

Metropolitan Water Reclamation District of Greater Chicago

MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 17-18

RESULTS OF ACUTE TOXICITY TESTING WITH Ceriodaphnia dubia

AND Pimephales promelas ON A MAY 2017 EFFLUENT SAMPLE

FROM METROPOLITAN WATER RECLAMATION DISTRICT (MWRD)

Metropolitan Water Reclamation District of Greater Chicago	
100 East Erie Street Chicago, Illinois 60611-2803 (312) 751-5600	
	1
RESULTS OF ACUTE TOXICITY TESTING WITH Ceriodaphnia dubia AND Pimepha promelas ON A MAY 2017 EFFLUENT SAMPLE FROM METROPOLITAN WATER	ales R
RECLAMATION DISTRICT (MWRD)	
By	
Dy .	
EA Engineering, Science, and Technology, Inc., PBC 225 Schilling Circle, Suite 400	
Hunt Valley, MD 21031	
Monitoring and Research Department	2017
Edward W. Podczerwinski, Acting Director June 2	ZUI /

Protecting Our Water Environment

Metropolitan Water Reclamation District of Greater Chicago

CECIL LUE-HING RESEARCH AND DEVELOPMENT COMPLEX 6001 WEST PERSHING ROAD CICERO, ILLINOIS 60804-4112

Edward W. Podczerwinski, P.E. Acting Director of Monitoring and Research June 15, 2017

BOARD OF COMMISSIONERS Mariyana T. Spyropoulos

Chairman of Finance Timothy Bradford Martin J. Durkan Josina Morita

President Barbara J. McGowan Vice President Frank Avila

Dehra Shore Kari K. Steele

David J. Walsh

Mr. Brian Koch WPC # 15 Illinois Environmental Protection Agency 1021 North Grand Avenue P.O. Box 19276 Springfield, IL 62794-9276

Dear Mr. Koch:

Subject: Biomonitoring Report for 2017 - Acute Toxicity Test Results for the Stickney

Water Reclamation Plant, National Pollutant Discharge Elimination System

Permit Number IL0028053

The subject Biomonitoring Report including Acute Whole Effluent Toxicity test results for Pimephales promelas and Ceriodaphnia dubia is submitted in compliance with National Pollutant Discharge Elimination System Permit Number IL0028053, Special Condition 10. The report covers the monitoring done for samples collected in the nineteenth month before the expiration of the permit.

The subject report prepared by EA Engineering, Science, and Technology, Inc., PBC includes copies of all bench sheets, chain-of-custody forms, sample receipt, preparation forms, summary of final results and test information, and quality assurance record.

If you have any questions concerning this report, please contact Ms. Jennifer Wasik, Supervising Aquatic Biologist, at (708) 588-4063.

Very truly yours,

Albert Cox **Environmental Monitoring** and Research Manager Monitoring and Research Department

AC:JW:NK:lf **Enclosures**

cc: E. Podczerwinski/J. Murray

F. Costa/S. Carmody/H. Zhang

J. Wasik/N. Kollias

RESULTS OF ACUTE TOXICITY TESTING WITH Ceriodaphnia dubia AND Pimephales promelas ON A MAY 2017 EFFLUENT SAMPLE FROM METROPOLITAN WATER RECLAMATION DISTRICT (MWRD)

Prepared for:

Metropolitan Water Reclamation District of Greater Chicago 6001 W. Pershing Road Cicero, Illinois 60804

Prepared by:

EA Engineering, Science, and Technology, Inc., PBC 231 Schilling Circle
Hunt Valley, Maryland 21031
For questions, please contact Wayne McCulloch
ph: 410-584-7000

Results relate only to the items tested or to the samples as received by the laboratory.

