

Metropolitan Water Reclamation District of Greater Chicago

### MONITORING AND RESEARCH DEPARTMENT

**REPORT NO. 12-58** 

AMBIENT WATER QUALITY MONITORING IN THE CHICAGO, CALUMET, AND DES PLAINES RIVER SYSTEMS: A SUMMARY OF BIOLOGICAL, HABITAT, AND SEDIMENT QUALITY DURING 2008

December 2012

Metropolitan Water Reclamation District of Greater Chicago 100 East Erie Street Chicago, Illinois 60611-2803 312-751-5600

#### AMBIENT WATER QUALITY MONITORING IN THE CHICAGO, CALUMET, AND DES PLAINES RIVER SYSTEMS: A SUMMARY OF BIOLOGICAL, HABITAT, AND SEDIMENT QUALITY DURING 2008

By

Dustin W. Gallagher Associate Aquatic Biologist

Nicholas J. Kollias Assistant Aquatic Biologist

Justin A. Vick Associate Aquatic Biologist

Thomas A. Minarik, Jr. Senior Aquatic Biologist

Jennifer L. Wasik Supervising Aquatic Biologist

Monitoring and Research Department Thomas C. Granato, Director

December 2012

### TABLE OF CONTENTS

|                                                      | Page |
|------------------------------------------------------|------|
| LIST OF TABLES                                       | iv   |
| LIST OF FIGURES                                      | vi   |
| ACKNOWLEDGMENT                                       | vii  |
| DISCLAIMER                                           | vii  |
| SUMMARY AND CONCLUSIONS                              | viii |
| Chlorophyll                                          | viii |
| Habitat                                              | viii |
| Fish                                                 | viii |
| Benthic Invertebrates                                | ix   |
| Sediment Chemistry                                   | ix   |
| Sediment Toxicity                                    | ix   |
| INTRODUCTION                                         | 1    |
| DESCRIPTION OF THE STUDY AREA                        | 2    |
| Chicago, Calumet, Fox, and Des Plaines River Systems | 2    |
| Sampling Stations                                    | 2    |
| MATERIALS AND METHODS                                | 6    |
| Chlorophyll                                          | 6    |
| Sample Collection                                    | 6    |
| Laboratory Analysis                                  | 6    |
| Filtration                                           | 6    |
| Extraction                                           | 6    |

### TABLE OF CONTENTS (Continued)

|                                 | Page |
|---------------------------------|------|
| Spectrophotometric Analysis     | 6    |
| Quality Control                 | 6    |
| Habitat                         | 7    |
| Data Collection                 | 7    |
| Assessment Locations            | 7    |
| Fish                            | 7    |
| Boatable Stream Sampling        | 7    |
| Wadeable Stream Sampling        | 8    |
| Fish Processing                 | 8    |
| Index of Biotic Integrity       | 8    |
| Benthic Invertebrates           | 9    |
| Ponar Sediment Sampling         | 9    |
| Artificial Substrate Sampling   | 9    |
| Benthic Invertebrate Processing | 9    |
| Sediment Chemistry              | 11   |
| Sample Collection               | 11   |
| Sample Analyses                 | 11   |
| Sediment Toxicity               | 11   |
| RESULTS AND DISCUSSION          | 15   |
| Chlorophyll                     | 15   |

### TABLE OF CONTENTS (Continued)

|                                                                                                      | Page |
|------------------------------------------------------------------------------------------------------|------|
| Habitat                                                                                              | 15   |
| Fish                                                                                                 | 28   |
| Benthic Invertebrates                                                                                | 28   |
| Northern Portion of the Chicago River System                                                         | 28   |
| Southern Portion of the Chicago River System                                                         | 28   |
| Calumet River System                                                                                 | 42   |
| Des Plaines and Fox River Systems                                                                    | 42   |
| Sediment Chemistry                                                                                   | 42   |
| General Chemistry                                                                                    | 42   |
| Trace Metals                                                                                         | 45   |
| Acid Volatile Sulfide, Simultaneously Extracted Metals, Total Or-<br>ganic Carbon, and Particle Size | 45   |
| Organic Priority Pollutants                                                                          | 45   |
| Sediment Toxicity                                                                                    | 57   |
| REFERENCES                                                                                           | 60   |
| APPENDICES:                                                                                          |      |
| Metropoplitan Water Reclamation District of Greater Chicago<br>Physical Habitat Assessment           | А    |
| Number of Fish Collected From Each Station                                                           | В    |

### LIST OF TABLES

| Table<br>No. |                                                                                                                                                          | Page |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | Dates That Ambient Water Quality Monitoring Program Stations Were Sampled During 2008                                                                    | 4    |
| 2            | Constituents Analyzed, Sample Containers, and Preservation Methods for<br>Sediment Samples Collected for the Ambient Water Quality Monitoring<br>Program | 12   |
| 3            | List of Organic Priority Pollutants Analyzed in Sediment Samples Col-<br>lected for the Ambient Water Quality Monitoring Program During 2008             | 13   |
| 4            | Range and Mean Chlorophyll <i>a</i> Values in the Chicago, Calumet, and Des Plaines River Systems During 2008                                            | 16   |
| 5            | Summary of Habitat Observations for the Lake-Cook Road Station on Buffalo Creek During 2008                                                              | 19   |
| 6            | Summary of Habitat Observations for Stations on the Des Plaines River During 2008                                                                        | 20   |
| 7            | Summary of Habitat Observations for the Route 19 Station on Poplar Creek During 2008                                                                     | 23   |
| 8            | Summary of Habitat Observations for Stations on Salt Creek During 2008                                                                                   | 24   |
| 9            | Summary of Habitat Observations for Stations on Higgins Creek During 2008                                                                                | 26   |
| 10           | Summary of Habitat Observations for Stations on the West Branch of the DuPage River During 2008                                                          | 27   |
| 11           | Common and Scientific Names of Fishes Collected From the Chicago,<br>Calumet, and Des Plaines River Systems During 2008                                  | 29   |
| 12           | Number, Weight, and Number of Species of Fish Collected From the Chicago, Calumet, and Des Plaines River Systems During 2008                             | 32   |
| 13           | Index of Biotic Integrity Score and Category by Station During 2008                                                                                      | 34   |
| 14           | Benthic Invertebrate Taxa Collected by Ponar and Hester Dendy Samplers During 2008                                                                       | 36   |
| 15           | Chemical Characteristics of Sediment Collected From the Des Plaines and Fox River Systems During 2008                                                    | 43   |
| 16           | Trace Metals in Sediment Collected From the Des Plaines and Fox River Systems During 2008                                                                | 46   |

### LIST OF TABLES (Continued)

| Table<br>No. |                                                                                                                                                                                                                                                       | Page |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 17           | Acid Volatile Sulfide, Simultaneously Extracted Metals, Total Organic Carbon, and Particle Size Data in Sediment Collected From the Des Plaines and Fox River Systems During 2008                                                                     | 48   |
| 18           | Organic Priority Pollutants Detected in Sediment Collected From Buffalo<br>Creek and the Des Plaines River During 2008                                                                                                                                | 50   |
| 19           | Organic Priority Pollutants Detected in Sediment Collected From the Des Plaines River During 2008                                                                                                                                                     | 51   |
| 20           | Organic Priority Pollutants Detected in Sediment Collected From Higgins<br>Creek and Poplar Creek During 2008                                                                                                                                         | 53   |
| 21           | Organic Priority Pollutants Detected in Sediment Collected From Salt<br>Creek 2008                                                                                                                                                                    | 54   |
| 22           | Organic Priority Pollutants Detected in Sediment Collected From the West<br>Branch DuPage River During 2008                                                                                                                                           | 56   |
| 23           | Toxicity Data From Sediment Collected for the Ambient Water Quality<br>Monitoring Program During 2008                                                                                                                                                 | 58   |
| B-1          | Number of Fish Collected From Each Station on the North Shore Channel,<br>the Deep-Draft Portion of the North Branch Chicago River, Chicago Sani-<br>tary and Ship Canal, Calumet-Sag Channel, Little Calumet River, and<br>Calumet River During 2008 | B-1  |
| B-2          | Number of Fish Collected From Each Station on the Des Plaines River During 2008                                                                                                                                                                       | B-3  |
| B-3          | Number of Fish Collected From Each Station on Salt, Higgins, and Buffalo Creeks During 2008                                                                                                                                                           | B-5  |
| B-4          | Number of Fish Collected From Each Station on Wadeable Portion of the<br>North Branch of the Chicago River and the West Branch of the DuPage<br>River and Poplar Creek During 2008                                                                    | B-6  |

### LIST OF FIGURES

| Figure<br>No. | -                                                                                           | Page |
|---------------|---------------------------------------------------------------------------------------------|------|
| 1             | Ambient Water Quality Monitoring Program Sampling Stations                                  | 3    |
| 2             | Configuration of Hester Dendy Larval Plate Sampler                                          | 10   |
| A-1           | Metropolitan Water Reclamation District of Greater Chicago Physical Habi-<br>tat Assessment | A-1  |

#### ACKNOWLEDGMENT

We thank Ms. Colleen Joyce, Mr. Panu Lansiri, Mr. Richard Schackart, and Ms. Angel Whitington, of the Aquatic Ecology and Water Quality Section, for their hard work in the field and laboratory during 2008.

For their assistance on the Pollution Control Boats, thanks are extended to Industrial Waste Division staff.

We wish to acknowledge the Analytical Laboratory Division for performing sediment chemistry analyses.

We thank Dr. Heng Zhang, Assistant Director of the Monitoring and Research Department, Environmental Monitoring and Research Division, for his review of the draft report.

Many thanks to Ms. Coleen Maurovich, Principal Office Support Specialist, for proofreading, formatting, and organizing this report.

#### DISCLAIMER

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

#### SUMMARY AND CONCLUSIONS

During 2008, biological and habitat monitoring focused on the Des Plaines River System (DPRS) as well as nine annual Ambient Water Quality Monitoring (AWQM) Program stations located throughout the Chicago and Calumet River Systems. Sediment chemistry and toxicity analyses were also performed on samples from the DPRS. Chlorophyll samples were collected at each of the 59 AWQM stations monthly.

#### Chlorophyll

Chlorophyll *a* concentrations decreased directly downstream of water treatment plants due to dilution of the stream water with plant effluents. In the Chicago River System, chlorophyll *a* mean concentrations ranged from 1  $\mu$ g/L at Foster Avenue on the North Shore Channel (NSC) to18  $\mu$ g/L at Frontage Road on the Skokie River. The maximum chlorophyll *a* concentration measured in the Chicago River System was 51 $\mu$ g/L at Oakton Street on the NSC.

Mean chlorophyll *a* values in the Calumet River System ranged from 2  $\mu$ g/L at Ewing Avenue on the Calumet River to 53  $\mu$ g/L at Burnham Avenue on the Grand Calumet River (GCR). The maximum concentration measured was 201  $\mu$ g/L at Burnham Avenue on the GCR.

The range of mean chlorophyll *a* concentrations in the DPRS was 2  $\mu$ g/L at Wille Road, Higgins Creek, to 34  $\mu$ g/L at Higgins Road, Salt Creek, and Oakton Street, Des Plaines River (DPR). The maximum concentration measured in this system was 124  $\mu$ g/L at Oakton Street on the DPR.

#### Habitat

The DPRS consists largely of wadeable waterways with some deeper areas. This system has segments with good pool/riffle/run development, sinuosity, and little-to-no channelization. The DPRS has some positive instream habitat consisting of boulders, brush-debris jams, logs, and aquatic vegetation throughout most of the system. Forested areas are a very common riparian land use in the DPRS. However, all of the waterways in this system have some riparian areas that are dominated by residential or commercial/industrial uses, causing canopy cover to be variable. Sediments, consisting mainly of sand, gravel, and cobble, were common throughout the system with silt in many interstitial spaces.

#### Fish

Forty-one species of fish, including 16 game fish species, were collected from Chicago area waterways during 2008. The most abundant species in the catch from the deep-draft waterways of the Chicago and Calumet River Systems included gizzard shad, pumpkinseed, and emerald shiner. Green sunfish, bluegill, and bluntnose minnow were the most abundant species in

the DPRS and the wadeable portion of the Chicago River System. In general, all three waterway systems would be considered fair in terms of their biological integrity as measured by the Index of Biotic Integrity (IBI).

#### **Benthic Invertebrates**

Benthic invertebrates were collected from side and center locations using two methods at 29 AWQM stations during 2008. Total species richness for ponar and Hester Dendy samplers combined was 140 species, while total Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness was 18 species (EPT taxa are considered relatively sensitive to pollution). Comprehensive benthic invertebrate data from 2008 is catalogued in a separate report at mwrd.org (MWRD 2006-2008 Chicago Waterways Benthic Report).

