

SUMMARY OF SAMPLE/TEST INFORMATION

Test: Ceriodaphnia dubia 48-hour static acute toxicity test

Test Procedure: EA Protocol CD-AC-05

Acute assay with water flea (Ceriodaphnia dubia)

Client Name: Metropolitan Water Reclamation District (MWRD)

Permit Number: IL0028061

Receiving Water: Little Calumet River

Sample Description: Outfall 001 Final Effluent

EA Accession Number: AT1-499

Collection Time and Date: 0600, 9 August 2021 to 0600, 10 August 2021

Receipt Time and Date: 0931, 11 August 2021

Dilution Water Description: Moderately hard synthetic freshwater

EA Test Number: TN-21-445

Test Initiation Time and Date: 1215, 11 August 2021 Test Completion Time and Date: 1122, 13 August 2021

Number of Replicates: 4

Number of Organisms Per Replicate: 5

Test Chamber: 30 ml cup

Volume per Test Chamber: 15 ml

Feeding: None

Organism Lot Information

Lot Number: N/A

Source: EA's Culture Facility (Hunt Valley, Maryland)

Age: <24 hours old

Reference Toxicant Test Information

Reference Toxicant: Sodium chloride (NaCl)

Reference Toxicant Information: Lab Chem Lot#F214-24 (Received 9/7/16)

EA Test Number: RT-21-139

Test Date and Time: 1147, 12 August 2021 to 1140, 14 August 2021

Dilution Water: Moderately hard synthetic freshwater

48-hour LC50: 1,913 mg/L NaCl

Laboratory control chart acceptability range for 48-hour LC50: 1,623-2,264 mg/L NaCl

SUMMARY OF SAMPLE/TEST INFORMATION (continued)

Test Species: Ceriodaphnia dubia (water flea)

Sample Description: Outfall 001 Final Effluent – MWRD

Sample Date: 9-10 August 2021

EA Test Number: TN-21-445

Test Concentration (percent effluent)	48-Hour Survival (percent)
Lab Control	100
6.25	100
12.5	100
25	100
50	100
100	100

48-Hour LC50 (percent effluent): >100 (TUa <1.0)

Water Quality Parameters on Test Solutions	Range
Temperature (°C):	24.3 - 25.7
pH:	7.8 - 8.3
Dissolved Oxygen (mg/L):	7.6 - 8.4
Conductivity (µS/cm):	327 - 1,042

Water Quality Parameters Measured on Sample Upon Receipt Temperature (°C):	Outfall 001 (AT1-499) 1.5
pH:	7.8
Total Residual Chlorine (mg/L):	< 0.01
Alkalinity (mg/L as CaCO ₃):	132
Hardness (mg/L as CaCO ₃):	240
Conductivity (µS/cm):	1,011

SUMMARY OF SAMPLE/TEST INFORMATION

Test: Pimephales promelas 96-hour static renewal acute toxicity test

Test Procedure: EA Protocol FH-AC-05

Acute assay with fathead minnows (Pimephales promelas)

Client Name: Metropolitan Water Reclamation District (MWRD)

Permit Number: IL0028061

Receiving Water: Little Calumet River

Sample Description: Outfall 001 Final Effluent

EA Accession Number: AT1-499

Collection Time and Date: 0600, 9 August 2021 to 0600, 10 August 2021

Receipt Time and Date: 0931, 11 August 2021

Dilution Water Description: Moderately hard synthetic freshwater

EA Test Number: TN-21-444

Test Initiation Time and Date: 1220, 11 August 2021 Test Completion Time and Date: 1139, 15 August 2021

Number of Replicates: 2

Number of Organisms Per Replicate: 10

Test Chamber: 1-L beaker

Volume per Test Chamber: 250 ml

Feeding: 0.2 mL Artemia nauplii at 48 Hours

Organism Lot Information

Lot Number: FH1-8/6-7

Source: EA's Culture Facility (Hunt Valley, Maryland) Age: 4-5 days old (hatched within a 24-hour period)

Reference Toxicant Test Information

Reference Toxicant: Potassium chloride (KCl)

Reference Toxicant Information: GFS Chemicals Lot#19430079 (Received 10/20/20)