This report shall not be reproduced, except in full, without written approval of EA Engineering, Science, and Technology, Inc., PBC

This report contains 8 pages plus 2 attachments

Wayne L. McCulloch Laboratory Director 30 May 2017

Date

INTRODUCTION

At the request of Metropolitan Water Reclamation District (MWRD), EA Engineering, Science, and Technology performed acute toxicity testing on composite samples of Outfall 001 final effluent from MWRD's Stickney Water Reclamation Plant in Cicero, Illinois. The effluent composite sample was collected on 15-16 May 2017. The test organisms, *Ceriodaphnia dubia* (water flea) and *Pimephales promelas* (fathead minnow), were exposed to 100, 50, 25, 12.5 and 6.25 percent effluent, and a laboratory water control. The objective of this study was to assess the acute lethality of the effluent sample to the test species, expressed as a 48-hour (*C. dubia*), or 96-hour (*P. promelas*) median lethal concentration (LC50).

This toxicity testing was conducted following EA's standard operating procedures (EA 2013) which are in accordance with US EPA guidance (US EPA 2002). The results of the acute toxicity tests were analyzed using the ToxCalc statistical software package (Version 5.0, Tidepool Scientific Software) and followed US EPA guidance (US EPA 2002). Summaries of sample and test information are presented on pages 5-6 for *C. dubia* and on pages 7-8 for *P. promelas*. Copies of raw data sheets and statistics are included in Attachment I. The Report Quality Assurance Record is included as Attachment II.

SUMMARY OF RESULTS

The results of the acute toxicity tests indicated that the 15-16 May 2017 Outfall 001 effluent sample was not acutely toxic to *Ceriodaphnia dubia* or *Pimephales promelas*. The results of these toxicity tests comply with current NELAC standards.

The results of the *C. dubia* acute toxicity test are presented on page 6. After 48 hours, there was 100 percent survival in all of the effluent concentrations and in the dilution water control. The 48-hour *C. dubia* LC50 for this test was >100 percent effluent (<1.0 TU_a).

In the *P. promelas* acute toxicity test (page 8), at the end of 96 hours there was a minimum of 85 percent survival in all of the effluent concentrations. The laboratory control had 100 percent survival. The resulting 96-hour LC50 for *P. promelas* was >100 percent effluent (<1.0 TU_a).

In conformance with EA's quality assurance/quality control program, monthly reference toxicant tests using sodium chloride (NaCl) and potassium chloride (KCl) were performed on the inhouse cultured test species. The results of the *C. dubia* reference toxicant test were acceptable, with a 48-hour LC50 of 1,980 mg/L NaCl, and acceptable control chart limits of 1,461-2,163 mg/L NaCl. The results of the *P. promelas* reference toxicant test were acceptable, with a 48-hour LC50 of 913 mg/L KCl, and acceptable control chart limits of 673-1,260 mg/L KCl.

REFERENCES

- EA. 2013. EA Ecotoxicology Laboratory Quality Assurance and Standard Operating Procedures Manual. EA Manual ATS-102. Internal document prepared by EA's Ecotoxicology Laboratory, EA Engineering, Science, and Technology, Inc., Hunt Valley, Maryland.
- US EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

SUMMARY OF SAMPLE/TEST INFORMATION

Test: Ceriodaphnia dubia 48-hour static acute toxicity test

Test Procedure: EA Protocol CD-AC-04

Acute assay with water flea (Ceriodaphnia dubia)

Client Name: Metropolitan Water Reclamation District (MWRD)

Sample Description: Outfall 001 Final Effluent

EA Accession Number: AT7-173

Collection Time and Date: 0600, 15-16 May 2017

Receipt Time and Date: 1030, 17 May 2017

Dilution Water Description: Moderately hard synthetic freshwater

EA Test Number: TN-17-146

Test Initiation Time and Date: 1427, 17 May 2017

Test Completion Time and Date: 1525, 19 May 2017

Number of Replicates: 4

Number of Organisms Per Replicate: 5

Test Chamber: 30 ml cup

Volume per Test Chamber: 15 ml

Organism Lot Information

Lot Number: N/A

Source: EA's Culture Facility (Hunt Valley, Maryland)

Age: <24 hours old

Reference Toxicant Test Information

Reference Toxicant: Sodium chloride (NaCl)

EA Test Number: RT-17-067 48-hour LC50: 1,980 mg/L NaCl

Laboratory control chart acceptability range for 48-hour LC50: 1,461-2,163 mg/L NaCl

SUMMARY OF SAMPLE/TEST INFORMATION (continued)