#### **Sediment Chemistry**

During 2008, sediment samples were collected from the side and center of the waterway at 20 stations. Sediment samples were analyzed for eight general chemical constituents, 11 trace metals, and a total of 111 organic priority pollutants (OPPs). In addition, a contract laboratory performed acid volatile sulfide/simultaneously extracted metals (AVS/SEM) analysis, particle size determinations, and total organic carbon analysis. Springinsguth Road, on the West Branch DuPage River (WBDR), contained elevated amounts of total Kjeldahl nitrogen (TKN) (5,974 mg/kg), copper (133 mg/kg), and total organic carbon (66,000 mg/kg). Sediment samples from the side and center at Willow Springs Road, DPR, contained the highest values of total phosphorus (TP) (3,253 and 3,473 mg/kg) and iron (24,603 and 23,805 mg/kg). The highest number of OPP detections (17) occurred at Wille Road on Higgins Creek.

#### **Sediment Toxicity**

Ten-day *Chironomus tentans* toxicity testing was performed using sediment from side and center locations at 20 stations. Nine of the 38 samples elicited a percent survival rate that was significantly less than the control sites, indicating that the sediment was unsuitable for *Chironomus* survival. None of the locations showed ash-free dried weights that were significantly less than control sites.

#### **INTRODUCTION**

The Metropolitan Water Reclamation District of Greater Chicago (District) began monitoring the biological component of the AWQM Program at 59 sampling stations on 21 waterways in 2001. This report focuses on the biological, habitat, and sediment quality during 2008. The biological monitoring portion of the AWQM Program operates on a four-year cycle, with a primary focus each year on a different river system in the Chicago area. The four river systems of interest are the northern portion of the Chicago River System, the southern portion of the Chicago River System, the Calumet River System, and the Des Plaines River System. Fifteen of the 59 stations located across all of the waterways are monitored annually based on their proximity to District water reclamation plants (WRPs) or municipal boundaries. Of the remaining 44 sampling stations, 12 are on the northern portion of the Chicago River System, 13 are on the Southern portion of the Chicago River System, 10 are on the Calumet River System, 13 are on the DPRS, and 1 station is on the Fox River system. During 2008, biological monitoring focused on the DPRS, including the DPR, Salt Creek, Buffalo Creek, Higgins Creek, and WBDR. One station was also monitored on Poplar Creek which flows into the Fox River.

Characterization of physical habitat, fish, and benthic invertebrate populations, along with sediment toxicity and chemistry, are among the most crucial components for a comprehensive evaluation of a waterway. Each parameter represents a piece of the overall picture that is necessary to identify problem areas, make regulatory decisions, and determine plausible, attainable uses for a waterway.

In addition to analyzing the AWQM Program data in order to assess and manage the impact of the District's WRPs, our data are often shared with other government agencies, nongovernmental organizations, and academic institutions. For instance, the AWQM Program data are shared with the Illinois Environmental Protection Agency (IEPA) to support their efforts to make regulatory decisions, prepare the 305(b) report in accordance with the Clean Water Act, and perform use attainability analyses.

#### **DESCRIPTION OF THE STUDY AREA**

#### Chicago, Calumet, Fox, and Des Plaines River Systems

The Chicago area waterways consist of man-made canals as well as natural streams which have been altered to varying degrees. Some natural waterways have been modified by being deepened, straightened, and/or widened to such an extent that reversion to their natural state would be impossible. The waterways serve the Chicago area by draining urban storm water runoff and treated municipal wastewater effluent and allowing commercial navigation in the deep-draft portions.

The primary man-made waterways are in the Chicago River System, including the NSC, connecting Lake Michigan at Wilmette to the North Branch Chicago River (NBCR); the Chicago Sanitary and Ship Canal (CSSC), extending from Damen Avenue to the Lockport Powerhouse; and the Cal-Sag Channel (CSC), connecting the Little Calumet River (LCR) with the CSSC. The primary natural waterways include the wadeable branches of the NBCR, flowing south from Lake County to the junction with the NSC and continuing as the deep-draft portion of the NBCR, which joins the Chicago River and becomes the South Branch Chicago River; the DPR, flowing south from Lake County and joining with the discharge from the CSSC downstream of the Lockport Powerhouse; and the Calumet River System, which flows south and west into the CSC. In 2008, Route 19 (station 90) on Poplar Creek was sampled. Poplar Creek flows into the Fox River.

#### **Sampling Stations**

The sampling stations for the AWQM Program are located on natural and man-made waterways throughout the District's service area. A map of the Chicago area waterways, including the 59 sampling stations and the District's WRPs, is shown in <u>Figure 1</u>. Stations were primarily selected such that there was at least one monitoring station on the lower end of an IEPA 303(d) impaired waterway segment in 1998. Secondary criteria for selecting sampling locations included: (1) above and below District WRPs, (2) below Lake Michigan diversion, (3) above the junction of two major waterways, (4) below county municipal boundaries, and (5) in areas of environmental concern. Fifteen of the 59 stations were chosen for annual biological monitoring.

In addition to the 15 annual stations, biological sampling was focused on 14 stations in the DPRS during 2008, including the DPR, Buffalo Creek, Higgins Creek, Salt Creek, and WBDR, and on Poplar Creek in the Fox River System. <u>Table 1</u> displays the 2008 field monitoring schedule for biological, physical habitat, and sediment quality assessments.



## FIGURE 1: AMBIENT WATER QUALITY MONITORING PROGRAM SAMPLING STATIONS

# TABLE 1: DATES THAT AMBIENT WATER QUALITY MONITORING PROGRAMSTATIONS WERE SAMPLED DURING 2008

| Station<br>No. | Sampling Station Waterway             |                               | Date Sampled                                |
|----------------|---------------------------------------|-------------------------------|---------------------------------------------|
|                |                                       | CHICAGO RIVER SYSTEM          |                                             |
| 96             | Albany Avenue <sup>1</sup>            | North Branch Chicago River    | 8/8/08                                      |
| 36             | Touhy Avenue <sup>1</sup>             | North Shore Channel           | $7/29/08^2$ , $11/06/08^3$                  |
| 46             | Grand Avenue <sup>1</sup>             | North Branch Chicago River    | $7/31/08^2$ , $11/05/08^3$                  |
| 75             | Cicero Avenue <sup>1</sup>            | Chicago Sanitary & Ship Canal | $7/31/08^2$ , $10/29/08^3$                  |
| 41             | Harlem Avenue <sup>1</sup>            | Chicago Sanitary & Ship Canal | $7/31/08^2$ , $10/29/08^3$                  |
| 92             | Lockport <sup>1</sup>                 | Chicago Sanitary & Ship Canal | $7/30/08^2$ , $10/09/08^3$                  |
|                |                                       | CALUMET RIVER SYSTEM          |                                             |
| 55             | 130 <sup>th</sup> Street <sup>1</sup> | Calumet River                 | $8/7/08^2$ , $10/27/08^3$                   |
| 76             | Halsted Street <sup>1</sup>           | Little Calumet River          | $8/6/08^2$ , $10/28/08^3$                   |
| 59             | Cicero Avenue <sup>1</sup>            | Calumet-Sag Channel           | 8/6/08 <sup>2</sup> , 11/17/08 <sup>3</sup> |
|                | D                                     | ES PLAINES RIVER SYSTEM       |                                             |
| 12             | Lake-Cook Road                        | Buffalo Creek                 | $7/17/08, 8/28/08^4$                        |
| 77             | Elmhurst Road                         | Higgins Creek                 | $6/24/08, 8/27/08^4$                        |
| 78             | Wille Road <sup>1</sup>               | Higgins Creek                 | 6/24/08, 8/27/084                           |
| 79             | Higgins Road                          | Salt Creek                    | 7/18/08, 8/25/084                           |
| 80             | Arlington Heights Rd.                 | Salt Creek                    | 7/01/08, 8/20/08 <sup>4</sup>               |
| 18             | Devon Avenue <sup>1</sup>             | Salt Creek                    | 7/14/08, 8/20/08 <sup>4</sup>               |
| 24             | Wolf Road                             | Salt Creek                    | 8/11/08, 8/15/08 <sup>4</sup>               |
| 109            | Brookfield Avenue                     | Salt Creek                    | 8/11/08                                     |
| 13             | Lake-Cook Road <sup>1</sup>           | Des Plaines River             | 7/17/08 <sup>2</sup> , 8/28/08              |
| 17             | Oakton Street                         | Des Plaines River             | 7/22/08, 8/25/084                           |
| 19             | Belmont Avenue                        | Des Plaines River             | 7/28/08, 8/21/08 <sup>4</sup>               |
| 20             | Roosevelt Road                        | Des Plaines River             | 7/23/08, 8/21/08 <sup>4</sup>               |
|                |                                       |                               |                                             |

### TABLE 1 (Continued): DATES THAT AMBIENT WATER QUALITY MONITORING PROGRAM STATIONS WERE SAMPLED DURING 2008

| Station<br>No. | Sampling Station Waterway         |                               | Date Sampled                                                         |  |
|----------------|-----------------------------------|-------------------------------|----------------------------------------------------------------------|--|
|                | DES PL                            | AINES RIVER SYSTEM(Continued) |                                                                      |  |
| 22             | Ogden Avenue <sup>1</sup>         | Des Plaines River             | 8/13/08 <sup>2</sup> , 8/26/08 <sup>3</sup><br>10/31/08 <sup>4</sup> |  |
| 23             | Willow Springs Road               | Des Plaines River             | 8/12/08, 8/19/08 <sup>4</sup>                                        |  |
| 29             | Stephen Street                    | Des Plaines River             | 8/12/08, 8/19/08 <sup>4</sup>                                        |  |
| 91             | Material Service Rd. <sup>1</sup> | Des Plaines River             | 7/30/08, 8/26/08 <sup>4,5</sup>                                      |  |
| 110            | Springinsguth Road                | West Branch DuPage River      | 6/25/08, 8/18/08 <sup>4</sup>                                        |  |
| 89             | Walnut Lane                       | West Branch DuPage River      | 6/25/08, 8/18/08 <sup>4</sup>                                        |  |
| 64             | Lake Street <sup>1</sup>          | West Branch DuPage River      | $6/30/08, 8/22/08^4$                                                 |  |
|                |                                   | FOX RIVER SYSTEM              |                                                                      |  |
| 90             | Route 19                          | Poplar Creek                  | 6/30/08, 8/22/08 <sup>4</sup>                                        |  |

<sup>1</sup>Annual sampling station. <sup>2</sup>Invertebrate sampling only on this date. <sup>3</sup>Electrofishing and habitat assessment conducted on this date. <sup>4</sup>Sediment chemistry sampling only on this date. <sup>5</sup>Fish sampling continued on this date.

#### MATERIALS AND METHODS

#### Chlorophyll

Water samples for chlorophyll analysis were collected monthly at each AWQM station along with the water samples for various chemical analyses.

**Sample Collection.** Surface water grab samples for chlorophyll analysis were collected using a stainless steel bucket. The bucket was lowered into the waterway generally from the upstream side of the bridge at the most central location. The bucket was submerged, filled, and then raised to the top of the bridge. An aliquot was poured into an amber, plastic one-liter sample bottle containing 1 mg magnesium carbonate as a preservative, and a 1/2-inch airspace was left at the top of the bottle. Samples were then placed in a cooler with ice and returned to the lab for processing.

**Laboratory Analysis.** *Filtration.* Prior to filtering, the samples were mixed by rapidly inverting the sample bottles 25 times before the first pour. Samples were filtered through Whatman type GF/F glass-fiber filters (0.7 micrometers) using Millipore filtration equipment and vacuum pressure. Water samples were filtered until the rate of flow decreased but before it became clogged, and the amount of water that was filtered was measured with a graduated cylinder. Following filtration, sample filters were folded and wrapped with aluminum foil for extraction the following day.

*Extraction*. Filters were placed in glass extraction tubes with 5 mL of 90 percent aqueous acetone solution. Using a motorized tissue grinder set at 500 rpm and a pestle, the top layer of the filter was separated. Samples were then transferred to centrifuge tubes, and additional acetone was added until the total volume equaled 10 mL. These tubes were inverted five times and then placed at 4°C for approximately 24 hours to steep.

Spectrophotometric Analysis. After removing samples from refrigeration, they were centrifuged for 20 minutes at 2,500 rpm. Three mL of the supernatant was transferred into a spectrophotometric cell, and the absorbance read at 750, 664, 647, and 630 nm. To correct for the degradation product, pheophyton, 0.1 mL of 1 percent hydrochloric acid was added, and after one minute, absorbance was read again at 750 and 665 nm. The spectrophotometer was programmed to calculate corrected chlorophyll a, b, and c values based on the volumes filtered and used to extract samples.

*Quality Control.* A reagent blank of 90 percent acetone was placed in the spectrophotometer every tenth sample and read between -0.1 and 0.1  $\mu$ g/L of chlorophyll *a*. A method blank of distilled water was prepared for each group of samples and run through the entire laboratory

procedure. One duplicate sample was chosen randomly for each group of samples and would have to be within 20 relative percent difference of the original sample. Chlorophyll a and b standards from spinach were also analyzed every 20 samples and displayed at least a 90 percent recovery.

