

Metropolitan Water Reclamation District of Greater Chicago

MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 13-31

LAWNDALE AVENUE SOLIDS MANAGEMENT AREA

MONITORING REPORT FOR

SECOND QUARTER 2013

AUGUST 2013

Metropolitan Water Reclamation District of Greater Chicago

100 East Erie Street

Chicago, Illinois 60611-3154

312.751.5190

Cynthia M. Santos Debra Shore Kari K. Steele Patrick D. Thompson

President
Barbara J McGowan
Vice President
Mariyana T. Spyropoulos
Chairman of Finance
Michael A. Alvarez
Frank Avila

BOARD OF COMMISSIONERSKathleen Therese Meany

THOMAS C. GRANATO, Ph.D.

Director of Monitoring and Research

312.751.5190 f: 312.751.5194 thomas.granato@mwrd.org

August 22, 2013

Mr. S. Alan Keller, P.E. Manager, Permit Section Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794 - 9276

Dear Mr. Keller:

Subject: L

Lawndale Avenue Solids Management Area - Stickney Water Reclamation Plant, Illinois Environmental Protection Agency Permit No. 2010-AO-0267, Monitoring Report for April, May, and June 2013

The attached nine tables contain the monitoring data for the Lawndale Avenue Solids Management Area for April, May, and June 2013 as required by Illinois Environmental Protection Agency (IEPA) Operating Permit No. 2010-AO-0267.

The data reported are as follows:

- Table 1, Analysis of Water from Monitoring Wells M-11 Through M-15 at the Lawndale Avenue Solids Management Area Sampled on April 15, 2013
- Table 2, Analysis of Water from Lysimeters L-4N and L-6N at the Lawndale Avenue Solids Management Area Sampled During April, May, and June 2013
- Table 3, Analysis of Water from Lysimeters L-1N Through L-9N at the Lawndale Avenue Solids Management Area Sampled on May 1, 2013
- Table 4, Analysis of Monthly Composited Biosolids Placed in the Lawndale Avenue Solids Management Drying Area During April 2013
- Table 5, Analysis of Monthly Composited Biosolids Placed in the Lawndale Avenue Solids Management Drying Area During May 2013

- Subject: Lawndale Avenue Solids Management Area Stickney Water Reclamation Plant, Illinois Environmental Protection Agency Permit No. 2010-AO-0267, Monitoring Report for April, May, and June 2013
- Table 6, Analysis of Monthly Composited Biosolids Placed in the Lawndale Avenue Solids Management Drying Area During June 2013
- Table 7, Analysis of Monthly Composited Processed Digested Biosolids Removed from the Lawndale Avenue Solids Management Drying Area During April 2013
- Table 8, Analysis of Monthly Composited Processed Digested Biosolids Removed from the Lawndale Avenue Solids Management Drying Area During May 2013
- Table 9, Analysis of Monthly Composited Processed Digested Biosolids Removed from the Lawndale Avenue Solids Management Drying Area During June 2013

Biosolids were placed in the solids drying area and removed from the site during April, May, and June.

Very truly yours,

Thomas C. Granato, Ph.D. Director Monitoring and Research

TCG:PL:cm Attachments

cc w/att: Mr. Patel, IEPA Records Unit, IEPA

TABLE 1: ANALYSIS OF WATER FROM MONITORING WELLS M-11 THROUGH M-15 AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON APRIL 15, 2013

	Unit	Mon	Monitoring Well No.		
Parameter ¹		M-11	M-12	M-13	
pH ¹		7.4	7.4	7.1	
EC	mS/m	4	4	7	
Total Dissolved Solids	mg/L	704	906	1,376	
Total Dissolved Organic Carbon	,,	2	2	2	
Cl-	,,	16	14	< 10	
$SO_4^{=}$	"	191	357	641	
Alkalinity as CaCO ₃	,,	351	303	338	
TKN	"	< 1	< 1	< 1	
NH ₃ -N	**	1	0.5	0.5	
$NO_2 + NO_3 - N$	**	< 0.15	< 0.15	< 0.15	
Total P	**	< 0.20	< 0.20	< 0.20	
Al	,,	< 1.0	< 1.0	< 1.0	
Ca	"	46	87	173	
Cd	17	< 0.001	< 0.001	< 0.001	
Cr	2.7	< 0.005	< 0.005		
Cu	,,	< 0.005	< 0.005	< 0.005	
Fe	7,9	< 0.1	< 0.1	< 0.1	
Hg	μg/L	< 0.20	< 0.20	< 0.20	
K	mg/L	10	12	12	
Mg	**	12	43	89	
Mn	>>	0.015	0.003	0.006	
Na	"	58	134	95	
Ni	,,	< 0.005	< 0.005	< 0.005	
Pb	,,	< 0.02	< 0.02	< 0.02	
Zn	>>	0.81	< 0.01	< 0.01	