Test Species: Ceriodaphnia dubia (water flea)

Sample Description: Outfall 001 Final Effluent – MWRD

Sample Date: 15-16 May 2017

EA Test Number: TN-17-146

Test Concentration (percent effluent)	48-Hour Survival (percent)
Lab Control	100
6.25	100
12.5	100
25	100
50	100
100	100

48-Hour LC50 (percent effluent): >100 (TUa <1.0)

Water Quality Parameters on Test Solutions	Range
Temperature (°C):	24.3 - 26.0
pH:	7.8 - 8.3
Dissolved Oxygen (mg/L):	7.7 - 8.3
Conductivity (µS/cm):	331 - 1,089

	Outfall 001
Water Quality Parameters Measured on Sample Upon Receipt	(AT7-173)
Temperature (°C):	3.1
pH:	8.1
Total Residual Chlorine (mg/L):	< 0.01
Alkalinity (mg/L as CaCO ₃):	160
Hardness (mg/L as CaCO ₃):	240
Conductivity (µS/cm):	1,041

SUMMARY OF SAMPLE/TEST INFORMATION

Test: Pimephales promelas 96-hour static renewal acute toxicity test

Test Procedure: EA Protocol FH-AC-04

Acute assay with fathead minnows (*Pimephales promelas*)

Client Name: Metropolitan Water Reclamation District (MWRD)

Sample Description: Outfall 001 Final Effluent

EA Accession Number: AT7-173

Collection Time and Date: 0600, 15-16 May 2017

Receipt Time and Date: 1030, 17 May 2017

Dilution Water Description: Moderately hard synthetic freshwater

EA Test Number: TN-17-147

Test Initiation Time and Date: 1507, 17 May 2017

Test Completion Time and Date: 1423, 21 May 2017

Number of Replicates: 2

Number of Organisms Per Replicate: 10

Test Chamber: 1-L beaker

Volume per Test Chamber: 250 ml

Organism Lot Information

Lot Number: FH7-5/15-16

Source: EA's Culture Facility (Hunt Valley, Maryland) Age: 1-2 days old (hatched within a 24-hour period)

Reference Toxicant Test Information

Reference Toxicant: Potassium chloride (KCl)

EA Test Number: RT-17-074 48-hour LC50: 913 mg/L KCl

Laboratory control chart acceptability range for 48-hour LC50: 673-1,260 mg/L KCl

SUMMARY OF SAMPLE/TEST INFORMATION (continued)

Test Species: Pimephales promelas (fathead minnow)

Sample Description: Outfall 001 Final Effluent – MWRD

Sample Date: 15-16 May 2017

EA Test Number: TN-17-147

Test Concentration (percent effluent)	48-Hour Survival (percent)	96-Hour Survival (percent)
Lab Control	100	100
6.25	100	100
12.5	85	85
25	90	90
50	100	100
100	100	100

96-Hour LC50 (percent effluent): >100 (TU_a <1.0)

Water Quality Parameters on Test Solutions	Range
Temperature (°C):	24.2 - 25.9
pH:	7.6 - 8.3
Dissolved Oxygen (mg/L):	5.3 - 8.3
Conductivity (µS/cm):	317 - 1,058

ATTACHMENT I

Data Sheets (16 pages)

Fax: 410-584-1057

® EA Engineering, Science, and Technology

EA Ecotoxicology Laboratory 231 Schilling Circle Hunt Valley, Maryland 21031 Telephone: 410-584-7000

Sample Shipped By: (circle)

Fed. Ex.

