

Metropolitan Water Reclamation District of Greater Chicago

MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 15-01

CONTROLLED SOLIDS DISTRIBUTION REPORT
FOR FOURTH QUARTER 2014

January 2015

Protecting Our Water Environment

Metropolitan Water Reclamation District of Greater Chicago

100 East Erie Street Chicago, Illinois 60611-3154 f: 312.751.5194 312.751.5190

THOMAS C. GRANATO, Ph.D., BCES

Director of Monitoring and Research

thomas.granato@mwrd.org

Mr. S. Alan Keller, P.E. Manager, Permit Section Illinois Environmental **Protection Agency** 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

January 26, 2015

BOARD OF COMMISSIONERS

Mariyana T. Spyropoulos

Chairman of Finance Michael A. Alvarez Timothy Bradford Cynthia M. Santos

President Barbara J. McGowan Vice President Frank Avila

Debra Shore Kari K. Steele Patrick D. Thompson

Dear Mr. Keller:

Subject: Metropolitan Water Reclamation District of Greater Chicago - Controlled

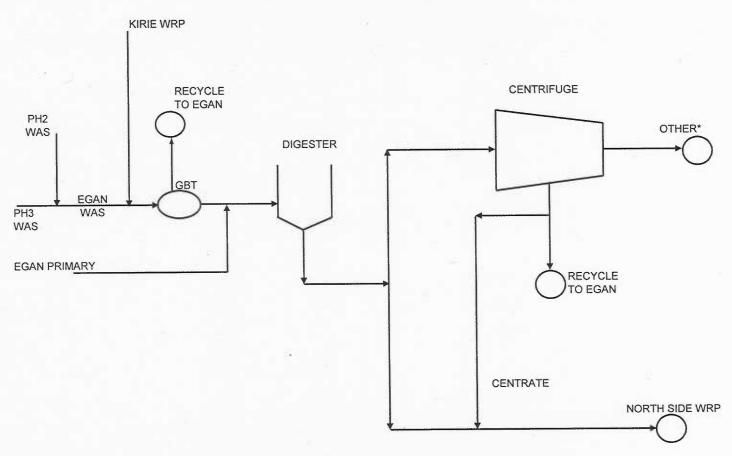
Solids Distribution Program Illinois Environmental Protection Agency Permit

No. 2010-SC-0200, Fourth Quarter (October – December 2014)

This letter transmits information and data for the Metropolitan Water Reclamation District of Greater Chicago - Controlled Solids Distribution Program for the fourth quarter (October - December 2014), as required by Illinois Environmental Protection Agency Permit Nos. 2010-SC-0200 and 2010-SC-0200-2.

Sludge flow schematic diagrams for solids processed during October – December 2014 are shown in Figure 1 – John E. Egan Water Reclamation Plant (WRP), Figure 2 – Calumet WRP, and Figure 3 – Stickney WRP.

Biosolids were distributed to six sites during the fourth quarter of 2014. The user information report for these sites is presented in Table 1, and the analysis of biosolids delivered to these sites is presented in Table 2.


Very truly yours,

Thomas C. Granato, Ph.D., BCES Director Monitoring and Research

TCG:OO:cm Attachments

cc: Mr. V. Aistars (USEPA) Mr. J. Patel (IEPA)

FIGURE 1: JOHN E. EGAN WATER RECLAMATION PLANT OPERATIONAL FLOW CHART FOR FOURTH QUARTER 2014

^{*}Sent to either Stickney or Calumet drying sites for further processing or storage prior to farmland application.