#### Habitat

**Data Collection.** Physical habitat assessment data sheets (Figure A-1) were completed by a staff biologist in the field at each station. Assessments made in the field included weather conditions, channel morphology, bank erosion, shore cover, aquatic vegetation, man-made structures, floatable materials, riparian land-use, sediment composition, sediment color and odor, depth of fine sediments (fines), and presence of oil in sediment. Channel width was determined using a Yardage Pro 800 rangefinder in the non-wadeable waterways. A fiberglass telescoping leveling rod was used to measure water depth and depth of fines (in sediment). The smallest extension of the round leveling rod (1" diameter) was pushed into the sediment with reasonable force as far as possible to determine depth of fines in feet. A 6- x 6-inch petite Ponar grab sampler was used to collect sediment for analysis. Staff biologists estimated the percent composition of plant debris, clay, inorganic silt, organic sludge, sand (0.06-2 mm diameter), gravel (>2-64 mm diameter), cobble (>64-256 mm diameter), boulder (>256 mm diameter), or bedrock/concrete in the sediment. Sediment color and odor were recorded as well as the appearance of oil in the sample.

Assessment Locations. Physical habitat was evaluated at the beginning and end of the fishing range in the center and on one side of the waterway at each station. The range was 40 meters for wadeable sites, 100 meters for sites in which the small boat electrofisher was employed, and 400 meters for deep-draft waterways.

#### Fish

**Boatable Stream Sampling.** Fish were collected at each sampling station using a boatmounted electrofisher. The electrofisher was powered by a direct current (DC) generator. Stunned fish were picked out of the water with long-handled dip nets by either of two netters who were positioned on the bow of the boat.

For deep-draft sites, the section of canal sampled extended for 400 meters. For shallow sites, 100 meters of the waterway was sampled. A fourteen-foot (small) electrofishing boat instead of the sixteen-foot (large) electrofishing boat was used for all boatable sites. The large boat was not used in 2008, because the generator had mechanical issues. Besides boat length and width, the main difference between the two boats is the size of the electrofisher. The small electrofishing boat has a 2.5 generator-powered pulsator (GPP) that has a target output range of 5 to 7 amperes, and the large electofishing boat has a 5.0 GPP that has a target output range of 12 to 14 amperes. Whenever possible, both sides of the waterways were electrofished.

**Wadeable Stream Sampling**. Fish were collected at each sampling station using a backpack electrofisher and a bag seine. Conductivity and temperature (°C) were recorded before each sample collection. A DC backpack electrofisher was employed to electrify the water in order to stun fish. In most instances, two 40-meter long backpack electrofisher collections were conducted at each station. A 40-meter reach of the creek was electrified by moving upstream parallel to the bank. Additional personnel followed the electrofisher collecting the stunned fish with dip nets. Following the first collection, a second 40-meter electrofishing survey was conducted on the opposite bank. If the creek was less than five meters wide, electrofishing occurred only once along a 40-meter reach. The total electrofishing time during each 40-meter collection was noted.

A 15-foot bag seine with 3/16-inch mesh was also used to collect fish. Staff pulled the seine for 40 meters traveling upstream parallel to the bank. In most instances, a separate 40-meter seine collection occurred along each bank.

**Fish Processing**. In the field, most fish were identified to species, weighed to the nearest gram or nearest 0.1 gram (depending on size), measured for standard and total length to the nearest millimeter, and examined for the incidence of disease, parasites, or other anomalies. Following processing, these fish were returned live to the river. Minnows and other small fish that were difficult to identify were preserved in 10 percent per volume formalin and returned to the laboratory for further analysis. These fish were processed in a similar manner to the field-measured fish except that they were weighed to the nearest 0.01 gram.

**Index of Biotic Integrity**. Biological integrity of aquatic ecosystems has been defined as the ability to support and maintain a balanced, integrated, and adaptive community having a species composition, diversity, and functional organization comparable to that of a natural habitat (Karr et al., 1986). Karr's 1986 IBI was used to analyze fish data from 2008.

The limitations of using this tool, which was meant to apply to wadeable streams for some of the man-made, channelized waterways in the Chicago area, should be recognized.

Karr's IBI integrates information from 12 fish community metrics that fall into three major categories: (1) species richness and composition, (2) trophic composition, and (3) fish abundance and condition. Each metric is scored as a 1, 3, or 5 based on whether its evaluation deviates strongly, deviates somewhat, or approximates expectations, respectively, as compared to an undisturbed site located in a similar geographical region and on a stream of comparable size. Individual metrics are added to calculate a total IBI score. A high IBI indicates high biological integrity or health and low disturbance or lack of perturbations. A low IBI indicates low biological integrity and high disturbance or degradation. Separate IBI metric scores were determined based on the relative abundance of fish collected with each fishing gear. IBI categories of good (IBI 41-60), fair (IBI 21-40) or poor (IBI <21), as derived by the IEPA (IEPA, 1996), were determined and reported.

#### **Benthic Invertebrates**

**Ponar Sediment Sampling.** Triplicate sediment samples were collected with a petite Ponar Grab (0.023 m<sup>2</sup>) from the center and one side of the deep-draft and wadeable waterway stations. Grab samples were taken at locations upstream from any prior sampling disturbance, such as Hester Dendy retrievals (see description in next section), to avoid collecting disturbed sediment. An appropriate area for ponar sampling was chosen by a staff biologist to avoid any obvious obstructions, such as large rocks or plants. The sediment samples were sieved in the field using a field-sieving bucket with 250 micrometer ( $\mu$ m) openings. The sieved material was poured into one-gallon plastic containers, preserved to 10 percent formalin concentration, and brought back to the laboratory for analysis. All samples were stored at 4°C until processed.

**Artificial Substrate Sampling.** Hester Dendy artificial substrate samplers were deployed at each station between May and early June of 2008. <u>Figure 2</u> shows a diagram of the plate configuration that was assembled prior to deployment in the waterways. In all, 27, 3- x 3-inch sampling plates were attached to two 18-pound river anchors, connected to an object on shore (usually a tree) by a cable, and then placed on the bottom of the waterway in the center and on one side. These substrates were left in the waterway between six and 14 weeks and then retrieved concurrent to other biological sampling. Hester Dendy set-ups were located and the anchors were lifted out of the waterway with a 250 micron mesh plankton net underneath to avoid organism loss at the water surface. Then, plates were cut from the anchors and placed into a one-gallon bucket with a secure leak-proof lid. Invertebrates from the plankton net reservoir were also rinsed into the buckets, which were then filled with river water and brought to a 10 percent final concentration of formalin. These samples are then brought back to the lab and stored at 4°C until processed.

Benthic Invertebrate Processing. Samples were fixed in formalin for thirty days. Next, the ponar sediment samples were gently washed with water and screened through a United States Standard number 60 mesh sieve (250 µm openings) and transferred to a 70 percent ethanol solution. Each Hester Dendy plate was removed from the sampler and gently brushed with a paintbrush on both sides while under a slow stream of running water in order to rinse the attached invertebrates into the sieve. The formalin solution remaining in the Hester Dendy sample container was rinsed into the sieve in order to capture any invertebrates that may have fallen off the Hester Dendy plates. The contents of this sieve were then rinsed back into the bucket with a 70 percent ethanol solution. The ponar and Hester Dendy samples were then stored in a 4°C walk-in cooler until processed. Before processing, the samples were sieved to remove the ethanol solution. The sieved material was then examined in small batches under a compound microscope in a 100- x 50-mm glass crystallizing dish filled about 1 cm high. Laboratory technicians then counted oligochaete worms and removed all other invertebrates from the finer residual material. In situations where large numbers of any one taxon (usually worms) were encountered (>3000), estimates of their abundance were made by using a sub-sampling device. Invertebrates other than worms were sent to a consultant (EA Engineering) for identification to genus or species when possible.

### FIGURE 2: CONFIGURATION OF HESTER DENDY LARVAL PLATE SAMPLER



#### **Sediment Chemistry**

**Sample Collection.** Prior to sample collection, the Ponar grab sampler and the metal and plastic pans and scoops were cleaned with hot water and lab detergent, rinsed with de-ionized water, and allowed to air dry. The ponar and metal pans and scoops were then rinsed with acetone, allowed to air dry, and dried in an oven at 105°C for one hour. When dry and cool, each set was placed in a plastic bag and sealed to prevent contamination until ready for use. Sediment samples were collected from the center and side of the waterway using separate cleaned 6- x 6-inch Ponar grab samplers. The sediment samples were transferred into plastic or metal pans and then put into the appropriate container using plastic or metal scoops. The constituents analyzed in sediment, sample containers used, and preservation methods are summarized in Table 2. Metal scoops and pans were used for samples collected in glass containers, whereas plastic scoops and pans were used for sediment collected in plastic containers. After being filled, sample containers were placed on ice until they could be refrigerated.

**Sample Analyses.** The sediment samples were analyzed for total solids, total volatile solids, ammonia nitrogen (NH<sub>3</sub>-N), nitrate plus nitrite nitrogen, TKN, TP, total cyanide, phenols, total metals (including arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc), and OPPs (listed in <u>Table 3</u>) by the District's Analytical Laboratory Division. Sediment samples were sent on ice to a contract laboratory for AVS/SEM, total organic carbon (TOC), and particle size. In the laboratory, all constituents were analyzed using procedures established by the United States Environmental Protection Agency (USEPA) or described in <u>Standard Methods for the Examination of Water and Wastewater</u> (19<sup>th</sup> edition, 1998).

#### **Sediment Toxicity**

Sediment samples were collected using a 6- x 6-inch Ponar grab sampler from the center and side of the waterways and scooped into one-gallon plastic buckets (at least one-half full). Buckets were kept on ice until they could be refrigerated. These samples were sent in coolers on ice to a contractor for ten-day *Chironomus tentans* toxicity testing (USEPA, Test Method 100.2, 2000). Tests were performed within 14 days of sediment collection.

### TABLE 2: CONSTITUENTS ANALYZED, SAMPLE CONTAINERS, AND PRESERVATION METHODS FOR SEDIMENT SAMPLES COLLECTED FOR THE AMBIENT WATER QUALITY MONITORING PROGRAM

| Constituents                                                                                                                                | Units of<br>Measure <sup>1</sup> | Sample<br>Container | Preservative |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|--------------|
| Total Solids                                                                                                                                | percent                          | Glass               | Cool, 4°C    |
| Total Volatile Solids                                                                                                                       | percent                          | Glass               | Cool, 4°C    |
| Un-ionized Ammonia                                                                                                                          | mg/kg                            | Glass               | Cool, 4°C    |
| Nitrite plus Nitrate Nitrogen                                                                                                               | mg/kg                            | Glass               | Cool, 4°C    |
| Total Kjeldahl Nitrogen                                                                                                                     | mg/kg                            | Glass               | Cool, 4°C    |
| Total Phosphorus                                                                                                                            | mg/kg                            | Glass               | Cool, 4°C    |
| Phenols                                                                                                                                     | mg/kg                            | Glass               | Cool, 4°C    |
| Total Cyanide                                                                                                                               | mg/kg                            | Glass               | Cool, 4°C    |
| Acid Volatile Sulfide                                                                                                                       | µmoles/g                         | Plastic             | Cool, 4°C    |
| Simultaneously Extracted Metal                                                                                                              | µmoles/g                         | Plastic             | Cool, 4°C    |
| Total Organic Carbon                                                                                                                        | mg/kg                            | Glass               | Cool, 4°C    |
| Particle Size                                                                                                                               | percent                          | Plastic             | Cool, 4°C    |
| Toxicity (survival)                                                                                                                         | percent                          | Plastic             | Cool, 4°C    |
| Toxicity (growth)                                                                                                                           | mg/org <sup>2</sup>              | Plastic             | Cool, 4°C    |
| Total Metals<br>(Arsenic, Cadmium, Chromium Copper,<br>Iron, Lead, Manganese, Mercury, Nickel,<br>Silver, and Zinc)                         | mg/kg                            | Glass               | Cool, 4°C    |
| Organic Priority Pollutants<br>(Volatile Organic Compounds,<br>Polynuclear Aromatic Hydrocarbons,<br>Polychlorinated Biphenyls, Pesticides) | µg/kg                            | Glass               | Cool, 4°C    |

<sup>1</sup>Expressed on a dry weight basis. <sup>2</sup>Org = organism.