Other: _

Tracking #: 17 288 682 01 9715 2806

Client: MWRDGC	Project No.:	
NPDES Number: 1L0028053	Client Purchase Order Number:	8008796
City/State Collected: Cicero]	IL	

PLEASE READ SAMPLING INSTRUCTIONS ON BACK OF FORM

Accession Number (office use only)	Grab	Composite	Coll Start Date/Time	ection End Date/Time	Sample Description (including Site, Station Number, and Outfall Number)	Number/Volume of Container
AT7-173		×	5/15/17 0600	5/16/17 0600	Stickney WRP Eind Falent, alt fall 001	1 qa)
, the				*		
			_	#		
				-		
						
200 mm	Ì	•				
				-		

Sampled By:	Date/Time	Received By:	Date/Time
1/2 feller	5/16/17 0845	<u>:</u>	
Sampler's Printed Name:	Title:	Relinquished By:	Date/Time
Nick Kollies	Assistant Aquatiz Biologist	1/2 feller	5/16/17 0900
Relinquished By:	Date/Time	Received By Laboratory ####################################	Date/Time 5/17/17 1030

Was Sample Chilled During Collection? (Yes) No

Comments:

Sample Collection Parameters

Visual Description: Whow

Temperature (°C): 5 %

pH: 7.12 TRC (mg/L): 0 1/L

Other:

SAMPLE CHECK-IN FOR TESTING

Client: MWRD	····		
EA Accession Number:	AT7-173		

Parameter	Acceptable Range	Measurement*	Date	Time	Initials
Temperature (°C)	≤4	3.1	511717	1030	MJ
Is ice present?					
pН	6.0-9.0	8.1			
TRC (mg/L)	<0.01	20.01			
Visual Description		Clear			\downarrow

^{*}If outside acceptable range, contact project manager.

OTHER PARAMETERS IF REQUIRED (SEE STUDY PLAN):

Parameter	Acceptable Range	(✓)	Date	Time	Initials
Ammonia (preserve aliquot)					
Parameter	Acceptable Range	Measurement*	Date	Time	Initials
Salinity (ppt)					

UPS# 122856820197152806

TOXICITY TEST SET-UP BENCH SHEET

Project Number: 70005.15 Client: MWRD QC Test Number: TN-11-146

TEST ORGANISM INFORMATION 5/16/17 1602 Common Name: Water flea Adults Isolated (Time, Date): Neonates Pulled & Fed (Time, Date): 5/17/17 1005 Scientific Name: C. dubia Lot Number: N/A Acclimation: <24hrs Age: <24 hrs Source: EA Culture Water (T/S): 25.5 °C 0 ppt

TEST INITIATION Date Time Initials Activity 5/17/17 1405 MJ Dilutions Made Test Vessels Filled 1427 Organisms Transferred **Head Counts** 1457 NM

TEST SET-UP

Sample Number: ATT-173

Dilution Number: LD7-193

Test Concentration Volume Test Material Final Volume 200 ml Control $0 \, \mathrm{ml}$ 6.25% 12.5 ml 25 ml 12.5% 25% 50 ml 100 ml 50% 200 ml 100%

ACUTE TOXICITY TEST DATA SHEET

Project Number: 70005.15	TEST ORGANISM	Beg	inning Date: 5/17/17 Time: 1427.
Client: MWRD	Common Name: Water fl	ea End	ing Date:
QC Test Number: TN-17-146	Scientific Name: <u>C.dubia</u>	TES	T TYPE: (Static)/ Flowthrough
Test Material: Effluent	TARGET VALUES		Renewal / Non-renewal
Accession Number: AT7-173	Temp: <u>25±1 °</u> C	DO: <u>>4.0</u> mg/	Test Container: 30 ml cup
Dilution Water: Mod Hard	pH: <u>6.0 - 9.0</u>	Salinity: 0ppt	Test Volume: 15 ml
Accession Number: LTM-195	Photoperiod: <u>16 ℓ, 8 </u> d	Light Intensity: 50 - 100 fc	Test Duration: 48 hrs

			Live	ımber Orgar	iisms				npera (°C)					рН			Γ		ved C (mg/L		n	\(\sigma_{\alpha} \)	onduc Sal	tivity (μS/cı	n)
Concentration	Rep	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Control	Α	5	5	5			24.4	24.7	259			83	7.9	1.8			8.0		8-D			33	356	3 L 5		
	В	5	5	5																	_			100		
	С	5	5	5											-											
	D	5	5	5																						
6.25%	Α	5	5	5			24.3	24.7	25.54			8.3	7.9	8.1			3.j	7.9	8.2			3P)	વ િજ	403		
	В	5	5	5										V 4:				1 - 🗸	-				710	10.7		
	С	5	5	5																						
	D	5	35	5																						
12.5%	Α	5	5	5			24.4	24.7	26.0			3.2	7.9	1.8			4.2	79	8.3			418	437	441		
	В	5	5	5														1.5	V 3			1	1.J.T			
	С	5	5	5																						
	D	5	Š	5									-						-							
Meter Number					<u> </u>		<i>6</i> 18	479	679			63	6.39	(,74			ing	ા કુન	679			0%	6.19	679		
Time	,	1457	1327	1525				1	1519			Hig.						1355								
Initials		NM	RSB						(58				RSS				MT	655	NS				RB	R)S		