EA Test Number: RT-21-137

Test Date and Time: 1354, 12 August 2021 to 1330, 14 August 2021

Dilution Water: Moderately hard synthetic freshwater

48-hour LC50: 1,139 mg/L KCl

Laboratory control chart acceptability range for 48-hour LC50: 563-1,230 mg/L KCl

SUMMARY OF SAMPLE/TEST INFORMATION (continued)

Test Species: Pimephales promelas (fathead minnow)

Sample Description: Outfall 001 Final Effluent – MWRD

Sample Date: 9-10 August 2021

EA Test Number: TN-21-444

Test Concentration (percent effluent)	48-Hour Survival (percent)	96-Hour Survival (percent)
Lab Control	100	100
6.25	100	100
12.5	100	100
25	100	95
50	100	100
100	100	100

96-Hour LC50 (percent effluent): >100 (TUa <1.0)

Water Quality Parameters on Test Solutions	Range
Temperature (°C):	24.5 - 26.0
pH:	7.7 - 8.4
Dissolved Oxygen (mg/L):	7.1 - 8.4
Conductivity (µS/cm):	309 - 1,000

ATTACHMENT I

Data Sheets (18 pages)

® EA Engineering, Science, and Technology

EA Ecotoxicology Laboratory 231 Schilling Circle Hunt Valley, Maryland 21031 Telephone: 410-584-7000 Fax: 410-584-1057

Sample Shipped By: (circle)
Fed. Ex. UPS Other:
Tracking #: 12 274 474 84 93 310

Client: MWRDGC Project No.: 4652-126-1	
NPDES Number: 110038061 Client Purchase Order Number: 3111991	•
City/State Collected: Chicago TL	

PLEASE READ SAMPLING INSTRUCTIONS ON BACK OF FORM

Accession				ection	Sample Description					
Number (office use only)	Grab	Composite	Date/Time Number, and Outfall Number				tart End (including Site, Station		art End (including Site, Station	
AT1-499			3/9/21 06:00	3/10/21 0600	Calumet WRP Final Effluent	1 gallon				
					Effluent	J				
	3.7									
		-				:				
	_ ·			1 : 1 1	and the second of the second					
	1									
- CO.										
NAME OF THE PERSON OF THE PERS		A+								
NB-GE-STA					A STATE OF THE STATE OF THE STATE OF					
www.majoroponion.com				:						

0.00				
Saprofed By:	Date/Time		Received By:	Date/Time
Youlk 12	8/10/21	0848	_	
1 compliant	0/10/21	0018	er in the second	
Sampler's Printed Name:	Title:	graduate and enter	Relinquished By:	Date/Time
0. 1 2	PERT			Date Time
Paula Brinkman Love	SEKI			
Behaquished By:	Date/Time		Received By	Date/Time
12 10 11	dhil	-0.43 - mm	Laboratory	
Fart Bruk ton	3/10/2/	0705	- Jan Bull	8-11-21 0931
,			000	

Was Sample Chilled During Collection? Yes/ No

Comments

Sample Collection Parameters

Visual Description: Clear, Green

Temperature (°C): /2.3

pH: 7.15

TRC (mg/L): O

Other:

SAMPLE CHECK-IN FOR TESTING

Client: MWRD

EA Accession Number: ATI- 499

Parameter	Acceptable Range	Measurement*	Meter	Date	Time	Initials
Temperature (°C)	≤4	1,5	T-21	8 (ulai	0935	CAN
Is ice present?		yes	N/A)
рН	6.0-9.0	7.8	681			
TRC (mg/L)	<0.01	20.01	AT-01			
Visual Description	dd en me	light tan	N/A			

^{*}If outside acceptable range, contact project manager.