| Volatile Organic<br>Compounds | Acid Extractables     | Base/Neutral Extractables   | Pesticides and PCBs |
|-------------------------------|-----------------------|-----------------------------|---------------------|
| Acrolein                      | 2-Chlorophenol        | Acenanhthene                | Aldrin              |
| Acrylonitrile                 | 2 4-Dichlorophenol    | Acenaphthene                | alpha-BHC           |
| Benzene                       | 2,1 Dimethylphenol    | Anthracene                  | heta-BHC            |
| Bromoform                     | 4 6-Dinitro-o-cresol  | Benzidine                   | gamma-BHC           |
| Carbon tetrachloride          | 2 4-Dinitrophenol     | Benzo(a)anthracene          | delta-BHC           |
| Chlorobenzene                 | 2-Nitrophenol         | Benzo(a)pyrene              | Chlordane           |
| Chlorodibromomethane          | 4-Nitrophenol         | 3.4-Benzofluoranthene       | 4,4'-DDT            |
| Chloroethane                  | Parachlorometacresol  | Benzo(ghi)perylene          | 4,4'-DDE            |
| 2-Chloroethylvinyl ether      | Pentachlorophenol     | Benzo(k)fluoranthene        | 4,4'-DDD            |
| Chloroform                    | Phenol                | Bis(2-chloroethoxy)methane  | Dieldrin            |
| 1,2-Dichlorobenzene           | 2,4,6-Trichlorophenol | Bis(2-chloroethyl)ether     | Endosulfan-I        |
| 1,3-Dichlorobenzene           | -                     | Bis(2-chloroisopropyl)ether | Endosulfan-II       |
| 1,4-Dichlorobenzene           |                       | Bis(2-ethylhexyl)phthalate  | Endosulfan sulfate  |
| Dichlorobromomethane          |                       | 4-Bromophenyl phenyl ether  | Endrin              |
| 1,1-Dichloroethane            |                       | Butylbenzyl phthalate       | Endrin aldehyde     |
| 1,2-Dichloroethane            |                       | 2-Chloronaphthalene         | Heptachlor          |
| 1,1-Dichloroethylene          |                       | 4-Chlorophenyl phenyl ether | Heptachlor epoxide  |
| 1,2-Dichloropropane           |                       | Chrysene                    | PCB-1242            |
| 1,3-Dichloropropene           |                       | Dibenzo(a,h)anthracene      | PCB-1254            |
| Ethyl benzene                 |                       | 3,3-Dichlorobenzidine       | PCB-1221            |
| Methyl bromide                |                       | Diethyl phthalate           | PCB-1232            |
| Methyl chloride               |                       | Dimethyl phthalate          | PCB-1248            |
| Methylene chloride            |                       | Di-n-butyl phthalate        | PCB-1260            |

## TABLE 3: LIST OF ORGANIC PRIORITY POLLUTANTS ANALYZED IN SEDIMENT SAMPLES COLLECTED FOR THE<br/>AMBIENT WATER QUALITY MONITORING PROGRAM DURING 2008

# TABLE 3 (Continued):LIST OF ORGANIC PRIORITY POLLUTANTS ANALYZED IN SEDIMENT SAMPLES<br/>COLLECTED FOR THE AMBIENT WATER QUALITY MONITORING PROGRAM DURING 2008

| Volatile Organic Compounds                                                                                                                                                                                                                 | Acid Extractables | Base/Neutral Extractables                                                                                                                                                                                                                                                                                                                                                 | Pesticides and PCBs                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Volatile Organic Compounds<br>1,1,2,2-Tetrachloroethane<br>Tetrachloroethylene<br>Toluene<br>1,2-trans-Dichloroethylene<br>1,1,1-Trichloroethane<br>1,1,2-Trichloroethane<br>Trichloroethylene<br>Trichlorofluoromethane<br>Vinyl chloride | Acid Extractables | Base/Neutral Extractables<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Di-n-octyl phthalate<br>1,2-Diphenylhydrazine<br>Fluoranthene<br>Fluoranthene<br>Hexachlorobenzene<br>Hexachlorobenzene<br>Hexachlorobutadiene<br>Hexachlorocyclopentadiene<br>Hexachlorocthane<br>Indeno(1,2,3-cd)pyrene<br>Isophorone<br>Naphthalene<br>Nitrobenzene<br>N-Nitrosodimethylamine | Pesticides and PCBs<br>PCB-1016<br>Toxaphene |
|                                                                                                                                                                                                                                            |                   | N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                       |                                              |
|                                                                                                                                                                                                                                            |                   | Naphthalene<br>Nitrobenzene<br>N-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                     |                                              |
|                                                                                                                                                                                                                                            |                   | Phenanthrene<br>Pyrene<br>1.2.4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                          |                                              |
|                                                                                                                                                                                                                                            |                   | ,,                                                                                                                                                                                                                                                                                                                                                                        |                                              |

#### **RESULTS AND DISCUSSION**

#### Chlorophyll

As a photosynthetic component of all algae cells, the determination of chlorophyll *a* is an accepted way of quantifying algal biomass in lakes and streams. Chlorophyll *a* values are of interest to regulatory agencies since it is also widely accepted that high algae concentrations may indicate nutrient impairment. The IEPA is cooperating with other state and local agencies to develop regional water quality criteria for nutrients and possibly chlorophyll. In light of this consideration, the District began monitoring chlorophyll on a monthly basis in August 2001 as part of the AWQM Program. Results from 2008 are shown in <u>Table 4</u>.

During 2008, the highest mean chlorophyll *a* value in the Chicago area waterways was at Burnham Avenue on the GCR (53  $\mu$ g/L). The lowest mean chlorophyll *a* concentration throughout the system was 1  $\mu$ g/L at Foster Avenue on the NSC.

#### Habitat

Habitat is one of the most crucial factors limiting aquatic life in urban environments. Channelization, limited instream and canopy cover, siltation, and lack of adequate flood plain area are some of the physical characteristics that challenge waterways in the Chicago area. Tables 5 - 10 display observed and measured characteristics of sampling stations located in the DPRS. The displayed habitat characteristics are a compilation of all the assessments made at each station in 2008.

The DPRS is primarily comprised of shallow and wadeable areas. There are also deeper segments that are considered boatable. The maximum water depth in the boatable portion of the DPRS was 6.8 feet (Higgins Road, Salt Creek) and the wadeable streams had a maximum depth of 3.3 feet (Wolf Road, DPR). Man-made structures, like bridges and riprap, were prevalent throughout the DPRS. Higgins Creek, at Wille Road, is entirely man-made with the banks and streambed consisting of concrete. All of the waterways in this system have some riparian areas that are dominated by residential or commercial/industrial uses, causing canopy cover to be variable. However, the predominant riparian land use in the DPRS is forest. Forested areas that have little-to-no man-made alterations have higher quality channel development and sinuosity. Boulders, brush-debris jams, logs, and aquatic vegetation were the predominant sources of instream habitat in the DPRS. Half of the stations in this system had four or more types of instream habitat, indicating the presence of quality habitat.

Sand was the predominant component in most sediment samples. Stephen Street and Material Services Road on the DPR had the most stable substrate because bedrock was the dominant constituent. Light amounts of oil were observed in sediments from four stations on the DPR, Salt Creek, and WBDR. Belmont Avenue, on the DPR, was the only station where a moderate amount of oil was observed in sediment. The greatest depth of fines measured 3.5 feet at Springinsguth Road on the WBDR, where silt and plant debris were the predominant substrates.

| Station<br>No. | Station Name     | Waterway                                   | N* | Mean<br>µg/L | Minimum<br>µg/L | Maximum<br>µg/L | Standard<br>Deviation<br>µg/L |
|----------------|------------------|--------------------------------------------|----|--------------|-----------------|-----------------|-------------------------------|
| 106            | Dundee Road      | W Fork N Branch Chicago River <sup>1</sup> | 11 | 14           | 4               | 45              | 11                            |
| 103            | Golf Road        | W Fork N Branch Chicago River <sup>1</sup> | 10 | 9            | 4               | 18              | 5                             |
| 31             | Lake-Cook Road   | M Fork N Branch Chicago River <sup>2</sup> | 10 | 11           | 2               | 23              | 6                             |
| 32             | Lake-Cook Road   | Skokie River                               | 10 | 8            | 2               | 14              | 4                             |
| 105            | Frontage Road    | Skokie River                               | 12 | 18           | 5               | 38              | 11                            |
| 104            | Glenview Road    | North Branch Chicago River                 | 12 | 11           | 3               | 27              | 7                             |
| 34             | Dempster Street  | North Branch Chicago River                 | 11 | 9            | 2               | 20              | 6                             |
| 35             | Central Street   | North Shore Channel                        | 9  | 6            | 1               | 25              | 8                             |
| 102            | Oakton Street    | North Shore Channel                        | 11 | 13           | 1               | 51              | 17                            |
| 36             | Touhy Avenue     | North Shore Channel                        | 12 | 2            | < 1             | 7               | 2                             |
| 101            | Foster Avenue    | North Shore Channel                        | 12 | 1            | < 1             | 3               | 1                             |
| 37             | Wilson Avenue    | North Branch Chicago River                 | 12 | 3            | 1               | 6               | 2                             |
| 73             | Diversey Avenue  | North Branch Chicago River                 | 12 | 4            | 1               | 6               | 2                             |
| 46             | Grand Avenue     | North Branch Chicago River                 | 12 | 4            | 1               | 9               | 3                             |
| 74             | Lake Shore Drive | Chicago River                              | 10 | 2            | 1               | 3               | 1                             |
| 100            | Wells Street     | Chicago River                              | 12 | 2            | 1               | 5               | 1                             |
| 39             | Madison Street   | South Branch Chicago River                 | 12 | 4            | 1               | 12              | 3                             |
| 108            | Loomis Street    | South Branch Chicago River                 | 11 | 3            | 1               | 10              | 3                             |
| 99             | Archer Avenue    | Bubbly Creek                               | 12 | 11           | 1               | 38              | 12                            |
| 40             | Damen Avenue     | Chicago Sanitary and Ship Canal            | 12 | 3            | 1               | 9               | 3                             |
| 75             | Cicero Avenue    | Chicago Sanitary and Ship Canal            | 12 | 4            | 1               | 12              | 3                             |
| 41             | Harlem Avenue    | Chicago Sanitary and Ship Canal            | 12 | 2            | < 1             | 8               | 2                             |
| 42             | Route 83         | Chicago Sanitary and Ship Canal            | 12 | 4            | 1               | 12              | 3                             |

## TABLE 4: RANGE AND MEAN CHLOROPHYLL a VALUES IN THE CHICAGO, CALUMET, AND DES PLAINES<br/>RIVER SYSTEMS DURING 2008

| Station No. | Station Name             | Waterway                        | N* | Mean<br>μg/L | Minimum<br>μg/L | Maximum<br>µg/L | Standard<br>Deviation<br>µg/L |
|-------------|--------------------------|---------------------------------|----|--------------|-----------------|-----------------|-------------------------------|
| 48          | Stephen Street           | Chicago Sanitary and Ship Canal | 12 | 6            | 2               | 16              | 5                             |
| 92          | Lockport                 | Chicago Sanitary and Ship Canal | 50 | 5            | 1               | 17              | 4                             |
| 49          | Ewing Avenue             | Calumet River                   | 9  | 2            | 1               | 6               | 2                             |
| 55          | 130 <sup>th</sup> Street | Calumet River                   | 8  | 5            | 2               | 8               | 2                             |
| 50          | Burnham Avenue           | Wolf Lake                       | 12 | 7            | 3               | 15              | 5                             |
| 86          | Burnham Avenue           | Grand Calumet River             | 10 | 53           | 2               | 201             | 66                            |
| 56          | Indiana Avenue           | Little Calumet River            | 9  | 21           | 4               | 36              | 11                            |
| 76          | Halsted Street           | Little Calumet River            | 12 | 8            | 1               | 16              | 5                             |
| 52          | Wentworth Avenue         | Little Calumet River            | 10 | 6            | 1               | 14              | 4                             |
| 54          | Joe Orr Road             | Thorn Creek                     | 9  | 4            | 1               | 8               | 2                             |
| 97          | 170 <sup>th</sup> Street | Thorn Creek                     | 11 | 8            | 3               | 13              | 4                             |
| 57          | Ashland Avenue           | Little Calumet River            | 10 | 8            | 2               | 14              | 4                             |
| 58          | Ashland Avenue           | Calumet-Sag Channel             | 12 | 8            | 3               | 17              | 5                             |
| 59          | Cicero Avenue            | Calumet-Sag Channel             | 11 | 8            | 2               | 23              | 6                             |
| 43          | Route 83                 | Calumet-Sag Channel             | 10 | 10           | 1               | 27              | 8                             |
| 90          | Route 19                 | Poplar Creek                    | 11 | 9            | 2               | 18              | 5                             |
| 110         | Springinsguth Road       | West Branch DuPage River        | 11 | 14           | 2               | 43              | 13                            |
| 89          | Walnut Lane              | West Branch DuPage River        | 12 | 7            | 2               | 18              | 5                             |
| 64          | Lake Street              | West Branch DuPage River        | 12 | 19           | 5               | 36              | 11                            |
| 79          | Higgins Road             | Salt Creek                      | 9  | 34           | 5               | 60              | 18                            |
| 80          | Arlington Heights Road   | Salt Creek                      | 12 | 12           | 3               | 40              | 10                            |
| 18          | Devon Avenue             | Salt Creek                      | 12 | 14           | 4               | 44              | 11                            |
| 24          | Wolf Road                | Salt Creek                      | 12 | 9            | 1               | 19              | 7                             |
| 109         | Brookfield Avenue        | Salt Creek                      | 11 | 6            | 1               | 11              | 4                             |
| 77          | Elmhurst Road            | Higgins Creek                   | 5  | 26           | 7               | 92              | 37                            |

