

Metropolitan Water Reclamation District of Greater Chicago

MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 15-8

HANOVER PARK WATER RECLAMATION PLANT

FISCHER FARM MONITORING REPORT FOR

FOURTH QUARTER 2014

February 2015

Metropolitan Water Reclamation District of Greater Chicago – 100 East Erie Street Chicago, Illinois 60611-2803 312-751-5600

HANOVER PARK WATER RECLAMATION PLANT FISCHER FARM MONITORING REPORT FOR

FOURTH QUARTER 2014

Monitoring and Research Department Thomas C. Granato, Director

February 2015

Protecting Our Water Environment

Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, Illinois 60611-3154f: 312.751.5194312.751.5190

THOMAS C. GRANATO, Ph.D., BCES Director of Monitoring and Research

thomas.granato@mwrd.org

Mariyana T. Spyropoulos President Barbara J. McGowan Vice President Frank Avila Chairman of Finance Michael A. Alvarez Timothy Bradford Cynthia M. Santos Debra Shore Kari K. Steele Patrick D. Thompson

BOARD OF COMMISSIONERS

February 5, 2015

Mr. S. Alan Keller, P.E. Manager, Permit Section Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794 - 9276

Dear Mr. Keller:

Subject: Hanover Park Water Reclamation Plant - Illinois Environmental Protection Agency Permit No. 2012-SC-2255, Monitoring Report for October, November, and December 2014

The attached report includes three tables of monitoring results for the Hanover Park Fischer Farm site for the fourth quarter of 2014. The report also includes five additional tables for the second and third quarter reports for 2014 that were mistakenly omitted from those reports.

Very truly yours,

Thomas C. Granato, Ph.D., BCES Director Monitoring and Research

TCG:DB:cm Attachment

cc: Mr. J. Patel, Manager, IEPA - Des PlainesMr. V. Aistars, USEPA Region 5Mr. P. Kuefler, USEPA Region 5

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
LIST OF FIGURES	iii
FOREWORD	iv
ACKNOWLEDGEMENT	V
HANOVER PARK WATER RECLAMATION PLANT FISCHER FARM REPORT FOR FOURTH QUARTER OF 2014	1
ADDENDUM TO SECOND AND THIRD QUARTERLY REPORTS FOR 2014	2

LIST OF TABLES

Table No.		Page
1	Analysis of Water from Monitoring Well W-7 at the Hanover Park Fischer Farm Site Sampled During October, November, and December 2014	4
2	Analysis of Water from Monitoring Wells W-3, W-5, W-6, and W-8 at the Hanover Park Fischer Farm Site Sampled on November 4, 2014	5
3	Analysis of Combined Surface and Subsurface Drainage from the Fischer Farm Site Returned to the Hanover Park Water Reclamation Plant During October, November, and December 2014	6
4	Analysis of Water from Monitoring Well W-7 at the Hanover Park Fischer Farm Site Sampled During April, May, and June 2014	7
5	Analysis of Lagoon Supernatant Applied to Fields at the Hanover Park Fischer farm Site During April 2014	8
6	Analysis of Lagoon Biosolids Applied to Fields at the Hanover Park Fischer Farm Site During May and June 2014	9
7	Volumes and Dry Weights of Lagoon Supernatant Applied to Fields During April and Biosolids Applied to Fields During May and June at the Hanover Park Fischer Farm	10
8	Analysis of Water from Monitoring Well W-7 at the Hanover Park Fischer Farm Site Sampled During July, August, and September 2014	11

LIST OF FIGURES

Figure No.		Page
1	Map of Fields and Wells at the Hanover Park Fischer Farm Site of the Metropolitan Water Reclamation District of Greater Chicago	3

FOREWORD

The data and information in this report fulfill the frequency of monitoring and reporting requirements for the Hanover Park Fischer Farm Site as specified in the Illinois Environmental Protection Agency Permit No. 2012-SC-2255 for the fourth quarter of 2014.

ACKNOWLEDGEMENT

The assistance given by Ms. Minaxi Patel, Assistant Environmental Chemist, of the Environmental Monitoring and Research Division, and Mr. John Chavich, Supervising Environmental Chemist, of the John E. Egan Analytical Laboratory Section, is greatly appreciated.