EPA Test Method: EPA 821-R-02-012 (CHECK ONE)

Ceriodaphnia: 2002.0 X Magna/pulex: 2021.0

Fathead:2000.0____ Trout: 2019.0___ Americamysis: 2007.0 Menidia:2006.0 Cyprinodon: 2004.0 OTHER:

12/02/08 ATS-T01

ACUTE TOXICITY TEST DATA SHEET

Project Number: 70005.15	TEST ORGANISM		Beginning [Date: _5/17/17 Time: _1427
Client: MWRD	Common Name: Water fle	a	Ending Date	e: <u>5/19/14</u> Time: <u>152</u> 5
QC Test Number: TN-17-146	Scientific Name: C.dubia		TEST TYPE	Static / Flowthrough
Test Material: Effluent	TARGET VALUES			Renewal / Non-renewal
Accession Number: A7-173	Temp: <u>25±1 °</u> C	DO: >4.0	_mg/L	Test Container: 30 ml cup
Dilution Water: Mod Hard	pH: <u>6.0 - 9.0</u>	Salinity: 0	_ppt	Test Volume: 15 ml
Accession Number: LD7-195	Photoperiod: 16 l, 8 d	Light Intensity: 50 - 10	0 fc	Test Duration: 48 hrs

				umber Orgar		·····		Ter	npera (°C)	ture				рН			[ved C (mg/L		n	6	onduc Sal	tivity	(μS/ci	m)
Concentration	Rep	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
25%	Α	5	5	5			24.4	24.6	26.0			3.2	7.9	0,0			8.2	7 a	8.1			511	501	542		
	В	5	5	5									1.				0.00		-			0.1	<u>v Je</u>	114		
	С	5	5	5																		 - · · · ·		ļ		
	D	5	5	5															<u> </u>							
50%	Α	6	5	5			21.4	24.7	261			8.1	7.9	8.0			8.2	79	8.1			682	749	311/		
	В	5	5	5										0.0			1)0 600	,,,	001			W.O.Sum	701	717		
	С	5	5	5																				-		
	D	5	5	5																						
100%	Α	5	5	5			24.7	24.9	25,9			8,0	7.8	79			22	8.0	9.1			(037)	١٨٦٨	1089		
	В	5	5	5					**** ¥ 1	ļ		3	1	1			8.3	V	061			1 (20)	1070	106-1		
	С	5	5	5												<u> </u>										
	D	3	5	5																						
Meter Number		<u> </u>	1	'			679	1.79	679			1.19	679	(.7a			618	/ na	130			678	170	1.10		
Time		1457	1327	1525			1412	l	i			1412	" -			 			1519			1412				
Initials		NM	RSB	1			M		BB			MJ				 	MO	133 136					Rib			

5(17M)

EPA Test Method: EPA 821-R-02-012 (CHECK ONE)

Ceriodaphnia: 2002.0 X Magna/pulex: 2021.0

Fathead:2000.0_____ Trout: 2019.0_ Americamysis: 2007.0 Menidia:2006.0 Cyprinodon: 2004.0 OTHER:

12/02/08 ATS-T01

RANDOMIZATION CHART

Project No	umber: _	70005.15	
Client:	MWF	RD	
QC Test N	lumber:	TN-+4-17-146	5/17 11/6

5	4	1	3	6	2
1	5	3	2	4	6
6	2	4	1	5	3
4	1	2	6	3	5

TOXICOLOGY LABORATORY BENCH SHEET

Project Number: <u>70005.15</u>	
Client: <u>MWRD</u>	
QC Test Number: TN-17-146	<u> </u>
Date/Time/Initials	Comments/Activity