# TABLE 4 (Continued): RANGE AND MEAN CHLOROPHYLL a VALUES IN THE CHICAGO,<br/>CALUMET, AND DES PLAINES RIVER SYSTEMS DURING 2008

| Station No. | Station Name           | Waterway          | N* | Mean<br>µg/L | Minimum<br>µg/L | Maximum<br>µg/L | Standard<br>Deviation<br>µg/L |
|-------------|------------------------|-------------------|----|--------------|-----------------|-----------------|-------------------------------|
| 78          | Wille Road             | Higgins Creek     | 12 | 2            | 1               | 4               | 1                             |
| 12          | Lake-Cook Road         | Buffalo Creek     | 11 | 20           | 4               | 46              | 12                            |
| 13          | Lake-Cook Road         | Des Plaines River | 12 | 19           | 4               | 74              | 20                            |
| 17          | Oakton Street          | Des Plaines River | 12 | 34           | 9               | 124             | 35                            |
| 19          | Belmont Avenue         | Des Plaines River | 12 | 22           | 2               | 80              | 27                            |
| 20          | Roosevelt Road         | Des Plaines River | 12 | 23           | 2               | 85              | 30                            |
| 22          | Ogden Avenue           | Des Plaines River | 11 | 21           | 1               | 83              | 25                            |
| 23          | Willow Springs Road    | Des Plaines River | 11 | 22           | 1               | 79              | 25                            |
| 29          | Stephen Street         | Des Plaines River | 12 | 22           | 2               | 72              | 21                            |
| 91          | Material Services Road | Des Plaines River | 12 | 26           | 4               | 118             | 30                            |

### TABLE 4 (Continued): RANGE AND MEAN CHLOROPHYLL a VALUES IN THE CHICAGO, CALUMET, AND DES PLAINES RIVER SYSTEMS DURING 2008

\*N = Number of Observations. <sup>1</sup>West Fork North Branch Chicago River. <sup>2</sup>Middle Fork North Branch Chicago River.

## TABLE 5: SUMMARY OF HABITAT OBSERVATIONS FOR THE LAKE-COOK ROADSTATION ON BUFFALO CREEK DURING 2008

|                                                 | Buffalo Creek                                                                                                 |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                 | Station No. 12                                                                                                |
|                                                 | Lаке-Соок Rd.                                                                                                 |
| Depth Range (ft)                                | 0.5-1.6                                                                                                       |
| Man-Made Structure Present                      | Bridge                                                                                                        |
| Floatable Materials                             | None                                                                                                          |
| Instream Cover for Fish (Side)                  | Boulders, Aquatic Vegetation, Brush-Debris<br>Jams, Logs, Submerged Terrestrial Vegetation,<br>Under Cut Bank |
| Canopy Cover                                    | Partly Shaded                                                                                                 |
| Immediate Shore Cover                           | Gabions, Grasses, Shrubs, Trees                                                                               |
| Riparian Land Use                               | Golf Course                                                                                                   |
| Sediment Composition<br>(Descending Percentage) | Boulder, Cobble, Gravel, Sand                                                                                 |
| Amount of Oil in Sediment                       | None                                                                                                          |
| Depth of Fines Range (ft.)                      | <0.1                                                                                                          |
|                                                 |                                                                                                               |

|                                                           | Des Plaines River                                           |                                                                      |                                                                            |  |
|-----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                                                           | Station No. 13<br>Lake-Cook Rd.                             | Station No. 17<br>Oakton St.                                         | Station No. 19<br>Belmont Ave.                                             |  |
| Depth Range (ft)                                          | 0.7-2.5                                                     | 1.9-6.25                                                             | 2.1-5.1                                                                    |  |
| Man-Made Struc-<br>ture Present                           | Riprap, Bridge                                              | Riprap, Bridge                                                       | Bridge                                                                     |  |
| Floatable Materials                                       | Vegetative Material                                         | None                                                                 | Vegetative Material                                                        |  |
| Instream Cover for<br>Fish (Side)                         | Aquatic Vegetation,<br>Boulders, Brush-Debris<br>Jams, Logs | Bridge Pilings, Bould-<br>ers, Submerged Terre-<br>strial Vegetation | Boulders, Logs                                                             |  |
| Canopy Cover                                              | Open to Partly Shaded                                       | Open to Partly Shaded                                                | Open to Partly Shaded                                                      |  |
| Immediate Shore<br>Cover                                  | Trees, Rip Rap, Grasses,<br>Shrubs                          | Shrubs, Rip Rap, Trees,<br>Grasses                                   | Denuded, Trees, Shrubs                                                     |  |
| Riparian Land Use                                         | Forest                                                      | Urban Residential, For-<br>est                                       | Urban Commer-<br>cial/Industrial, Forest                                   |  |
| Sediment Composi-<br>tion<br>(Descending Per-<br>centage) | Sand, Gravel, Silt, Plant<br>Debris, Cobble, Boulder        | Gravel, Sand, Silt, Cor-<br>bicula, Cobble, Boulder,<br>Plant Debris | Sand, Silt, Gravel, Bould-<br>er, Concrete, Plant Debris,<br>Mussel Shells |  |
| Amount of Oil in Sediment                                 | None                                                        | None                                                                 | None to Moderate                                                           |  |
| Depth of Fines<br>Range (ft.)                             | 0.3 to 1.2                                                  | <0.1 to 2.0                                                          | <0.1 to 0.6                                                                |  |

## TABLE 6: SUMMARY OF HABITAT OBSERVATIONS FOR STATIONS<br/>ON THE DES PLAINES RIVER DURING 2008

|                                                           | Des Plaines River                                    |                                         |                                                                           |  |
|-----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|--|
|                                                           | Station No. 20<br>Roosevelt Rd.                      | Station No. 22<br>Ogden Ave.            | Station No. 23<br>Willow Springs Rd                                       |  |
| Depth Range (ft)                                          | 1.8-2.7                                              | 1.2-2.6                                 | 1.0-6.5                                                                   |  |
| Man-Made Structure<br>Present                             | Bridge                                               | Bridge                                  | Bridge                                                                    |  |
| Floatable Materials                                       | Vegetative Material                                  | Vegetative Material                     | Vegetative Material                                                       |  |
| Instream Cover for<br>Fish (Side)                         | Brush-Debris Jams, Logs                              | Boulders, Brush-<br>Debris Jams, Logs   | Boulders, Brush-Debris<br>Jams, Logs, Submerged<br>Terrestrial Vegetation |  |
| Canopy Cover                                              | Open to Shaded                                       | Open                                    | Open to Partly Shaded                                                     |  |
| Immediate Shore<br>Cover                                  | Denuded, Shrubs, Trees                               | Grasses, Shrubs, Trees                  | Denuded, Grasses, Shrubs,<br>Trees                                        |  |
| Riparian Land Use                                         | Urban Commercial/<br>Industrial, Forest,<br>Cemetery | Forest                                  | Urban Residential, Urban<br>Commercial/Industrial,<br>Forest              |  |
| Sediment Composi-<br>tion<br>(Descending Percen-<br>tage) | Silt, Gravel, Sand, Clay,<br>Asiatic clams           | Gravel, Sand, Cobble,<br>Silt, Detritus | Silt, Sand, Plant Debris                                                  |  |
| Amount of Oil in Sediment                                 | None                                                 | None                                    | None to Light                                                             |  |
| Depth of Fines<br>Range (ft.)                             | 1.5 to 2.8                                           | 0.1 to 0.3                              | 0.9 to 3.4                                                                |  |

## TABLE 6 (Continued):SUMMARY OF HABITAT OBSERVATIONS FOR STATIONS<br/>ON THE DES PLAINES RIVER DURING 2008

|                                                 | Des Plaines River                                                         |                                                                                                               |  |
|-------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
|                                                 | Station No. 29<br>Stephen St.                                             | Station No. 91<br>Material Services Rd.                                                                       |  |
| Depth Range (ft)                                | 1.0-2.1                                                                   | 0.6-1.7                                                                                                       |  |
| Man-Made Structure Present                      | Bridge                                                                    | Bridge                                                                                                        |  |
| Floatable Materials                             | Vegetative Material                                                       | Vegetative Material                                                                                           |  |
| Instream Cover for Fish (Side)                  | Boulders, Brush-Debris Jams,<br>Logs, Submerged Tree Roots,<br>Rock Ledge | Aquatic Vegetation,Boulders,<br>Brush-Debris Jams, Logs, Sub-<br>merged Terrestrial Vegetation,<br>Rock Ledge |  |
| Canopy Cover                                    | Open to Partly Shaded                                                     | Open                                                                                                          |  |
| Immediate Shore Cover                           | Denuded, Grasses, Shrubs, Trees                                           | Grasses, Trees                                                                                                |  |
| Riparian Land Use                               | Urban Commercial/Industrial,<br>Forest                                    | Grassland, Forest                                                                                             |  |
| Sediment Composition<br>(Descending Percentage) | Bedrock, Cobble, Boulder, Sand,<br>Silt, Gravel                           | Bedrock, Boulder                                                                                              |  |
| Amount of Oil in Sediment                       | None to Light                                                             | None                                                                                                          |  |
| Depth of Fines Range (ft.)                      | <0.1-0.1                                                                  | <0.1                                                                                                          |  |

## TABLE 6 (Continued):SUMMARY OF HABITAT OBSERVATIONS FOR STATIONS<br/>ON THE DES PLAINES RIVER DURING 2008

## TABLE 7: SUMMARY OF HABITAT OBSERVATIONS FOR THE ROUTE 19 STATION<br/>ON POPLAR CREEK DURING 2008

|                                                 | Poplar Creek<br>Station No. 90<br>Route 19                          |
|-------------------------------------------------|---------------------------------------------------------------------|
| Depth Range (ft)                                | 0.7-1.5                                                             |
| Man-Made Structure Present                      | Bridge                                                              |
| Floatable Materials                             | None                                                                |
| Instream Cover for Fish (Side)                  | Aquatic Vegetation, Boulders, Submerged Ter-<br>restrial Vegetation |
| Canopy Cover                                    | Open                                                                |
| Immediate Shore Cover                           | Grasses, Trees                                                      |
| Riparian Land Use                               | Grassland, Urban Residential                                        |
| Sediment Composition<br>(Descending Percentage) | Gravel, Cobble, Sand, Clay                                          |
| Amount of Oil in Sediment                       | None                                                                |
| Depth of Fines Range (ft.)                      | <0.1-0.2                                                            |

|                                                         |                                                                                                                                              | Salt Creek                                                                                             |                                                                                |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                         | Station No. 79<br>Higgins Rd.                                                                                                                | Station No. 80<br>Arlington Heights Rd.                                                                | Station No. 18<br>Devon Ave.                                                   |
| Depth Range (ft)                                        | 1.2-6.8                                                                                                                                      | 1-4                                                                                                    | 1-2                                                                            |
| Man-Made<br>Structure Present                           | Bridge                                                                                                                                       | Bridge                                                                                                 | Bridge                                                                         |
| Floatable Mate-<br>rials                                | Vegetative Material                                                                                                                          | Vegetative Material                                                                                    | Vegetative Material                                                            |
| Instream Cover<br>for Fish (Side)                       | Aquatic Vegetation,<br>Boulders, Brush-Debris<br>Jams, Logs, Submerged<br>Tree Roots, Submerged<br>Terrestrial Vegetation,<br>Under Cut Bank | Aquatic Vegetation, Bould-<br>ers, Logs, Brush-Debris<br>Jams, Submerged Tree<br>Roots, Under Cut Bank | Aquatic Vegetation,<br>Boulders, Brush-Debris<br>Jams, Logs, Under Cut<br>Bank |
| Canopy Cover                                            | Open                                                                                                                                         | Open to Partly Shaded                                                                                  | Open to Partly Shaded                                                          |
| Immediate Shore<br>Cover                                | Grasses, Shrubs, Trees                                                                                                                       | Grasses, Shrubs, Trees                                                                                 | Grasses, Shrubs, Trees                                                         |
| Riparian Land<br>Use                                    | Wetland, Forest                                                                                                                              | Forest                                                                                                 | Forest                                                                         |
| Sediment Com-<br>position<br>(Descending<br>Percentage) | Silt, Sand, Clay, Boulder,<br>Cobble, Plant Debris                                                                                           | Gravel, Sand, Silt                                                                                     | Sand, Silt, Gravel, Clay                                                       |
| Amount of Oil in Sediment                               | None                                                                                                                                         | None                                                                                                   | None to Light                                                                  |
| Depth of Fines<br>Range (ft.)                           | <0.1-1.5                                                                                                                                     | 0.3 to 0.4                                                                                             | 0.2 to 1.8                                                                     |