TABLE 1 (Continued): ANALYSIS OF WATER FROM MONITORING WELLS M-11 THROUGH M-15 AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON APRIL 15, 2013

		Monitorin	g Well No.
Parameter ¹	Unit	M-14	M-15
pH ¹		7.0	7.0
EC	mS/m	5	8
Total Dissolved Solids	mg/L	562	1,740
Total Dissolved Organic Carbon	,,	< 1	< 1
Cl ⁻	,,	< 10	< 10
$SO_4^=$	"	126	823
Alkalinity as CaCO ₃	"	331	361
TKN	,,	< 1	< 1
NH ₃ -N	"	0.2	0.6
$NO_2 + NO_3 - N$	**	< 0.15	< 0.15
Total P	"	< 0.20	< 0.20
Al	,,	< 1.0	< 1.0
Ca	**	79	246
Cd	,,	< 0.001	< 0.001
Cr	,,	< 0.005	< 0.005
Cu	"	< 0.005	< 0.005
Fe	,,	< 0.1	3
Hg	μg/L	< 0.20	< 0.20
K	mg/L	9	12
Mg	"	46	123
Mn	,,	0.012	0.023
Na	"	38	52
Ni	,,	< 0.005	< 0.005
Pb	,,	< 0.02	< 0.02
Zn	"	1.4	3.6

¹pH analyzed beyond recommended holding time of 15 minutes.

TABLE 2: ANALYSIS OF WATER FROM LYSIMETERS L-4N AND L-6N AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED DURING APRIL, MAY, AND JUNE 2013

			Date S	e Sampled	
		04/03	3/13	05/01	/13
Parameter	Unit	L-4N	L-6N ¹		L-6N ¹
pH^2		7.9		7.9	
EC	mS/m	290		277	
Total Dissolved Solids	mg/L	2,924		2,840	
Total Dissolved Organic Carbon	"	6	Ĺ	5	Ĺ
Ç			Y		Y
Cl ⁻	,,	24	S	NA^3	S
$SO_4^=$,,	1,371	I	1,386	I
Alkalinity as CaCO ₃	"	462	M	NA^3	M
•			E		E
TKN	,,	4	T	4	T
NH ₃ -N	,,	4	E	4	E
$NO_2 + NO_3 - N$,,	0.82	R	0.91	R
Total P	,,	0.21		0.21	
			I		I
Al	"	< 1.0	N	< 1.0	N
Ca	,,	503	A	516	A
Cd	,,	< 0.001	C	< 0.001	C
Cr	,,	< 0.005	C	< 0.005	С
Cu	"	0.007	E	< 0.005	Е
			S		S
Fe	11	3	S.	2	S
Hg	μ g/L	< 0.20	I	< 0.20	I
K	mg/L	6	В	6	В
Mg	,,	117	L	123	L
Mn	,,	0.632	E	0.523	Е
Na	,,	67		60	
Ni	"	< 0.005		< 0.005	ALL AND
Pb	"	< 0.02	and the second s	< 0.02	
Zn	11	0.05		< 0.01	and the second