OTHER PARAMETERS IF REQUIRED (SEE STUDY PLAN):

Parameter	Acceptable Range	(✓)	Meter	Date	Time	Initials
Ammonia (preserve aliquot)			N/A			

Parameter	Acceptable Range	Measurement*	Meter	Date	Time	Initials
Dissolved Oxygen (mg/L)						
Salinity (ppt)						

TOXICITY TEST SET-UP BENCH SHEET

Project Number: 70019.TOX		
Client: MWRD		
QC Test Number: TN- 21-445	· · · · · · · · · · · · · · · · · · ·	(b) of alon

TEST ORG	ANISM INFORMATION IO
Common Name: Water flea	Adults Isolated (Time, Date): 814121 1550
Scientific Name: C. dubia	Neonates Pulled & Fed (Time, Date): 8112121 0826
Lot Number: N/A	Acclimation: <24hrs Age: <24 hrs
Source: EA	Culture Water (T/S): 24-9 °C 0 ppt

		TEST INITIATION	
Date	Time	<u>Initials</u>	Activity
8ાર્ગરા	10,59	UPD	Dilutions Made
1	L		Test Vessels Filled
	1215	TP	Organisms Transferred
	1304	LAD	Head Counts

Sample Number:	ATT - 499	
Dilution Number:	U1-508	
Test Concentration	Volume Test Material	Final Volume
Control	0 ml	200 ml
6.25%	12.5 ml	
12.5%	25 ml	
25%	50 ml	
50%	100 ml	
100%	200 ml	

SHEET
DATA
TEST
ICITY
E TOX
COL

Time: 12.15 Time: 122 Renewal / Mon-renewal 8149/21 12/01/21 Test Container: 30 ml cup Static Flowthrough Test Volume: 15 ml 1218118 Beginning Date: Ending Date: TEST TYPE: mg/L ppt Salinity: 0 DO; ≥4.0 Common Name: Water flea Scientific Name: C.dubia ပ TEST ORGANISM TARGET VALUES pH: 6.0 - 9.0 Temp: 25±1 M11-499 QC Test Number: IN- ">1-445 Project Number: 70019.TOX Dilution Water: Mod Hard Accession Number: Test Material: Effluent Client: MWRD

y: 50 - 100 fc Test Duration: 48 hrs	0
Light Intensity: 50 - 100 fc	
Photoperiod: 16 l, 8 d	Thereses
101-508	North Act
Accession Number:	_

		96	Γ										-	With the same of t			
NS/cm		72				T			\vdash								
Conductivity (uS/cm)		48	356				380				422	}			8	707	2
nduct		24	Zi Zi				245				617				िंदु	5	হ
ြပိ		0	327 342 356				428 Stz 824				407 419 422				(8) (8)	195 1913 Jio7	MT M
Γ	_	96												-			
cygen		7.2															
Dissolved Oxygen	(mg/L)	48	8.4				7.8		T	T	80			T	788	107	2
Dissol	0	24	8.9 8.4				7,6				(A)	_			8	659	E
Γ		0	8.4 8				9.2 3.4 8.4				-				681 (80 680	7011 etg1 5511	ž
Г		96	Ť												Ť		
		72															
	Ηď	84									~				3	123	2
		24	8.2 8.				8,3 8,2 8.1				8.2 8.2 8.1				641 (80 68)	1155 1313 407	20
		0	5.5				3				2,7				180	35	MT
r		96	Ť				9-				9-	<u> </u>				_	-
re		72															
Temperature	ට	48	27.3				250		ļ		2,5%				33	1107	2
Tem		24	15.0				45,50								83	5,65	₹
		0	15.335.0				25.635.3				25,535.9				681	95	MT
Г		96															
ير	sms	72	_														
Number of	Live Organisms	48	N	V	w	n	~	N	N	ンへ	V	v	W	~		221	2
Ź	Live	24	~	S	v	ഗ	v	S	V	v	ۍ	S	ড	S		35	of the
		0	\sim	N	אר	7.0	<i>\</i>	\sim	5	N	N	W	N	\sim		2211 2051 122	Q.
		Rep	Ą	В	Ç	Ω	A	m	O	Ω	¥.	щ	ບ	Д			
		Concentration	Control				6.25%				12.5%				Meter Number	Time	Initials

EPA Test Method: EPA 821-R-02-012 (CHECK ONE)

Ceriodaphnia: 2002.0 X Magna/pulex: 2021.0

Fathead: 2000.0__ Trout: 2019.0__

Americanysis: 2007.0_ Cyprinodon: 2004.0_

Menidia:2006.0 OTHER:

ATS-T01 12/02/08

ACUTE TOXICITY TEST DATA SHEET

tegir TTT TTT gr	Dissolved Oxygen Conductivity (µS/cm) (mg/L) 96 0 24 48 72 96 0 24 48 72 96	8.2 442 565 509			8.2 7.68.2 69634 695			8.2 7.2 8.2 BOO INTO 1842				(A) (2) (A)	19,3 1107	
TEST ORGANISM Common Name: Water flea E	Temperature (°C) pH 0 24 48 72 96 0 24 48 72 9	25.5 25.4 25.7 8.1 8.2 8.0			25-5 354 257 8.0 8.1 8.0			15.5 35.4 257 7.5 8.1 8.0				(4) (3) (80 (80 (80)		MT M TP MT M TO
	Concentration Rep 0 24 48 72 96	25% A 5 5 5 S	2 2	D % C %	w !	2 2 5 5 C	D S S S	100% A 5 S S	B S S S	C S 6 5	D S S S	Number	Time (30% 1305 1322	Initials UPO 87, 18

EPA Test Method: EPA 821-R-02-012 (CHECK ONE)

Ceriodaphnia: 2002.0 X Magna/pulex: 2021.0

Fathead: 2000.0 Trout: 2019.0

Americamysis: 2007.0 Cyprinodon: 2004.0

Menidia:2006.0 OTHER:

ATS-T01 12/02/08

TOXICOLOGY LABORATORY BENCH SHEET

Project Number: 70019.TOX	
Client: <u>MWRD</u>	
QC Test Number: TN-21-445	
Date/Time/Initials	Comments/Activity

RANDOMIZATION CHART

Project Number:	70019.TOX
Client: MY	VRD
QC Test Number:	TN-21-445

5	4	1	3	6	2
1	5	3	2	4	6
6	2	4	1	5	3
4	1	2	6	3	5
					:

TOXICOLOGY LABORATORY BENCH SHEET -TESTING LOCATION

Project Number: _	70019.TOX	•
Client: MW	RD	 •
QC Test Number:	TN- 21-445	 -

		· · · · · · · · · · · · · · · · · · ·	·	
Day	Testing Location	Date	Time	Initials
_ 0	56B	. છીવાં કોવાં	1310	CAS
1	SUB	16/01/8		A7 TO
2	56B	8113 121	1315	70
3			-	
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18	<u>'</u>			
19				
20	-2000			
21				
22				
23				
24	_			
25				
26				
27				
28				
29				
30				

TOXICOLOGY LABORATORY CORRECTION BENCH SHEET

Project Number:70019.TOX					
Client: MWRD					
QC Test Number: TN- 21-445					
Correction Explanations					
(a) Technician Error-Mathematical					
(b) Technician Error-Manual Data Recording					
(c) Technician Error-Head Count Observation					
(d) Technician Error-Overwrite					
(e) Technician Error-Missing Data					
(f) Technician Error-Lost Organism					
(g) Technician Error-Transcription Error					
(h) Technician Error-Other:					
(i) Meter Malfunction					

TOXICITY TEST SET-UP BENCH SHEET

Project Number:	
TEST OR	GANISM INFORMATION
Common Name: Fathead minnow	Adults Isolated (Time, Date):
Scientific Name: P. promelas	Neonates Pulled & Fed (Time, Date):
Lot Number:FH-816-7	Acclimation: <24 hrs Age: 4-5 days
Source: EA	Culture Water (T/S):25-3

	1	EST INITIA	TION	CONC	ENTRATION SERI	ES
<u>Date</u>	Time	Initials	Activity	Test <u>Concentration</u> Control	Volume <u>Test Material</u> 0 ml	Final <u>Volume</u> 500 ml
) Men	1059	40	Dilutions Made	6.25% 12.5%	31.25 ml 62.5 ml	
	1		Test Vessels Filled	25% 50%	125 ml 250 ml	
	1220	TP	Organisms Transferred	100%	500 ml	ļ
J.	1544	UNO	Head Counts			

	DILUT		PARATION				EDING FEEDING	
<u>Day</u> 0	Date O(u) I	Time IOS7	Initials UAO	Sample / Diluent ATI-YAA LDI-508	Day	Artemia Time, Initials, Amount	Time, Initials, Amount	Time, Initials, Amount
2	8113121	1015	P	A11-499 (DI-516	2		MT 0835 3 drops	
4					4			
5					5			
6					6			