FIGURE 2: CALUMET WATER RECLAMATION PLANT OPERATIONAL FLOW CHART FOR FOURTH QUARTER 2014

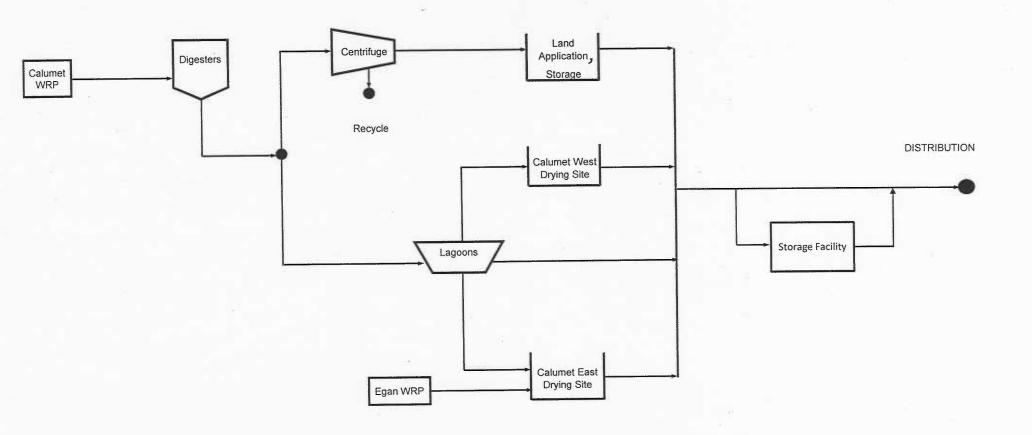


FIGURE 3: STICKNEY WATER RECLAMATION PLANT OPERATIONAL FLOW CHART FOR FOURTH QUARTER 2014

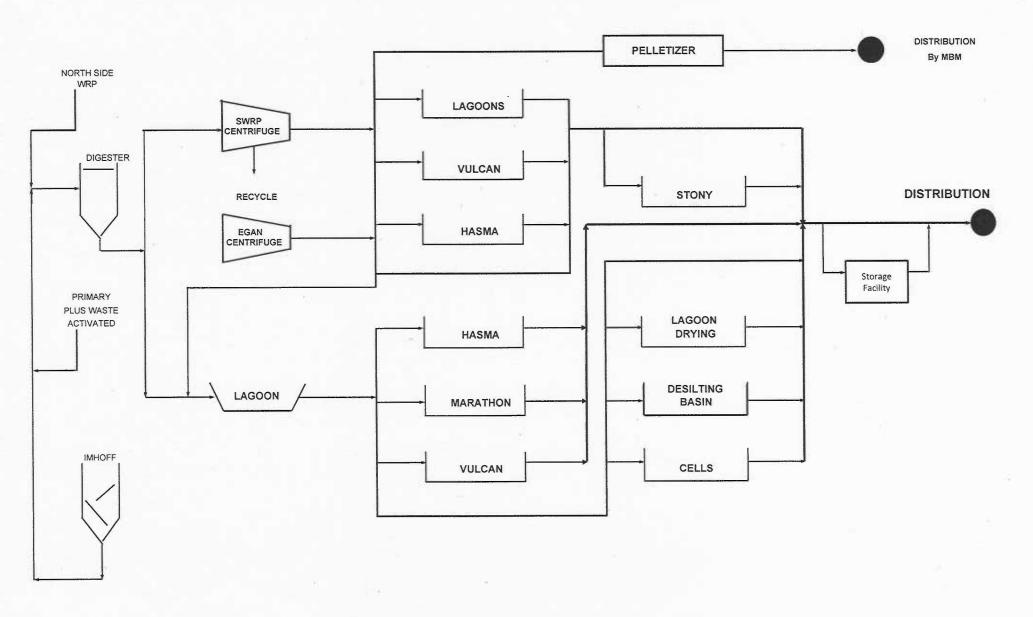


TABLE 1: USER INFORMATION FOR THE STICKNEY WATER RECLAMATION PLANT'S AIR-DRIED BIOSOLIDS DISTRIBUTED UNDER THE CONTROLLED SOLIDS DISTRIBUTION PROGRAM DURING THE FOURTH QUARTER OF 2014

Site No.	Name and Address of User	Dates	Quantity	, Dry Ton	Application			
			4th Quarter	Cumulative	Purpose	Area (acre)	Rate (ton/acre)	
1	Chicago Park District Maggie Daley Park 337 E. Randolph St. Chicago, IL 60602	10/1, 10/7 - 10/9, 10/20 - 10/22, 10/24, 10/27, 10/29, 10/30, 11/3	795.3	1,811.11	Soil amendment for turf and trees establishment	27	67.1	
2	Hoffman Estate Park District Eisenhower Jr. High School 860 N. Roselle Rd. Hoffman Estates, IL 60169	10/1, 10/9	62.4	62.4	Topdressing fertilizer for turf growth	5	12.5	
3	Lake Street Supply Bloomingdale Trail N. Ridgeway Ave & N. Ashland Ave. Chicago, IL 60639	10/7 - 10/10, 10/13, 10/24, 10/27 - 10/30	370.6	446.5	Soil amendment for grass and trees establishment	10	44.7	
4	Cog Hill Golf Course 12294 Archer Ave. Lemont, IL 60169	10/23	52.8	52.8	Topdressing fertilizer for turf growth	4	13.2	
5	Gleneagles Golf Course Mid Iron Club 12680 Bell Rd. Lemont, IL 60439	10/23	101.5	101.5	Topdressing fertilizer for turf growth	7	14.5	
6	Village of Alsip New Park 4510 Mulberry Ln. Alsip, IL 60803	10/24	55.4	55.4	Topdressing fertilizer for turf growth	4	13.9	

¹Includes biosolids applied during second and third quarter of 2014.