TABLE 2 (Continued): ANALYSIS OF WATER FROM LYSIMETERS L-4N AND L-6N AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED DURING APRIL, MAY, AND JUNE 2013

			ampled
		06/0	5/13
Parameter	Unit	L-4N	L-6N
pH^2		7.9	7.9
EC	mS/m	278	259
Total Dissolved Solids	mg/L	2,732	2,540
Total Dissolved Organic Carbon	,,	6	44
Cl-	,,	28	50
$SO_4^=$,,	1,245	953
Alkalinity as CaCO ₃	,,	691	657
TKN	,,	6	11
NH ₃ -N	11	5	9
$NO_2 + NO_3 - N$	"	0.72	0.23
Total P	17	< 0.20	< 0.20
Al	***	< 1.0	< 1.0
Ca	25	480	449
Cd	. 11	< 0.001	< 0.001
Cr	"	< 0.005	< 0.005
Cu	"	< 0.005	< 0.005
Fe	"	0.2	18
Hg	μg/L	< 0.20	< 0.20
K	mg/L	8	4
Mg	;;	121	103
Mn	;;	0.457	0.579
Na	"	62	55
Ni	"	< 0.005	0.010
Pb	,,	< 0.02	< 0.02
Zn	"	< 0.01	0.04

¹Gauge broken; Lysimeter could not hold vacuum.

²pH analyzed beyond recommended holding time of 15 minutes.

³No analysis; insufficient sample.

TABLE 3: ANALYSIS OF WATER FROM LYSIMETERS L-1N THROUGH L-9N AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON MAY 1, 2013

			Lysimeter No.		
Parameter	Unit	L-1N	L-2N	L-3N	L-5N
pH ¹		8.1	8.0	7.9	7.9
EC	mS/m	169	176	231	511
Total Dissolved Solids	mg/L	1,552	1,280	1,816	4,698
Total Dissolved Organic Carbon	"	5	4	25	3
Cl ⁻	,,	NA^2	NA^2	NA ²	NA ²
$SO_4^=$	**	668	236	155	1,741
Alkalinity as CaCO ₃	,,	NA^2	NA^2	NA ²	NA^2
TKN	,,	3	< 1	2	2
NH ₃ -N	**	3	< 0.1	1	2
$NO_2 + NO_3 - N$	11	< 0.15	7.4	0.17	0.34
Total P	,,	< 0.2	0.5	< 0.2	0.5
Al	1)	< 1.0	< 1.0	< 1.0	< 1.0
Ca	7.7	190	146	330	485
Cd	,,	< 0.001	< 0.001	< 0.001	< 0.001
Cr	**	< 0.005	6 < 0.005	< 0.005	< 0.005
Cu	"	< 0.005	< 0.005	< 0.005	< 0.005
Fe	,,	3	< 0.1	6	11
Hg	μg/L	< 0.20	< 0.20	< 0.20	< 0.20
K	mg/L	10	2	2	18
Mg	,,	130	63	140	244
Mn	,,,	0.037	0.105	0.608	0.276
Na	,,	56	155	82	322
Ni	>>	< 0.005	0.009	< 0.005	< 0.005
Pb	,,	< 0.02	< 0.02	< 0.02	< 0.02
Zn	,,	< 0.01	< 0.01	< 0.01	< 0.01

TABLE 3 (Continued): ANALYSIS OF WATER FROM LYSIMETERS L-1N THROUGH L-9N AT THE LAWNDALE AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON MAY 1, 2013

		Ly	Lysimeter No.		
Parameter	Unit	L-7N-1	L-8N	L-9N	
pH^1		8.4	8.1	8.0	
EC	mS/m	131	248	264	
Total Dissolved Solids	mg/L	936	NA^2	NA^2	
Total Dissolved Organic Carbon	,,	7	3	27	
Cl-	,,	NA^2	NA^2	NA^2	
$SO_4^=$,,	9	192	208	
Alkalinity as CaCO ₃	,,	NA ²	NA^2	NA^2	
TKN	,,	2	< 1	2	
NH ₃ -N	**	1	< 0.1	0.9	
$NO_2 + NO_3 - N$,,	< 0.15	0.85	< 0.15	
Total P	7.7	< 0.2	< 0.2	< 0.2	
Al	,,	< 1.0	< 1.0	< 1.0	
Ca	,,	78	144	264	
Cd	11	< 0.001	< 0.001	< 0.001	
Cr	**	< 0.005	< 0.005	< 0.005	
Cu	,,	< 0.005	< 0.005	< 0.005	
Fe	,,	0.3	2	9	
Hg	μg/L	< 0.20	< 0.20	< 0.20	
K	mg/L	7	8	5	
Mg	***	104	58	176	
Mn	"	0.020	0.198	0.585	
Na	,,	61	284	108	
Ni	"	< 0.005	< 0.005	< 0.005	
Pb	"	< 0.02	< 0.02	< 0.02	
Zn	,,	0.02	0.03	< 0.01	

¹pH analyzed beyond recommended holding time of 15 minutes.