ACUTE TOXICITY TEST DATA SHEET

Project Number: 70019.TOX	70019.T	XO.					TES	T OR	TEST ORGANISM	Μĭ							Beginning Date:	ning I)ate:	118	1211118	i	Ţ	Time: 1330	336	^	
Client: MWRD								Comm	ion Ng	me: E	atheac	Common Name: Fathead minnow	WO				Ending Date:	g Date	*	J.	8116121	~	Ti	Time:	23	l	
QC Test Number: JN- 21-444	IN.	7-4	1					Scient	ific N	ime:	Scientific Name: P. promelas	melas			İ	1	TEST TYPE:	TYPE		Static	P	Static / Flowthrough	rough	i i		ļ	
Test Material: Effluent	Huent						TAR	GET	TARGET VALUES	ES									\vee	Ren	Renewal	Š	Non-renewal	ewal			
Accession Number:	umber:	#	-11	<u>F</u>				Temp	Temp: 25±1		c		DO: >4.0	4 0.			mg/L		Test	Test Container:	per:		1 L	1 L Beaker			
Dilution Water: Mod Hard	Mod Har	p						pH:	pH: 6.0 - 9.0	0.6			Salinity: 0				ppt		Test	Test Volume: 250 ml	ie: 25(H (
Accession Number:	umber:	2	205-107	စ္ခ				Photo	eriod	Photoperiod: 161,8 d	8 d		Light 1	Light Intensity: 50 - 100 fe	ty: 50	100 f	ن		Test	Test Duration: 96 hrs	96 :uc	hrs] [
			Liw	Number of Live Organisms	r of nisms			Ĭ	Temperature (°C)	ture				뜀				Dissol	Dissolved Oxygen (mg/L)	tygen		Cor 6227	Conductivity (µS/cm)	vity (µ	S/cm)		
Concentration	Rep	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96		24	48	72	96	(a)
Control	A	Q }	3	2	2	Ŷ	25.	35	EST 948 E 'S2	1/2	1	8.3	<i>⇔</i>	8.7 8.8			1.8	7 to 8.0	8.0		104	P38 475 48	以	00	+-	Î	1115
	В	0	3	2	0	10																		+-		T	
6.25%	Α	9	3	2	0	5	52	25.675.8	8	_		8,3	S	87			8.2 76		80		3	428 24	3	352			
	В	10	Ġ,	53	0	2																•	3	-	+		
12.5%	А	20	3	3	으	೭	52,	3	S-55 02 46 5.85			8,2		8%			8		80		13	407	i č	394		Τ	
	æ	0]	3	2	₽	q				_														+			
25%	А	2	3	(0)	9	5	52.5		25.5			- è		17			5		000	\vdash	3	26h	3-	885	+	1	
	В	0	લ	5	9	<u>e</u>														T			-	3	+		
20%	V	0	3	5	으	5	75.5		25,			000		77			8.2		3.0		3	3	7	699	-		
	ф	0)	3	3	Ō	9																-	3			Т	
100%	¥	ħ	v	0	5	G	15.55		254			2.8		7.7			7,8		80		=	200	8	Cpp	-	Т	
	щ	(2)	0	3	0	б																		_	-	Τ	
Meter Number							8	Dog and	B			(89)	138 (M)	3			(88)	8	1997	T	Ť	681 130 100	5	8	+	Т	
Time		F. F.	1544 1308 1132	132	2	1091 1759 1855 1247 1801	185	Z	1100			1155	1155 124 110	B			1155 12/4 1W	4	35		=	1155 124 140	F	3	+		
Initials		Ê	R.	9		<u>X</u>	Z	#	j.			Ē	100	j			E	7	P		Î	M	1	Ø.	H	T	
	;	(O)	ve le18 દેમ ②	હ			ð	ાના ક્રિક્સ	<u>e</u> 6								1		1		1	- 1		1		7	

idulp of a

Americamysis: 2007.0 Cyprinodon: 2004.0

Fathead: 2000.0_X Trout: 2019.0___

Ceriodaphnia: 2002.0 Magna/pulex: 2021.0

EPA Test Method: EPA 821-R-02-012 (CHECK ONE)

Menidia:2006.0 OTHER:

ATS-T01 12/02/08

ACUTE TOXICITY TEST DATA SHEET - OLD SOLUTIONS

⊗	
1	
14	
al C	
899	

Time: 1333	Time: 1139	Flowthrough	Non-renewal	1 L Beaker	250 ml	96 hrs
Beginning Date: 8/11/21	Date: 8/15/21	TEST TYPE: (Static)	(Renewal)	Test Container:	Test Volume:	Test Duration:
Beginni	Ending Date:	TI.		mg/L	ppt	00 fc
				>4.0	0	Light Intensity: 50 - 100 fo
	Fathead minnow	P. promelas		°C DO:	Salinity:	Light Inter
TEST ORGANISM	Common Name:	Scientific Name:	TARGET VALUES	Temp: 25±1 °	pH: 6.0 - 9.0	Photoperiod: 161,8 d
Project Number: 70019.TOX	Client: MWRD	QC Test Number: TN-2)-444	Test Material: Effluent	Accession Number: ATI - 44	Dilution Water: Mod Hard	Accession Number: (U) - 500

	Ī	7	-		<i>a</i>	-	-T	١,	0		T	-[7	,	16	٥Ī	10	300
(E)	96	13	તે	- 6	3	_ 3	ç Ç		493		3	;	200	-	3	3	Ē	*
(µS/c	77	3	A A	-	Š	3	0	5	글		600	9	295	=	\ \frac{2}{2}	3	30	8
Conductivity (µS/cm)	84	_	_	0 10	260 000	7.02	1	8	10x 00x	189	150 Folo 1671	-	120 080 CV	2	1.80 LSK 1.490	2	350 Joh 4011 Oct	8
nduci	24	22.2	360		200	200	2	8	2		Detall		4	2	S.	3	දි	2
ర																		
Г	96	(2	- C	1	0	0.	CPRS EX	9.	en compa	7.4		77 5	20 1000	Ş	SEE SEE	F S	Ŧ
ygen	72	1	7	1	2	4	3	-	9				-	3	S	<u>)</u>	ক্ট্র	B. 18
Dissolved Oxygen	48	8.0	-	<u> </u>	7.00 75 8.2	200		2	4.0 1.0	_	7873		7 2 76 7		09.1 Ca.1 Ca.2	2	300) April 0001	
vlossi	24	(34		ý	5	7	2		2		, , , ,		7	2	8	000	8	3
	96	7	-			C.	1	<	p. b	Se in	- J		0		S	90.00	જુ	F
	72	000	9	70 00 00	3	79 00 82	3	0	7			-	+-	+	CRO (ARC 1 08.0 to 82)	,	Sell (1911) 4011	
描	-	7.9		0	-	0	-	707	5		80 79	-	2	-	12		<u>೨</u> ಕ್ಷ	2000
"	24	8.1 7	$\overline{}$	0.0		0 7	-	0	<u> </u>		0.0		20 79 79	+	0	3	- 1	て 変
	2	× ×		0	C ST	0.8		C)	う 製		ض		4,		3		030	V
	96	ν ν		9		₩ ₩		<u>ر</u>			<u></u>		<u>ο,</u>				<u> </u>	No.
	\vdash	9 245	5	670	2	35.3 Jan 2 26 8		257 150	3		25.8 24.0 25.9		35.8 Ju. 0 240.0		Cho lego	N K	C6/10/01	多
rature	72	246 350	-	2	1	ا ا ا	s	7 2	3	_	3 26.	_	300	-	13	-	<u>5</u>	<u>&</u>
Temperature (°C)	-		-	7.25.u	-						125.6				089/	13	3	<u>}</u>
Ţ	24	22,		25.2		O.ejC	SAS	(C)	3	863	25.9		2,10		183	532	8	W W
		200		1												1		
												¥						
Number of Live Organisms																		
Number of ve Organist																		
Ľįve																		
																1		
	Rep	<	Э	A	m	<	щ	\ ∀	C C				V.	ф		M2	2024	
		_		1		-		ļ.	_	1	1	_	_					
	ration	lo:		28		%							00		nber			
	Concentration	Control		6,25%		12.5%		25%			20%		100%		Meter Number	0	.	als
	ပို														Met	Time		Initials

60) (00)