TABLE 2: ANALYSIS OF AIR-DRIED BIOSOLIDS APPLIED TO LAND FROM THE STICKNEY WATER RECLAMATION PLANT'S SOLIDS DRYING AREAS DURING THE FOURTH QUARTER OF 2014

		•••	50.	10.0	14.0-4	20-Oct	21-Oct	27-Oct	3-Nov
Sampling Date		30-Sep	7-Oct	10-Oct	14-Oct	20-001	21-001	27-001	3-NOV
Site No. ¹		1, 2	1, 2, 3	3	3	1	1, 3, 4, 5, 6	1, 3	1
Constituent	<u>Unit</u>					1		24	31
			8					100	
pH		7.0	5.8	6.1	6.1	6.0	6.1	5.8	6.0
Total Solids	%	65.9	65.1	63.8	65.1	59.9	64.7	68.6	70.4
Total Volatile Solids	11	37.4	37.8	39.1	38.1	36.0	34.0	38.4	37.5
Volatile Acids as Acetic Acid	mg/kg	106	129	102	83	494	316	379	260
Total Kjeldahl Nitrogen	11	24,320	27,354	31,270	11,095	22,870	23,293	22,846	25,414
NH ₃ -N	**	4,888	390	1,418	908	697	1,028	885	1,276
Total P	19	21,002	27,333	27,475	11,523	21,740	24,119	25,679	25,214
As	***	10	9	7	7	8	9	9	7
Cd	11	3	4	3	3	3	3	3	3
Cr	n	147	152	144	139	144	144	148	150
Cu	11	439	455	477	485	463	443	441	478
Hg	11	0.8	1.1	1.0	0.9	1.4	1.4	1.2	1.2
K	11	4,388	4,549	2,340	3,373	2,579	4,262	4,567	3,222
Mn	76	549	569	560	557	554	545	558	575

TABLE 2 (Continued): ANALYSIS OF AIR-DRIED BIOSOLIDS APPLIED TO LAND FROM THE STICKNEY WATER RECLAMATION PLANT'S SOLIDS DRYING AREAS DURING THE FOURTH QUARTER OF 2014

	30-Sep	7-Oct	10-Oct	14-Oct	20-Oct	21-Oct	27-Oct	3-Nov
	1, 2	1, 2, 3	3	3	1	1, 3, 4, 5, 6	1, 3	1
<u>Unit</u>								
mg/kg	13	13	13	15	14	15	14	15
**	46	48	50	50	48	. 47	46	51
**	114	113	108	103	112	109	110	112
"	<5	<5	<5	<5	<5	<5	<5	<5
п	817	850	848	821	837	805	822	855
	mg/kg " "	1, 2 <u>Unit</u> mg/kg 13 " 46 " 114 " <5	1,2 1,2,3 Unit mg/kg 13 13 " 46 48 " 114 113 " <5 <5	1,2 1,2,3 3 Unit mg/kg 13 13 13 " 46 48 50 " 114 113 108 " <5 <5 <5	1,2 1,2,3 3 3 Unit mg/kg 13 13 13 15 " 46 48 50 50 " 114 113 108 103 " <5 <5 <5 <5	1,2 1,2,3 3 3 1 Unit mg/kg 13 13 13 15 14 " 46 48 50 50 48 " 114 113 108 103 112 " <5 <5 <5 <5 <5	1,2 1,2,3 3 3 1 1,3,4,5,6 Unit mg/kg 13 13 13 15 14 15 " 46 48 50 50 48 47 " 114 113 108 103 112 109 " <5 <5 <5 <5 <5 <5	Unit mg/kg 13 13 13 15 14 15 14 " 46 48 50 50 48 47 46 " 114 113 108 103 112 109 110 " <5 <5 <5 <5 <5 <5 <5 <5

¹Site information is provided in <u>Table 1</u>.