TOXICOLOGY LABORATORY CORRECTION BENCH SHEET

Project Number: 70005.15
Client: MWRD
QC Test Number: TN-17-146
Correction Explanations
(a) Technician Error-Mathematical
(b) Technician Error-Manual Data Recording
(c) Technician Error-Head Count Observation
(d) Technician Error-Overwrite
(e) Technician Error-Missing Data
(f) Technician Error-Lost Organism
(g) Technician Error-Transcription Error
(h) Technician Error-Other:
(i) Meter Malfunction

TOXICITY TEST SET-UP BENCH SHEET

Project Number:	70005.15		
Client: MWR	D		
QC Test Number: _	TN-17-147	·······	
		TEST ORGANISM INFORMATION	

TEST ORGA	NISM INFORMATION
Common Name: Fathead minnow	Adults Isolated (Time, Date):
Scientific Name: P. promelas	Neonates Pulled & Fed (Time, Date):
Lot Number: FH7-5/15-16	Acclimation: <24 hrs Age: 1-2days
Source: EA	Culture Water (T/S): 23.8 °C 0 ppt

	Т	EST INITIA	TION	CONCENTRATION SERIES						
<u>Date</u>	<u>Time</u>	<u>Initials</u>	Activity	Test <u>Concentration</u> Control	Volume <u>Test Material</u> 0ml	Final <u>Volume</u> 500ml				
sinin	1405	MJ	Dilutions Made	6.25%	31.25ml					
*	Approximate the second	Kenneski		12.5%	62.5ml					
	V	To you will be a second	Test Vessels Filled	25%	125ml					
West Park	1507	Traffice and All Control		50%	250ml					
en une de la compresa		V	Organisms Transferred	100%	500ml					
	1513	RSB	Head Counts							

	en e	INTE	RMEDIAT	E DILUTION P	REPAR	ATION AND FE	EDING	,			
	DILUT	ION PREI	PARATION	V	FEEDING						
<u>Day</u> 0	<u>Date</u> ร/ท เา	Time 1405	Initials MJ	Sample / Diluent ATT-173	Food: Day 0	Artemia Time, Initials, Amount	Time, Initials, Amount	Time, Initials, Amount			
1					1			, -			
2	slali	1155	MJ	477-173 4D7-200	2			_			
3					3			~ ~~			
4			-		4						
5					5						
6	-		<u> </u>		6						

ACUTE TOXICITY TEST DATA SHEET

Project Number: 70005.15	TEST ORGANISM		Beginning I	Date:5 7 7 Time: _1507
Client: MWRD	Common Name: Fathead	minnow	Ending Dat	
QC Test Number: TN-11-147	Scientific Name: P. prome	elas	TEST TYP	E: Static / Flowthrough
Test Material: Effluent	TARGET VALUES			Renewal / Non-renewal
Accession Number: AT7-113	Temp: <u>25±1 °</u> C	DO: <u>>4.0</u>	_mg/L	Test Container: 1 L Beaker
Dilution Water: <u>Mod Hard</u>	pH: <u>6.0 - 9.0</u>	Salinity: 0	_ppt	Test Volume: 250 ml
Accession Number: <u>LD7-195</u>	Photoperiod: 16 l, 8 d	Light Intensity: 50 - 10	<u>10</u> fc	Test Duration: 96 hrs