TOXICOLOGY LABORATORY BENCH SHEET

Project Number:70019.TOX	
Client: MWRD	
QC Test Number: TN-21-444	
Date/Time/Initials	Comments/Activity

RANDOMIZATION CHART

Project Number: _	70019.TOX
Client:MW	/RD
QC Test Number:	TN- 21-444

5	4	1	3	6	2
1	5	3	2	4	6

TOXICOLOGY LABORATORY BENCH SHEET -TESTING LOCATION

Project Number:	70019.TOX
Client:MWRD_	
QC Test Number:TN-	21-444

Day	Testing Location	Date	Time	Initials
0	55A	8/11/21	1260	MT
1	SSA	8113131	1000	
2	SSA-	8113171	1135	ATO P
3	85A S5A 55A	8112121 8113121 8114)21	/138	(A)
4	55A	8115124	1139	OB-
5				
6				
7				
8				
9				
10				
_ 11				
12				
13				
14				
15	-			
16				
17				
18				
19				
20				
21				
22				
23				
24				
25		-		
26				-
27				
28				
29				
30				

TOXICOLOGY LABORATORY CORRECTION BENCH SHEET

Project Number: 70019.TOX
Client: MWRD
QC Test Number: TN- 2)-4-44
Correction Explanations
(a) Technician Error-Mathematical
(b) Technician Error-Manual Data Recording
(c) Technician Error-Head Count Observation
(d) Technician Error-Overwrite
(e) Technician Error-Missing Data
(f) Technician Error-Lost Organism
(g) Technician Error-Transcription Error
(h) Technician Error-Other:
(i) Meter Malfunction

TOXICOLOGY LABORATORY BENCH SHEET

Project Number: 70019.TOX	
Client: MWRD	
QC Test Number: TN-21-444, 445	

Aliquot of sample warmed to test temperature, then aerated if supersaturated:

Date Sample # Initial DO Time Meter Initials Final DO Time Time Meter Initials Final DO Time Final DO Time Meter Initials Final DO Time Time Final DO Time Final DO Time Final DO Time Meter Initials Final DO Time Time Final DO Time Time Final DO Time Time Final DO Time Time			ON AIR			OFF	4 775			
Date Sample # (mg/L) Time Meter Initials (mg/L) Time Meter Initials Sample # (mg/L) ATI-499 9.4 OTS 680 TP 8.0 O80 680 TP Sample # O80 TP O80		Initial DO		OFF AIR						
8-11-21 AT1-499 9.4 0751 680 TP 8.0 0801 680 TP	Date	Sample #	(mg/L)	Time	Meter	Initials	(mg/L)	Time	Meter	Initials
	8-11-21	AT1-499	9.6	1000	681	LAO	8,3			
	813121	AT1-499	9.4	0751	68D	TO	8.0			TO
						ĺ				

ATTACHMENT II

Report Quality Assurance Record (2 pages)

REPORT QUALITY ASSURANCE RECORD

Clie	mur D	Project Number:	70019.TOX	
Autl	hor: Rachael Brooks	EA Report Number:	8617	
	QA/OC ITEM	T CHECKLIST REVIEWER	DATE	
1.	Samples collected, transported, and received according to study plan requirements.	Sould Brook	8/16)21	
2.	Samples prepared and processed according to study plan requirements.	Just Brod	8/16/21	
3.	Data collected using calibrated instruments and equipment.	And Brock	8/16/21	
4.	Calculations checked: - Hand calculations checked	Sal Brock	8/16/21	
	 Documented and verified statistical procedure used. 	and Brook	8/16/27	
5.	Data input/statistical analyses complete and correct.	Essa M Redy	8/30/2021	
6.	Reported results and facts checked against original sources.	Gus M Red S	8/30/2021	
7.	Data presented in figures and tables correct and in agreement with text.	Sus M Radilos	8/30/2021	
8.	Results reviewed for compliance with study plan requirements.	Auch Brook	8/16/21	
		,		
		AUTHOR	DATE	
9.	Commentary reviewed and resolved.	flad n	9/10/21	
	All study plan and quality assurance/control requirements have been met and the report is approved	PROJECT MANAGER	- gioly DATE	
		QUALITY CONTROL OFFICER	8 30 2021 DATE	
		SENIOR TECHNICAL OFFICER	DATE	