## TABLE 8: SUMMARY OF HABITAT OBSERVATIONS FOR STATIONS<br/>ON SALT CREEK DURING 2008

|                                                 | Salt Creek                                                                                      |                                                            |  |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
|                                                 | Station No. 24<br>Wolf Rd.                                                                      | Station No. 109<br>Brookfield Ave.                         |  |
| Depth Range (ft)                                | 1.0-3.3                                                                                         | 0.4-1.7                                                    |  |
| Man-Made Structure Present                      | Bridge                                                                                          | Bridge                                                     |  |
| Floatable Materials                             | Vegetative Material                                                                             | None                                                       |  |
| Instream Cover for Fish (Side)                  | Aquatic Vegetation, Boulders,<br>Brush-Debris Jams, Logs, Sub-<br>merged Terrestrial Vegetation | Boulders, Brush-Debris Jams,<br>Logs                       |  |
| Canopy Cover                                    | Open                                                                                            | Open to Partly Shaded                                      |  |
| Immediate Shore Cover                           | Grasses, Shrubs, Trees                                                                          | Denuded, Grasses, Shrubs, Trees                            |  |
| Riparian Land Use                               | Forest                                                                                          | Urban Residential, Forest                                  |  |
| Sediment Composition<br>(Descending Percentage) | Sand, Plant Debris, Asiatic clams, Silt, Cobble, Boulder                                        | Sand, Cobble, Gravel, Silt, Plant<br>Debris, Asiatic clams |  |
| Amount of Oil in Sediment                       | None                                                                                            | None                                                       |  |
| Depth of Fines Range (ft.)                      | <0.1-0.4                                                                                        | <0.1-0.2                                                   |  |

### TABLE 8 (Continued): SUMMARY OF HABITAT OBSERVATIONS FOR STATIONS ON SALT CREEK DURING 2008
#### Higgins Creek Station No. 77 Station No. 78 Elmhurst Rd. Wille Rd. 0.2-0.6 Depth Range (ft) 1.4-1.5 Man-Made Structure Present Rip Rap, Bridge Bridge Floatable Materials Street Litter, Vegetative Matter None Instream Cover for Fish (Side) Aquatic Vegetation, Boulders Aquatic Vegetation, Boulders, **Brush-Debris Jams** Canopy Cover Open Open Immediate Shore Cover Grasses, Shrubs, Rip Rap Concrete **Riparian Land Use** Urban Commercial/Industrial **Recreational Park** Sediment Composition Boulder, Cobble Concrete, Sand, Gravel (Descending Percentage) Amount of Oil in Sediment None None $< 0.1^{1}$ $< 0.1^{1}$ Depth of Fines Range (ft.)

### TABLE 9: SUMMARY OF HABITAT OBSERVATIONS FOR STATIONSON HIGGINS CREEK DURING 2008

<sup>1</sup>All depth of fines measurements less than 0.1 feet.

#### West Branch DuPage River Station No. 89 Station No. 64 Station No. 110 Springinsguth Rd. Walnut Ln. Lake St. 0.5-1.6 Depth Range (ft) 0.2 - 0.81.1 - 2.0Man-Made Structure Bridge, Outfall Bridge Rip Rap, Bridge Present **Floatable Materials** Street Litter, Vegetative Street Litter, Vegetative Vegetative Material Material Material Instream Cover for Aquatic Vegetation, Aquatic Vegetation, Aquatic Vegetation, Boulders Boulders, Brush-Debris Boulders, Brush-Fish (Side) Debris Jams, Logs, Jams Under Cut Bank Canopy Cover Open to Partly Shaded Open to Partly Shaded Open Immediate Shore Cov-Grasses, Shrubs, Trees Grasses, Shrubs, Trees Grasses, Shrubs er Urban Residential **Riparian Land Use** Urban Residential, Row Grassland Crops Sediment Composition Silt, Plant Debris, Sand, Sand, Gravel, Silt, Plant Sand, Silt, Plant De-(Descending Percen-Gravel Debris bris, Gravel, Boulder tage) Amount of Oil in Se-Light None None diment

### TABLE 10:SUMMARY OF HABITAT OBSERVATIONS FOR STATIONS<br/>ON THE WEST BRANCH OF THE DUPAGE RIVER DURING 2008

0.2 to 1.0

0.1 to 1.5

Depth of Fines Range

(ft.)

0.4 to 3.5

In several reaches where cobble, concrete, or bedrock were present, depth of fines measurements were less than 0.1 foot.

#### Fish

<u>Table 11</u> lists the common and scientific names of the fish species collected during 2008 and the river system from which each species was collected. The number of individuals, total species and game species collected, and weight of total catch at each station are shown in <u>Table 12</u>. During 2008, 2,191 fish comprised of 41 fish species, including 16 game species, and three hybrids were collected from Chicago area waterways. Numbers of fish collected from each AWQM station are shown in <u>Appendix Tables B-1-B-4</u>. Gizzard shad, emerald shiner, and pumpkinseed sunfish were the most abundant species in the deep-draft waterways. Green sunfish, bluegill, and bluntnose minnows were the most abundant species at the wadeable streams stations.

The IBI scores calculated for each AWQM station and collection method are shown in <u>Table 13</u>. Most of the stations were rated as "fair" in terms of biological integrity. The station at Elmhurst Road on Higgins Creek was the only collection rated as poor with respect to the backpack electrofishing collection method, but it was rated fair with respect to the seine collection method. The station at  $130^{\text{th}}$  Street on the Calumet River had the highest IBI score of 40.

#### **Benthic Invertebrates**

<u>Table 14</u> contains a list of benthic invertebrate taxa collected by each of the two sampling methods. A report focusing on detailed benthic invertebrate data from 2008 is available at mwrd.org (<u>MWRD 2006-2008 Chicago Waterways Benthic Report</u>). Total species richness for ponar and Hester Dendy samplers combined was 140 species, while total EPT richness was 18 species.

**Northern Portion of the Chicago River System**. Benthic samples were collected from one station on the NSC and two stations on the NBCR. Albany Avenue on the NBCR had the highest total taxa and EPT taxa richness among Hester Dendy and ponar samples. The Albany Avenue Hester Dendy sample exhibited 26 total taxa and three EPT taxa. The ponar sample for this station contained 17 total and one EPT taxa. Head capsule deformities in Chironomidae specimens were found in the Hester Dendy and ponar samples at Touhy Avenue (one percent and seven percent of total midges, respectively).

**Southern Portion of the Chicago River System.** Benthic samples were collected from three stations in the CSSC. Total Hester Dendy taxa richness ranged from 15 at Cicero Avenue and Harlem Avenue to 25 at Lockport. Numbers of EPT taxa for these samples were one, one, and three, respectively. The Harlem Avenue and Lockport ponar samples both had two EPT taxa; Cicero had none. Chironomid head capsule deformities were observed in the Hester Dendy samples at Cicero Avenue and Harlem Avenue (0.7 percent and 2.5 percent of total midges, respectively) and the ponar sample at Lockport (4.3 percent of total midges).

## TABLE 11: COMMON AND SCIENTIFIC NAMES OF FISHES COLLECTED FROM THE CHICAGO, CALUMET, AND DES PLAINES RIVER SYSTEMS DURING 2008

|                            |                         |         | River System | 1            |
|----------------------------|-------------------------|---------|--------------|--------------|
| Common Name                | Scientific Name         | Chicago | Calumet      | Des Plaines  |
|                            |                         |         |              |              |
| HERRING FAMIL I            |                         | V       | V            | V            |
| Gizzard shad               | Dorosoma cepeatanum     | Λ       | А            | Λ            |
| SALMON AND TROUT<br>FAMILY | SALMONIDAE              |         |              |              |
| Chinook salmon*            | Oncorhynchus tshawyt-   | Х       | Х            |              |
|                            | scha                    |         |              |              |
|                            |                         |         |              |              |
| MINNOW FAMILY              | CYPRINIDAE              |         |              |              |
| Goldfish                   | Carassius auratus       | Х       | Х            | Х            |
| Common carp                | Cyprinus carpio         | Х       | Х            | Х            |
| Carp x Goldfish            | C. carpio x C. auratus  | Х       |              | Х            |
| Common shiner              | Notropis cornutus       |         |              | Х            |
| Bigmouth shiner            | Notropis dorsalis       |         |              | Х            |
| Spotfin shiner             | Cyprinella spiloptera   | Х       |              | Х            |
| Golden shiner              | Notemigonus crysoleucas |         | Х            | Х            |
| Emerald shiner             | Notropis atherinoides   | Х       | Х            |              |
| Sand shiner                | Notropis stramineus     |         |              | Х            |
| Bluntnose minnow           | Pimephales notatus      | Х       | Х            | Х            |
| Fathead minnow             | Pimephales promelas     | Х       | Х            | Х            |
| Hornyhead chub             | Nocomis biguttatus      |         |              | Х            |
| Creek chub                 | Semotilus atromaculatus |         |              | Х            |
| SUCKER FAMILY              | CATOSTOMIDAE            |         |              |              |
| White sucker               | Catostomus commersonii  | Х       | Х            | Х            |
| Spotted sucker             | Minytrema melanops      |         |              | Х            |
| CATFISH FAMILY             | ICTALURIDAE             |         |              |              |
| Yellow bullhead*           | Ameiurus natalis        | Х       |              | Х            |
| Channel catfish*           | Ictalurus punctatus     | X       |              |              |
| Tadpole madtom             | Noturus gyrinus         |         |              | Х            |
| DIVES                      | FSOCIDAE                |         |              |              |
| i INLO<br>Northern niko*   | ESOCIDAL<br>Esor lucius |         | v            | $\mathbf{v}$ |
| normern pike.              | ESOX IUCIUS             |         | Λ            | Λ            |

### TABLE 11 (Continued): COMMON AND SCIENTIFIC NAMES OF FISHES COLLECTED FROM THE CHICAGO, CALUMET, AND DES PLAINES RIVER SYSTEMS DURING 2008

|                          |                         |         | River Systen | 1           |
|--------------------------|-------------------------|---------|--------------|-------------|
| Common Name              | Scientific Name         | Chicago | Calumet      | Des Plaines |
|                          |                         |         |              |             |
| KILLIFISH FAMILY         | FUNDULIDAE              |         |              |             |
| Blackstripe topminnow    | Fundulus notatus        | Х       |              | Х           |
| LIVEBEARER FAMILY        | POECILIIDAE             |         |              |             |
| Western mosquitofish     | Gambusia affinis        | Х       |              | Х           |
| SILVERSIDE FAMILY        | ATHERINIDAE             |         |              |             |
| Brook silverside         | Labidesthes sicculus    |         | Х            |             |
| TEMPERATE BASS<br>FAMILY | MORONIDAE               |         |              |             |
| White perch*             | Morone Americana        | Х       |              |             |
| GOBY FAMILY              | GOBIIDAE                |         |              |             |
| Round goby               | Neogobius melanostomus  |         |              | Х           |
| SUNFISH FAMILY           | CENTRARCHIDAE           |         |              |             |
| Rock bass*               | Ambloplites rupestris   | Х       | Х            | Х           |
| Green sunfish*           | Lepomis cyanellus       | Х       | Х            | Х           |
| Pumpkinseed*             | Lepomis gibbosus        | Х       | Х            | Х           |
| Orangespotted sunfish*   | Lepomis humilis         |         |              | Х           |
| Bluegill*                | Lepomis macrochirus     | X       |              | X           |
| Green sunfish x Oranges- | L cyanellus x L humilis |         |              | X           |
| notted sunfish           | E. Cyunchus A E.numins  |         |              | 24          |
| Green sunfish y Bluegill | I evanallus x I macro-  |         | x            | X           |
| Green sumsnix Druegin    | chirus                  |         | 24           | 24          |
| Smallmouth bass*         | Micronterus dolomieu    |         | x            |             |
| Largemouth bass*         | Micropierus salmoides   | x       | X            | X           |
| White crannie*           | Pomoris annularis       | X<br>V  | Λ            | Λ           |
| Black crappie*           | Pomoris nigromaculatus  | X<br>X  |              | Y           |
| Black crappic            | Fomoxis nigromaculalus  | Λ       |              | Λ           |
| PERCH FAMILY             | PERCIDAE                |         |              |             |
| Johnny darter            | Etheostoma nigrum       |         |              | Х           |
| Fantail darter           | Etheostoma flabellare   |         |              | Х           |
| Yellow perch*            | Perca flavescens        |         | Х            |             |
| Blackside darter         | Percina maculate        |         |              | Х           |
| Walleye*                 | Stizostedion vitreum    |         |              | Х           |