			Live	ımber Orgar	nisms				npera (°C)				рН		[Dissolved Oxygen (mg/L)				Conductivity (µS/cm) Salimity (ppt)						
Concentration	Rep	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Control	Α	10	įø	jo	10	10	24.4		24.3			8.3		8.0			8.0		8.2			<i>53i</i>		317		
	В	10	10	(0	ΙŪ	10			, ,			(J- um.		040			0.0					· ()		3.7		
6.25%	- A	U	10	τ,	10		24.3		24.5			8.3		7.9			8.1		8.2			379		364		
	В	10	10	10	10	10						<i></i>					U-1					271		307		
12.5%	Α	10	7	7		1	24.4		24.6			82		7.9			8.2	<u> </u>	8.3		·	418		410		
	В	10	10	10	10	10													7. 5,3			טיו		-110		
25%	Α	10	8	රි	F	8	四月		24.7			3.7		7.9			8.2		8.3			511		491		
	В	10	10	10	10	10																77.		1		
50%	A)	10	10	10	10	10	744		24.7			51		7.0			8.2		8.3			632		664		
	В	10	10	10	10	10								Ť								1000		www (
100%	Α	10	10	10	10	10	24.7		25.0			3.0		7.7			8.3		8.3			1037		1046		
	В	10	(0	10	10	10				~							<u> </u>					14271				
Meter Number			·		•		618		679			618		679	•		678		679			<i>6</i> 78		679		
Time		1513	1437	ILOU	1453	1423	_		1157			1412		151			1412		1157			1412		1157		
Initials		RSB		RSB	135	Mo	Mi		MJ			INS		Mo			MS		MT		L	MJ		MIT		

EPA Test Method: EPA 821-R-02-012 (CHECK ONE)

Ceriodaphnia: 2002.0____ Magna/pulex: 2021.0____

Fathead:2000.0__X Trout: 2019.0____

Americamysis: 2007.0 M Cyprinodon: 2004.0 OTHER: Menidia:2006.0 12/02/08

ATS-T01

ACUTE TOXICITY TEST DATA SHEET - OLD SOLUTIONS

Project Number: 70005.15	TEST ORGANISM		Beginning Date:	5 17 17 Time: 1507
Client:MWRD	Common Name:Fathe	ead minnow	Ending Date:	5/21/17 Time: 1423
QC Test Number:TN- । १) - । ५ १	Scientific Name: P. pro	omelas	TEST TYPE:	Static / Flowthrough
Test Material: <u>Effluent</u>	TARGET VALUES		(F	Renewal / Non-renewal
Accession Number: _ Aো- াণ্ড	Temp: <u>25±1</u> °C	DO: <u>≥4.0</u>	mg/L Test Cor	ntainer: 1 L Beaker
Dilution Water: <u>Mod Hard</u>	pH: <u>6.0 - 9.0</u>	Salinity:0	ppt Test Vol	ume:250 ml
Accession Number: L'D) > \95	Photoperiod: 16 l, 8 d	Light Intensity: 50 - 100	_fc Test Dur	ation: 96 hrs

		Number of Live Organisms		Ten	npera (°C)	ture				рH					ved ((mg/L	Dxyge	n	Cc.	onduc	tivity inity ((μS/c	m))
Concentration	Rep	(0) 2245 (-487 7/2 965	(0)	24	48	72	96	(0)	24	48	72	96	(0)	24	48	72	96	×0.	24	48	72	96
Control	Α			24.9	74 A	24.2	24.2		7.9	Q. 1	8.3	8.1		80	5.7	8,4	03		7119	200	345	22 er-m
	В			- ,, ,	7113				, ,	011	0,0	0.1		0.0	17:4	01 (8.5		<u> 343</u>	27.7	2"12	357
6.25%	Α			<u>የ</u> ቦ	25 L	255	77 \] a	8.1	6.3	-1 Q		10	و مس	8.3	n 9		200	200	200	000
	В			<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	6.14	601		7.7	011	() .33	1.0		4.0	5.6	U.J	7.8		280	272	587	388
12.5%	Α			4x 3	16 9	26.11	25.2		-	10	~ O	7.7		111	c. 1	61			l	1100	2.000	<u> </u>
	В		7.0	χ., .)	<u> </u>	4011	15.6		<u>0: t</u>	7.9	8.4	1, 1		1.1	5.3	70.1	7.7		125	429	421	426
25%	Α			25.1	Ka	266			20	79		<i>5</i> %		7 1	6,6					1100		
	В			<u>√.\</u>	<u>W. \</u>	600	25.2	<u> </u>	0, 1		81	7.8		7.6	1300	82	7.7		516	499	518	518
50%	Α			ne 3	0C PS	دامره	¥4.		7 /2	10				<u> </u>	- 1							<u> </u>
-	В			1212	<u> </u>	254	25.6		7.8	1,71	₹.\	7.7		1.7	5,6	3.2	7.6		<u>(79</u>	684	686	684
100%	Α			العم	nC 1	D con pr		Marin II.	_ 1		63	10		3.			200					
	В		1 475	35 K	<u>, (), †</u>	25.5	15.V		7.7	1.0	 3.∪	7.4		+1/	6.5	8.3	7.5		1014	1027	icog	1055
Meter Number					7													200				
Time	···		CONTRACTOR OF THE PARTY OF THE	678				100000								679			<i>G</i> 78	678	679	619
			非常性的				(K558				1240	09638				1240	085%		0840	0900	1240	Ó85B
Initials				(15B	RSB	JB	M		BB	RSA	B	M		MBB	RSB	<i>5</i> 23	MJ		RSB	RIB	33	MO