²No analysis; insufficient sample.

TABLE 4: ANALYSIS OF MONTHLY COMPOSITED BIOSOLIDS PLACED IN THE LAWNDALE AVENUE SOLIDS MANAGEMENT DRYING AREA DURING APRIL 2013

Parameter	Unit	Concentration ¹
pH Total Solids Total Volatile Solids ²	% ,,	7.3 9.4 45.5

¹ Values are the means of three samples.

²Total volatile solids as a percentage of total solids.

TABLE 5: ANALYSIS OF MONTHLY COMPOSITED BIOSOLIDS PLACED IN THE LAWNDALE AVENUE SOLIDS MANAGEMENT DRYING AREA DURING MAY 2013

Parameter	Unit	Concentration ¹
рН		7.2
Total Solids	%	10.5
Total Volatile Solids ²	"	43.4

¹ Values are the means of 19 samples.

²Total volatile solids as a percentage of total solids.

TABLE 6: ANALYSIS OF MONTHLY COMPOSITED BIOSOLIDS PLACED IN THE LAWNDALE AVENUE SOLIDS MANAGEMENT DRYING AREA DURING JUNE 2013

Parameter	Unit	Concentration ¹
pH Total Solids Total Volatile Solids ²	% ,,	7.3 11.4 42.1

¹Values are the means of five samples.

²Total volatile solids as a percentage of total solids.

TABLE 7: ANALYSIS OF MONTHLY COMPOSITED PROCESSED DIGESTED BIOSOLIDS REMOVED FROM THE LAWNDALE AVENUE SOLIDS MANAGEMENT DRYING AREA DURING APRIL 2013

Parameter	Unit	Concentration ¹
рН		7.5
Total Solids	%	17.5
Total Volatile Solids ²	,,	48.5
TKN	mg/kg	36,378
NH ₃ -N	,,	7,993
Total P	,,	22,519
Al	"	17,017
Ca	,,	41,230
Cd	,,	3
Cr	,,	133
Cu	,,	406
Fe	,,	16,186
Hg	,,	1.1
K	,,	3,385
Mg	,,	19,425
Mn	,,	460
Na	,,	1,757
Ni	"	45
Pb	,,	103
Zn	,,	807

¹ Values are the means of four samples.

²Total volatile solids as a percentage of total solids.

TABLE 8: ANALYSIS OF MONTHLY COMPOSITED PROCESSED DIGESTED BIOSOLIDS REMOVED FROM THE LAWNDALE AVENUE SOLIDS MANAGEMENT DRYING AREA DURING MAY 2013

Parameter	Unit	Concentration ¹
рН		7.6
Total Solids	%	32.3
Total Volatile Solids ²	>>	44.3
TKN	mg/kg	35,599
NH ₃ -N	,,	6,668
Total P	,,	22,845
Al	"	17,179
Ca	,,,	38,866
Cd	,,	3
Cr	"	130
Cu	,,	416
Fe	,,	16,089
Hg	,,	0.85
K	,,	3,015
Mg	,,	17,696
Mn	11	458
Na	,,	1,157
Ni	,,	44
Pb	,,	99
Zn	"	762

¹ Values are the means of seven samples.

²Total volatile solids as a percentage of total solids.

TABLE 9: ANALYSIS OF MONTHLY COMPOSITED PROCESSED DIGESTED BIOSOLIDS REMOVED FROM THE LAWNDALE AVENUE SOLIDS MANAGEMENT DRYING AREA DURING JUNE 2013

Parameter	Unit	Concentration ¹
рН		7.3
Total Solids	%	41.3
Total Volatile Solids ²	"	41.8
TKN	mg/kg	30,703
NH ₃ -N	"	4,940
Total P	,,	22,132
Al	25	18,806
Ca	"	39,054
Cd	,,	3
Cr	,,	136
Cu	,,	400
Fe	,,	16,432
Hg	,,	0.99
K	,,	3,255
Mg	,,	17,944
Mn	,,	503
Na	,,	1,168
Ni	,,	40
Pb	,,	108
Zn	,,	771

¹ Values are the means of nine samples.

²Total volatile solids as a percentage of total solids.