#### TABLE 11 (Continued): COMMON AND SCIENTIFIC NAMES OF FISHES COLLECTED FROM THE CHICAGO, CALUMET, AND DES PLAINES RIVER SYSTEMS DURING 2008

|                                                         | River Sys                                    |         | River System | 1           |
|---------------------------------------------------------|----------------------------------------------|---------|--------------|-------------|
| Common Name                                             | Scientific Name                              | Chicago | Calumet      | Des Plaines |
| DRUM FAMILY<br>Freshwater drum                          | SCIAENIDAE<br>Aplodinotus grunniens          | Х       |              |             |
| LOACH FAMILY<br>Oriental weatherfish                    | COBITIDAE<br>Misgurnus anguillicau-<br>datus |         |              | Х           |
| Total Number of Fish Species<br>Total Number of Hybrids |                                              | 22<br>1 | 17<br>1      | 32<br>3     |

\*Game fish species.

| Station<br>No. | Location                              | Waterway                       | Sample<br>Gear  | Number<br>of<br>Fish | Weight<br>(grams) | Num<br>Spe<br>Total | ber of<br>ecies<br>Game | Most<br>Abundant<br>Species     |
|----------------|---------------------------------------|--------------------------------|-----------------|----------------------|-------------------|---------------------|-------------------------|---------------------------------|
| 36             | Touhy Avenue <sup>1</sup>             | North Shore Channel            | Small EF Boat   | 68                   | 78.249            | 14                  | 8                       | Common carp                     |
| 96             | Albany Avenue <sup>1</sup>            | North Branch Chicago River     | BP/Seine        | 52                   | 43                | 5                   | 1                       | Fathead minnow                  |
| 46             | Grand Avenue <sup>1</sup>             | North Branch Chicago River     | Small EF Boat   | 59                   | 22.981            | 6                   | 3                       | Gizzard shad                    |
| 75             | Cicero Avenue <sup>1</sup>            | Chicago Sanitary & Ship Canal  | Small EF Boat   | 58                   | 44.151            | 11                  | 6                       | Common carp                     |
| 41             | Harlem Avenue <sup>1</sup>            | Chicago Sanitary & Ship Canal  | Small EF Boat   | 186                  | 8,819             | 12                  | 5                       | Pumpkinseed                     |
| 92             | Lockport <sup>1</sup>                 | Chicago Sanitary & Ship Canal  | Small EF Boat   | 171                  | 14,870            | 10                  | 5                       | Gizzard shad                    |
| 55             | 130 <sup>th</sup> Street <sup>1</sup> | Calumet River                  | Small EF Boat   | 254                  | 54,785            | 13                  | 7                       | Emerald shiner                  |
| 76             | Halsted Street <sup>1</sup>           | Little Calumet River           | Small EF Boat   | 45                   | 62,729            | 12                  | 5                       | Common carp                     |
| 59             | Cicero Avenue <sup>1</sup>            | Calumet-Sag Channel            | Small EF Boat   | 66                   | 28,713            | 4                   | 2                       | Gizzard shad                    |
| 12             | Lake-Cook Road                        | Buffalo Creek                  | <b>BP/Seine</b> | 95                   | 1,693             | 10                  | 5                       | Bluegill                        |
| 13             | Lake-Cook Road <sup>1</sup>           | Des Plaines River              | <b>BP/Seine</b> | 214                  | 1,461             | 11                  | 6                       | Green sunfish                   |
| 17             | Oakton Street                         | Des Plaines River              | Small EF Boat   | 21                   | 8,973             | 8                   | 5                       | Green sunfish,<br>Northern pike |
| 19             | Belmont Avenue                        | Des Plaines River              | Small EF Boat   | 13                   | 5,318             | 6                   | 3                       | Green sunfish                   |
| 20             | Roosevelt Road                        | Des Plaines River              | Small EF Boat   | 5                    | 5,276             | 4                   | 1                       | Common carp                     |
| 22             | Ogden Avenue <sup>1</sup>             | Des Plaines River              | BP              | 117                  | 4,046             | 16                  | 5                       | Bluntnose minnow                |
| 23             | Willow Springs Road                   | Des Plaines River              | Small EF Boat   | 24                   | 10,439            | 11                  | 8                       | Gizzard shad                    |
| 29             | Stephen Street                        | Des Plaines River              | BP/Seine        | 176                  | 343               | 14                  | 6                       | Blackstripe topmin-<br>now      |
| 91             | Material Service Road <sup>1</sup>    | <sup>1</sup> Des Plaines River | BP/Seine        | 72                   | 277               | 13                  | 5                       | Bluntnose minnow                |
| 77             | Elmhurst Road                         | Higgins Creek                  | <b>BP/Seine</b> | 107                  | 575               | 4                   | 1                       | Bluntnose minnow                |
| 78             | Wille Road <sup>1</sup>               | Higgins Creek                  | BP/Seine        | 20                   | 115               | 5                   | 2                       | Fathead minnow                  |

# TABLE 12: NUMBER, WEIGHT, AND NUMBER OF SPECIES OF FISH COLLECTED FROM THE CHICAGO, CALUMET, AND<br/>DES PLAINES RIVER SYSTEMS DURING 2008

| Station<br>No. | Location                  | Waterway                 | Sample<br>Gear   | Number<br>of<br>Fish | Weight<br>(grams) | Num<br>Spe<br>Total | ber of<br>ecies<br>Game | Most<br>Abundant<br>Species |
|----------------|---------------------------|--------------------------|------------------|----------------------|-------------------|---------------------|-------------------------|-----------------------------|
| 79             | Higgins Road              | Salt Creek               | Small EF Boat    | 83                   | 10,159            | 9                   | 6                       | Bluegill                    |
| 80             | Arlington Heights Rd.     | Salt Creek               | Small EF Boat    | 52                   | 30,173            | 7                   | 5                       | Bluegill                    |
| 18             | Devon Avenue <sup>1</sup> | Salt Creek               | <b>BP</b> /Seine | 6                    | 152               | 4                   | 3                       | Green sunfish               |
| 24             | Wolf Road                 | Salt Creek               | <b>BP</b> /Seine | 23                   | 333               | 10                  | 3                       | Bluntnose minnow            |
| 109            | Brookfield Avenue         | Salt Creek               | <b>BP/Seine</b>  | 42                   | 374               | 10                  | 2                       | Bigmouth shiner             |
| 110            | Springinsguth Road        | West Branch DuPage River | BP               | 3                    | 7                 | 1                   | 1                       | Bluegill                    |
| 89             | Walnut Lane               | West Branch DuPage River | <b>BP/Seine</b>  | 49                   | 347               | 3                   | 3                       | Green sunfish               |
| 64             | Lake Street <sup>1</sup>  | West Branch DuPage River | <b>BP/Seine</b>  | 90                   | 5,244             | 8                   | 4                       | Green sunfish               |
| 90             | Route 19                  | Poplar Creek             | BP/Seine         | 20                   | 289               | 9                   | 3                       | Green sunfish               |
|                |                           | TOTAL                    |                  | 2,191                | 401 kg.           | 41                  | 16                      |                             |

# TABLE 12 (Continued): NUMBER, WEIGHT, AND NUMBER OF SPECIES OF FISH COLLECTED FROM THE<br/>CHICAGO, CALUMET, AND DES PLAINES RIVER SYSTEMS DURING 2008

<sup>1</sup>Annual sampling station.

| Station<br>No. | Location                 | Waterway                        | Sample Gear   | IBI <sup>1</sup><br>Score | IBI <sup>1</sup><br>Category |
|----------------|--------------------------|---------------------------------|---------------|---------------------------|------------------------------|
| 36             | Touhy Avenue             | North Shore Channel             | Small EF Boat | 32                        | Fair                         |
| 96             | Albany Avenue            | North Branch Chicago River      | BP            | 22                        | Fair                         |
| 96             | Albany Avenue            | North Branch Chicago River      | Seine         | 24                        | Fair                         |
| 46             | Grand Avenue             | North Branch Chicago River      | Small EF Boat | 26                        | Fair                         |
| 75             | Cicero Avenue            | Chicago Sanitary and Ship Canal | Small EF Boat | 26                        | Fair                         |
| 41             | Harlem Avenue            | Chicago Sanitary and Ship Canal | Small EF Boat | 26                        | Fair                         |
| 92             | Lockport                 | Chicago Sanitary and Ship Canal | Small EF Boat | 24                        | Fair                         |
| 55             | 130 <sup>th</sup> Street | Calumet River                   | Small EF Boat | 40                        | Fair                         |
| 76             | Halsted Street           | Little Calumet River            | Small EF Boat | 26                        | Fair                         |
| 59             | Cicero Avenue            | Calumet-Sag Channel             | Small EF Boat | 22                        | Fair                         |
| 12             | Lake-Cook Road           | Buffalo Creek                   | BP            | 32                        | Fair                         |
| 12             | Lake-Cook Road           | Buffalo Creek                   | Seine         | 24                        | Fair                         |
| 13             | Lake-Cook Road           | Des Plaines River               | BP            | 26                        | Fair                         |
| 13             | Lake-Cook Road           | Des Plaines River               | Seine         | 32                        | Fair                         |
| 17             | Oakton Street            | Des Plaines River               | Small EF Boat | 26                        | Fair                         |
| 19             | Belmont Avenue           | Des Plaines River               | Small EF Boat | 28                        | Fair                         |
| 20             | Roosevelt Road           | Des Plaines River               | Small EF Boat | 26                        | Fair                         |
| 22             | Ogden Avenue             | Des Plaines River               | BP            | 34                        | Fair                         |
| 22             | Ogden Avenue             | Des Plaines River               | Seine         | ND                        | ND                           |
| 23             | Willow Springs Road      | Des Plaines River               | Small EF Boat | 34                        | Fair                         |
| 29             | Stephen Street           | Des Plaines River               | BP            | 28                        | Fair                         |
| 29             | Stephen Street           | Des Plaines River               | Seine         | 32                        | Fair                         |
| 91             | Material Services Road   | Des Plaines River               | BP            | 32                        | Fair                         |
| 91             | Material Services Road   | Des Plaines River               | Seine         | 30                        | Fair                         |
| 77             | Elmhurst Road            | Higgins Creek                   | BP            | 18                        | Poor                         |
| 77             | Elmhurst Road            | Higgins Creek                   | Seine         | 26                        | Fair                         |
| 78             | Wille Road               | Higgins Creek                   | BP            | 24                        | Fair                         |
| 78             | Wille Road               | Higgins Creek                   | Seine         | ND                        | ND                           |

### TABLE 13: INDEX OF BIOTIC INTEGRITY SCORE AND CATEGORY BY STATION DURING 2008

| Station<br>No. | Location               | Waterway                 | Sample Gear   | IBI <sup>1</sup><br>Score | IBI <sup>1</sup><br>Category |
|----------------|------------------------|--------------------------|---------------|---------------------------|------------------------------|
| 79             | Higgins Road           | Salt Creek               | Small EF Boat | 36                        | Fair                         |
| 80             | Arlington Heights Road | Salt Creek               | Small EF Boat | 34                        | Fair                         |
| 18             | Devon Avenue           | Salt Creek               | BP            | 26                        | Fair                         |
| 18             | Devon Avenue           | Salt Creek               | Seine         | ND                        | ND                           |
| 24             | Wolf Road              | Salt Creek               | BP            | 22                        | Fair                         |
| 24             | Wolf Road              | Salt Creek               | Seine         | 32                        | Fair                         |
| 109            | Brookfield Avenue      | Salt Creek               | BP            | 26                        | Fair                         |
| 109            | Brookfield Avenue      | Salt Creek               | Seine         | 30                        | Fair                         |
| 89             | Walnut Lane            | West Branch DuPage River | BP            | 28                        | Fair                         |
| 89             | Walnut Lane            | West Branch DuPage River | Seine         | 28                        | Fair                         |
| 64             | Lake Street            | West Branch DuPage River | BP            | 26                        | Fair                         |
| 64             | Lake Street            | West Branch DuPage River | Seine         | 26                        | Fair                         |
| 90             | Route 19               | Poplar Creek             | BP            | 34                        | Fair                         |
| 90             | Route 19               | Poplar Creek             | Seine         | 32                        | Fair                         |

TABLE 13 (Continued): INDEX OF BIOTIC INTEGRITY SCORE AND CATEGORY BY STATION DURING 2008

<sup>1</sup>IBI = Index of Biotic Integrity. ND = No fish were caught in the seine or conditions were unfavorable for seining.