(9)108 2/4/17 (3)10B 2/4/14

RANDOMIZATION CHART

Project i	Number: _	70005.15	
Client: _	MWR	RD	
QC Test	t Number:	TN-17-147	

5	4	1	3	6	2
1	5	3	2	4	6

TOXICOLOGY LABORATORY BENCH SHEET

Project Number: 70005.15	
Client: MWRD	
QC Test Number: <u>TN-iコーピコ</u>	
Date/Time/Initials	Comments/Activity

TOXICOLOGY LABORATORY CORRECTION BENCH SHEET

Project Number: 70005.15
Client: MWRD
QC Test Number: TN-パーパー
Correction Explanations
(a) Technician Error-Mathematical
(b) Technician Error-Manual Data Recording
(c) Technician Error-Head Count Observation
(d) Technician Error-Overwrite
(e) Technician Error-Missing Data
(f) Technician Error-Lost Organism
(g) Technician Error-Transcription Error
(h) Technician Error-Other:
(i) Meter Malfunction

TOXICOLOGY LABORATORY BENCH SHEET

Project Number: _	70005.15		
Client: MWF	RD		
QC Test Number:	TN- 17-146/147		

Aliquot of sample warmed to test temperature, then aerated if supersaturated:

			ON AIR		OFF AIR		7	
D-4-		Initial DO	— .		Final DO			
Date	Sample #	(mg/L)	Time	Initials	(mg/L)	Time	Initials	4
sinin	AT7-173	9.6	1335	TM	8.1	1345 1345	MJ	5
5/19/17	AT7-173	9.5	0833	RSB	8,1	0843	NM	"
ĺ		'				013		
1		:					·	
				! -				
					!			İ
								1
			ļ					İ
	ļ					1		
3 								
					,			
						ļ		
							:	
	ľ							
		į				<u></u>		

ATS-T49

ATTACHMENT II

Report Quality Assurance Record (2 pages)

REPORT QUALITY ASSURANCE RECORD

	nor: Michael Chara		7530
	REPORT	CHECKLIST	
	QA/QC ITEM	REVIEWER	DATE
1.	Samples collected, transported, and received according to study plan requirements.	MKCE	6/21/17
2.	Samples prepared and processed according to study plan requirements.	WKC	<u> 5/24/17</u>
3.	Data collected using calibrated instruments and equipment.	MKCE	5/26/12
4.	Calculations checked: - Hand calculations checked	MICE	5/21/12
	 Documented and verified statistical procedure used. 	MKM	5/21/17
5.	Data input/statistical analyses complete and correct.	Mullelle	5/26/17
6.	Reported results and facts checked against original sources.	MMMMM	5726/17
7.	Data presented in figures and tables correct and in agreement with text.	Melle	5/26/67
	Results reviewed for compliance with study plan requirements.	MECE	5/26/17
		AUTHOR	DATE
9.	Commentary reviewed and resolved.	Eacher Bri	5/30/17
10. /	All study plan and quality assurance/control requiren approved:	nents have been met and the	report is
•		ROJECT MANAGER	
	(YMM Da	5/26/17
	9	UALITY CONTROL OFFICER	DATE
		Tark & Bry	5/30117

SENIOR TECHNICAL REVIEWER

DATE