HANOVER PARK WATER RECLAMATION PLANT FISCHER FARM REPORT FOR FOURTH QUARTER OF 2014

During October, November, and December 2014, activities at the Hanover Park Water Reclamation Plant (WRP) Fischer Farm included well and field drainage water sampling and flow measurements. These monitoring activities are required by the Illinois Environmental Protection Agency Operating Permit No. 2012-SC-2255. Fields and water monitoring locations are presented in Figure 1.

Analytical data for well water samples collected during the fourth quarter are presented in <u>Tables 1</u> and <u>2</u>. Drainage water (combined surface and subsurface) returned to the Hanover Park WRP from farm fields was sampled twice each month for October, November, and December. Analytical data for these samples are presented in <u>Table 3</u>. The volumes of drainage water returned to the WRP during the fourth quarter were estimated at 3.8, 1.8, and 2.6 million gallons in October, November, and December, respectively. No lagoon supernatant or biosolids were applied to fields during the fourth quarter.

ADDENDUM TO SECOND AND THIRD QUARTER REPORTS

Data were mistakenly omitted from the second and third quarter reports for 2014. The omitted data for Well 7 for the second quarter are provided in <u>Table 4</u>. The omitted data for lagoon supernatant and biosolids applied to fields at the Hanover Park Fischer Farm site for the second quarter are provided in <u>Tables 5</u>, <u>6</u>, and <u>7</u>. The omitted data for Well 7 for the third quarter are provided in <u>Table 8</u>.

FIGURE 1: MAP OF FIELDS AND WELLS AT THE HANOVER PARK FISCHER FARM SITE OF THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

3 -

	Date Sampled					
Parameter	10/7/14	10/21/14	11/4/14	11/25/14	12/9/12014	12/16/14
pH^1	7.3	7.2	7.2	7.4	7.2	7.2
			n	$nS m^{-1}$		
EC	123	151	147	111	121	123
			1	$mg L^{-1}$		
Cl^{-} $SO_4^{2^{-}}$	60 259	61 256	60 249	60 256	59 262	59 253
CaCO ₃	544	527	535	224	266	531
TKN NH3-N NO2+NO3–N Total P	35 33 <0.15 0.20	33 31 <0.15 0.20	34 32 <0.15 0.20	33 31 <0.15 0.25	31 30 <0.15 0.25	31 30 <0.15 0.23
Cd Cr Cu Fe	<0.001 <0.005 <0.005 4.0	<0.001 <0.005 <0.005 4.5	<0.001 <0.005 <0.005 3.8	<0.001 <0.005 <0.005 3.9	0.002 <0.005 <0.005 4.2	<0.001 <0.005 <0.005 4.2
Mn Ni Zn	$0.05 < 0.005 \\ 0.07$	0.06 <0.005 0.08	$0.05 < 0.005 \\ 0.06$	0.05 <0.005 0.08	$0.05 < 0.005 \\ 0.08$	0.05 <0.005 0.10

TABLE 1: ANALYSIS OF WATER FROM MONITORING WELL W-7 AT THE HANOVER PARK FISCHER FARM SITE SAMPLED DURING OCTOBER, NOVEMBER, AND DECEMBER 2014

¹pH analyzed beyond recommended holding time of 15 minutes.

Monitoring Well No.					
W-3	W-5	W-6	W-8		
7.4	7.5	7.5	8.2		
		$mS m^{-1}$			
84	74	81	55		
]	mg L ⁻¹			
		U			
14	14	31	7.1		
126	95	118	52		
349	312	307	255		
<1.0	<1.0	<1.0	<1.0		
0.25	0.30	0.20	0.42		
< 0.15	< 0.15	< 0.15	< 0.15		
< 0.20	< 0.20	< 0.20	< 0.20		
0.003	< 0.001	0.002	< 0.001		
< 0.005	< 0.005	< 0.005	< 0.005		
0.007	0.011	< 0.005	0.008		
9.8	2.6	2.0	0.50		
0.20	0.03	0.03	0.02		
< 0.01	< 0.01	< 0.01	< 0.01		
0.04	< 0.01	< 0.01	0.02		
	W-3 7.4 84 14 126 349 <1.0	$\begin{tabular}{ c c c c c } \hline Monitorin \\ \hline W-3 & W-5 \\ \hline \hline & W-3 & W-5 \\ \hline \hline & & & & & & & \\ \hline & & & & & & & &$	$\begin{tabular}{ c c c c c c c } \hline Monitoring Well No. \\ \hline W-3 & W-5 & W-6 \\ \hline \hline 7.4 & 7.5 & 7.5 \\ \hline \hline 14 & 74 & 81 \\ \hline 14 & 14 & 31 \\ 126 & 95 & 118 \\ 349 & 312 & 307 \\ \hline 14 & 14 & 31 \\ 126 & 95 & 118 \\ 349 & 312 & 307 \\ \hline 10 & <1.0 & <1.0 \\ 0.25 & 0.30 & 0.20 \\ <0.15 & <0.15 & <0.15 \\ <0.20 & <0.20 & <0.20 \\ \hline 0.003 & <0.001 & 0.002 \\ <0.005 & <0.005 & <0.005 \\ 0.007 & 0.011 & <0.005 \\ 9.8 & 2.6 & 2.0 \\ \hline 0.20 & 0.03 & 0.03 \\ <0.01 & <0.01 & <0.01 \\ \hline 0.04 & <0.01 & <0.01 \\ \hline \end{tabular}$		

TABLE 2: ANALYSIS OF WATER FROM MONITORING WELLS W-3, W-5, W-6, AND W-8 AT THE HANOVER PARK FISCHER FARM SITE SAMPLED ON NOVEMBER 4, 2014

¹pH analyzed beyond recommended holding time of 15 minutes.

TABLE 3: ANALYSIS OF COMBINED SURFACE AND SUBSURFACE DRAINAGE FROM THE FISCHER FARM SITE RETURNED TO THE HANOVER PARK WATER RECLAMATION PLANT DURING OCTOBER, NOVEMBER, AND DECEMBER 2014

Date	Sump	NH ₃ -N	TSS ¹	BOD ₅
			- mg L ⁻¹	
10/07/2014	East	9.2	5.0	11
10/07/2014	West	0.17	16.0	5.0
10/21/2014 10/21/2014	East West	<0.10 6.6	5.0 <4.0	NRR ² NRR
11/04/2014	East	25	6.0	4.0
11/04/2014	West	0.93	5.0	<2.0
11/25/2014 11/25/2014	East West	82 196	46 176	53 NRR
12/09/2014	East	142	94	113
12/09/2014	West	52	42	47
12/16/2014 12/16/2014	East West	12 3.5	7.0 10	4.0 5.0

¹Total suspended solids. ²No reportable results.

	Date Sampled					
Parameter	4/8/14	4/22/14	5/6/14	5/13/14	6/10/14	6/24/14
pH ¹	7.2	7.3	7.3	7.3	7.6	7.5
			mS	m ⁻¹		
EC	142	140	120	117	102	120
EC	142	140	139	11/	123	130
-			mg 2	L ⁻¹		
CI		71	74	74	70	(7
SO^{2-}	00 233	/1 230	74 212	74 211	70 236	07 2/13
Alkalinity as CaCO ₃	233 502	468	445	457	230 474	2 4 3 507
TKN	29	22	19	19	19	23
NH ₃ -N	27	22	19	17	17	22
NO ₂ +NO ₃ -N	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Total P	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Cd	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cr	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Cu	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fe	4.3	NRR ²	4.2	4.4	4.3	4.7
Mn	0.05	0.05	0.05	0.05	0.05	0.06
Ni	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Zn	0.10	0.08	0.08	0.10	0.09	0.17

TABLE 4: ANALYSIS OF WATER FROM MONITORING WELL W-7 AT THE HANOVER PARK FISCHER FARM SITE SAMPLED DURING APRIL, MAY, AND JUNE 2014

¹pH analyzed beyond recommended holding time of 15 minutes. ²No reportable results.

Constituent	stituent Unit	
pH		7.9
Total Solids	%	0.14
Total Volatile Solids ²	"	52
Volatile Acids ³	mg/L	7.0
TKN	"	567
NH ₃ -N	"	514
Total P	"	65
As	"	< 0.05
Cd	"	< 0.001
Cr	"	0.007
Cu	"	0.17
Hg	μg/L	0.23
Mn	mg/L	0.20
Мо	"	< 0.01
Na	"	76
Ni	"	0.03
Pb	"	< 0.02
Se	"	0.04
Zn	"	0.28

TABLE 5: ANALYSIS OF LAGOON SUPERNATANT APPLIED TO FIELDS AT THE HANOVER PARK FISCHER FARM SITE DURING APRIL 2014

¹Mean of two samples. ²Total volatile solids as a percentage of total solids. ³As acetic acid.

Constituent	ituent Unit	
рН		7.6
Total Solids	%	3.7
Total Volatile Solids ²	"	68
Volatile Acids ³	mg/kg	6.5
TKN	"	86,131
NH ₃ -N	"	36
Total P	"	3,102
As	"	<5.0
Cd	"	1.0
Cr	"	47
Cu	"	955
Hg	"	1.5
Mn	"	708
Мо	"	14
Na	"	NRR^4
Ni	"	39
Pb	"	26
Se	"	<5.0
Zn	"	868

TABLE 6: ANALYSIS OF LAGOON BIOSOLIDS APPLIED TO FIELDS AT THE HANOVER PARK FISCHER FARM SITE DURING MAY AND JUNE 2014

¹Mean of three samples. ²Total volatile solids as a percentage of total solids. ³As acetic acid. ⁴No reportable results.

Field	Date	Biosolids Type	Volume (Gallons)	Dry Weigh (Tons)
2	4/07/14	Supernatant	311.000	1.69
5	4/17/14	Supernatant	580,000	3.39
6	5/22/14	Biosolids	726,000	75.4
6	5/23/14	"	685,410	71.2
5	5/24/14	"	477,448	60.1
5	5/25/14	"	737,345	108
5	5/26/14	"	555,652	83.9
1	5/27/14	"	151,340	22.9
1	5/28/14	"	639,541	99.2
3	5/29/14	"	527,438	90.6
2	5/30/14	"	511,710	88.6
4	5/31/14	"	523,699	94.3
6	6/02/14	"	439,773	63.3
6	6/03/14	"	1,024,624	136

TABLE 7: VOLUMES AND DRY WEIGHTS OF LAGOON SUPERNATANT APPLIED TO FIELDS DURING APRIL AND BIOSOLIDS APPLIED TO FIELDS DURING MAY AND JUNE AT THE HANOVER PARK FISCHER FARM

	Date Sampled					
Parameter	7/8/14	7/22/14	8/5/14	8/26/14	9/9/14	9/23/14
pH^1	7.5	7.3	9.3	7.3	7.3	7.4
			mS	m ⁻¹		
EC	152	160	136	143	154	149
			mg]	L ⁻¹		
	- 1	7 0	-		60	<i>(</i>)
CI SO ²⁻	61 250	59	58	57	60 271	62 261
SU_4	239 553	244 559	201 575	240 547	271 522	201 542
Alkalility as CaCO ₃	333	338	373	347	333	342
TKN	27	32	33	34	36	34
NH ₃ -N	26	30	31	32	33	33
NO ₂ +NO ₃ -N	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Total P	< 0.20	< 0.20	< 0.20	< 0.20	0.20	< 0.20
Cd	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cr	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Cu	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fe	4.5	4.5	6.4	5.8	4.4	4.5
Mn	0.06	0.06	0.08	0.08	0.05	0.06
Ni	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Zn	0.08	0.09	0.16	0.13	0.10	0.13

TABLE 8: ANALYSIS OF WATER FROM MONITORING WELL W-7 AT THE HANOVER PARK FISCHER FARM SITE SAMPLED DURING JULY, AUGUST, AND SEPTEMBER 2014

¹pH analyzed beyond recommended holding time of 15 minutes.