| Taxa                                  |                                      | Hester<br>Dendy | Petite<br>Ponar  |
|---------------------------------------|--------------------------------------|-----------------|------------------|
| COELENTERATA (Hvdt                    | roids)                               |                 |                  |
| COLLENT LIUTITI (II) u                | Hvdra                                | Х               | Х                |
| PLATYHELMINTHES (I                    | Flat worms)                          |                 |                  |
| Turbellaria                           |                                      | Х               | Х                |
| ENTOPROCTA                            |                                      |                 |                  |
|                                       | Urnatella gracilis                   | Х               |                  |
| ECTOPROCTA (Bryozoa                   | ns)                                  | V               | V                |
|                                       | Plumatella                           | Х               | Х                |
| ANNELLIDA                             | Nigoshaata (Aquatia Warma)           | V               | v                |
| L L L L L L L L L L L L L L L L L L L | Jigochaeta (Aquatic worms)           | Λ               | Λ                |
| 1                                     | Helebdella <sup>1</sup>              | $\mathbf{v}^1$  | $\mathbf{v}^{1}$ |
|                                       | Helobaella                           | A               | Λ                |
|                                       | Helobdella papillata                 | X               | V                |
|                                       | Helobaella stagnalis                 | X               | λ                |
|                                       | Helobdella triserialis               | Х               |                  |
|                                       | Placobdella papillifera              | Х               |                  |
|                                       | Placobdella pediculata               | Х               |                  |
|                                       | Haemopis                             |                 | Х                |
|                                       | Erpobdella punctata punctata         | Х               |                  |
|                                       | Mooreobdella microstoma              | Х               | Х                |
| CRUSTACEA                             |                                      |                 |                  |
| (                                     | Ostracoda (Seed Shrimp)              | Х               |                  |
| Ι                                     | sopoda (Sow Bugs)                    |                 |                  |
|                                       | Caecidotea                           | Х               | Х                |
| ŀ                                     | Amphipoda (Side Swimmers)            | V               | V                |
|                                       | Hyalella azteca                      | X               | X                |
|                                       | Gammarus<br>Eshino ogum anua iashuaa |                 | A<br>V           |
| DECAPODA (Cravitish)                  | Ecninogammarus iscnusa               | Λ               | Λ                |
|                                       | $Or conectes^1$                      | $\mathbf{X}^1$  | $\mathbf{X}^{1}$ |
|                                       | Orconectes rusticus                  | X               | X                |
|                                       | Procambarus                          |                 | Х                |

## TABLE 14:BENTHIC INVERTEBRATE TAXA COLLECTED BY PONAR<br/>AND HESTER DENDY SAMPLERS DURING 2008

|             | Taxa                                     | Hester<br>Dendy | Petite<br>Ponar |
|-------------|------------------------------------------|-----------------|-----------------|
| ARACHNOIDEA |                                          |                 |                 |
|             | Hydracarina (Water Mites)                | Х               | Х               |
| INSECTA     |                                          |                 |                 |
|             | Collembola (Springtails)                 | Х               | Х               |
|             | Ephemeroptera (Mayflies)                 |                 |                 |
|             | Baetis intercalaris                      | Х               | Х               |
|             | Leucrocuta                               | Х               |                 |
|             | Maccaffertium integrum                   | Х               |                 |
|             | Maccaffertium terminatum                 | Х               | Х               |
|             | Stenacron                                | Х               | Х               |
|             | Tricorythodes                            | Х               | Х               |
|             | Caenis                                   | Х               | Х               |
|             | Anthopotamus myops grp.                  | Х               |                 |
|             | Odonata (Damselflies and Dragonflies)    |                 |                 |
|             | Calopteryx                               | Х               |                 |
|             | Hetaerina                                | Х               | Х               |
|             | Argia                                    | Х               | Х               |
|             | Enallagma                                | Х               | Х               |
|             | Lestes                                   | Х               |                 |
|             | Aeshna                                   | Х               |                 |
|             | Gomphidae <sup>1</sup>                   |                 | $\mathbf{X}^1$  |
|             | Argiogomphus                             |                 | Х               |
|             | Hemiptera (True Bugs)                    |                 |                 |
|             | Trepobates                               | Х               |                 |
|             | Rhagovelia                               | Х               |                 |
|             | Corixidae                                |                 | Х               |
|             | Megaloptera (Dobsonflies and Alderflies) |                 |                 |
|             | Chauliodes                               | Х               | Х               |
|             | Sialis                                   | Х               |                 |
|             | Trichoptera (Caddisflies)                |                 |                 |
|             | Cyrnellus fraternus                      | Х               | Х               |
|             | Ceratopsyche morosa                      | Х               | Х               |

|        | Taxa                             | Hester<br>Dendy | Petite<br>Ponar |
|--------|----------------------------------|-----------------|-----------------|
| Trichc | optera (Caddisflies) (Continued) |                 |                 |
|        | Cheumatopsyche                   | Х               | Х               |
|        | Hvdropsvche betteni              | Х               |                 |
|        | Hydropsyche bidens               | Х               | Х               |
|        | Hydropsyche orris                | Х               | Х               |
|        | Hydropsyche simulans             | Х               | Х               |
|        | Hydroptila                       | Х               | Х               |
|        | Ceraclea maculate                | Х               |                 |
|        | Oecetis                          | Х               | Х               |
| Coleo  | ptera (Beetles)                  |                 |                 |
|        | Dineutus                         | Х               |                 |
|        | Peltodytes                       | Х               | Х               |
|        | Dubiraphia                       | Х               | Х               |
|        | Macronychus glabratus            | Х               |                 |
|        | Stenelmis                        | Х               | Х               |
|        | Ectopria                         |                 | Х               |
| Dipter | a (True Flies)                   |                 |                 |
|        | Hemerodromia                     | Х               | Х               |
|        | Simulium                         | Х               | Х               |
| Chiron | nimidae (Midges)                 |                 |                 |
|        | Clinotanypus                     |                 | Х               |
|        | Coelotanypus                     |                 | Х               |
|        | Procladius                       | Х               | Х               |
|        | Tanypus                          | Х               | Х               |
|        | Ablabesmyia janta                | Х               | Х               |
|        | Ablabesmyia mallochi             | Х               | Х               |
|        | Labrundinia                      | Х               | Х               |
|        | Nilotanypus                      | Х               |                 |
|        | Thienemannimyia grp              | Х               | Х               |
|        | Acricotopus                      |                 | Х               |
|        | Brillia                          | Х               |                 |
|        | Corynoneura lobata               | Х               |                 |
|        | Cricotopus bicinctus grp.        | Х               | Х               |

| Taxa                                                   |        | Petite<br>Ponar |
|--------------------------------------------------------|--------|-----------------|
| Chironimidae (Midges) (Continued)                      |        |                 |
| Cricotopus sylvestris grp.                             | Х      | Х               |
| Cricotopus tremulus grp.                               | Х      | Х               |
| Cricotopus trifascia grp.<br>Nanocladius crassicornus/ |        | Х               |
| rectinervis                                            | Х      | Х               |
| Nanocladius distinctus                                 | Х      | Х               |
| Rheocricotopus robacki                                 | Х      |                 |
| Thienemanniella similis                                | Х      |                 |
| Thienemanniella xena                                   | Х      | Х               |
| Tvetenia discoloripes grp                              | Х      |                 |
| Chironomus                                             | Х      | Х               |
| Cladopelma                                             | Х      | Х               |
| Cryptochironomus                                       | Х      | Х               |
| Cryptotendipes                                         | Х      | Х               |
| Dicrotendipes fumidus                                  | Х      | Х               |
| Dicrotendipes lucifer                                  | Х      | Х               |
| Dicrotendipes modestus                                 | Х      | Х               |
| Dicrotendipes neomodestus                              | Х      | Х               |
| Dicrotendipes nervosus                                 | Х      |                 |
| Dicrotendipes simpsoni                                 | Х      | Х               |
| Endochironomus nigricans                               | Х      | Х               |
| Glyptotendipes                                         | Х      | Х               |
| Harnischia                                             | Х      | Х               |
| Microchironomus                                        |        | Х               |
| Microtendipes                                          | Х      | Х               |
| Parachironomus                                         | Х      | Х               |
| Paracladopelma                                         |        | Х               |
| Paralauterborniella nigrohalte                         | eralis | Х               |
| Paratendipes                                           | Х      | Х               |
| Phaenopsectra flavipes                                 | Х      | Х               |
| Phaenopsectra obediens                                 | Х      | Х               |

|                                   | Taxa                              | Hester<br>Dendy | Petite<br>Ponar |  |  |  |
|-----------------------------------|-----------------------------------|-----------------|-----------------|--|--|--|
| Chiranimidaa (Midaaa) (Cantinuad) |                                   |                 |                 |  |  |  |
| Child                             | Polypedilum fallax grp            | x               |                 |  |  |  |
|                                   | Polypedilum flavum                | X               | X               |  |  |  |
|                                   | Polypedilum halterale grp         | X               | X               |  |  |  |
|                                   | Polypedilum illinoense            | X               | X               |  |  |  |
|                                   | Polypedilum scalaenum grp.        | X               | X               |  |  |  |
|                                   | Pseudochironomus                  | X               | X               |  |  |  |
|                                   | Saetheria                         |                 | X               |  |  |  |
|                                   | Stenochironomus                   | Х               | Х               |  |  |  |
|                                   | Stictochironomus                  | Х               | Х               |  |  |  |
|                                   | Tribelos iucundum                 | Х               |                 |  |  |  |
|                                   | <i>Cladotanytarsus mancus</i> grp | Х               | Х               |  |  |  |
|                                   | Cladotanytarsus vanderwulpi grp.  | Х               | Х               |  |  |  |
|                                   | Micropsectra                      | Х               |                 |  |  |  |
|                                   | Paratanytarsus                    | Х               | Х               |  |  |  |
|                                   | Rheotanytarsus                    | Х               | Х               |  |  |  |
|                                   | Tanytarsus                        | Х               | Х               |  |  |  |
|                                   | Tanytarsus glabrescens grp.       | Х               | Х               |  |  |  |
|                                   | Tanytarsus sepp                   | Х               | Х               |  |  |  |
| GASTROPODA (Snails)               |                                   |                 |                 |  |  |  |
|                                   | Ferrissia                         | Х               | Х               |  |  |  |
|                                   | Bithynia tentaculata              | Х               |                 |  |  |  |
|                                   | Amnicola                          | Х               | Х               |  |  |  |
|                                   | Physa                             | Х               | Х               |  |  |  |
|                                   | Helisoma                          | Х               | Х               |  |  |  |
|                                   | Menetus                           | Х               | Х               |  |  |  |
|                                   | Pleurocera                        | Х               | Х               |  |  |  |
|                                   | <i>Viviparidae</i> <sup>1</sup>   | Х               | Х               |  |  |  |
| PELECYPODA (Mussels and           | Clams)                            |                 |                 |  |  |  |
|                                   | Corbicula fluminea                | Х               | Х               |  |  |  |
|                                   | Dreissena bugensis                | Х               | Х               |  |  |  |
|                                   | Dreissena polymorpha              | Х               | Х               |  |  |  |

| Taxa                                       | Hester<br>Dendy | Petite<br>Ponar |
|--------------------------------------------|-----------------|-----------------|
| PELECYPODA (Mussels and Clams) (Continued) |                 |                 |
| Eupera cubensis                            | Х               |                 |
| Sphaerium <sup>1</sup>                     | Х               | Х               |
| Musculium                                  | Х               | Х               |
| Pisidium                                   | Х               | Х               |
| Elliptio dilatata                          |                 | Х               |
| TOTAL SPECIES RICHNESS BY SAMPLE TYPE      | 125             | 106             |
| EFT SPECIES RICHINESS DT SAMPLE TTPE       | 10              | 15              |
| TOTAL SPECIES RICHNESS FOR 2008            | 14              | 0               |
| EPT <sup>2</sup> SPECIES RICHNESS FOR 2008 | 18              | 8               |

<sup>1</sup>Not counted as a discreet taxon.

<sup>2</sup>Ephemeroptera, Plecoptera, and Tricoptera are considered relatively sensitive taxa.

**Calumet River System.** This watershed includes the Calumet River, LCR, and CSC. Benthic invertebrate samples were collected in each waterway. The Hester-Dendy samples at Cicero Avenue on the CSC and Halsted Street on the LCR both exhibited a total taxa richness of 26 species while Hester Dendy samples at 130<sup>th</sup> Street on the Calumet River exhibited 11 species. EPT taxa were present in all Hester Dendy samples from this river system. The highest total taxa richness of the ponar samples was observed at 130<sup>th</sup> Street on the Calumet River (20 species). There were no EPT taxa found in the ponar samples collected in this river system. No Chironomid head capsule deformities were observed at 130<sup>th</sup> Street. Halsted Street Hester Dendy and ponar samples had a total incidence of Chironomid head capsule deformities within expected reference levels. Cicero Avenue Hester Dendy samples exhibited Chironomid head capsule deformities at a low incidence. However, a significant amount of head capsule deformities were observed for the taxon Procladius in the Cicero Avenue ponar sample.

**Des Plaines and Fox River Systems.** In 2008, biological sampling focused on the DPRS, including the WBDR, Buffalo Creek, Salt Creek, Higgins Creek, DPR, Poplar Creek and one station from the Fox River basin (Poplar Creek at Route 19). Benthic invertebrate samples were collected at 20 stations therein. Total and EPT taxa richness were relatively high compared to other watersheds sampled in 2008. Route 19 on Poplar Creek exhibited the highest total taxa for Hester Dendy and ponar samples, 48 and 30 taxa, respectively. Lake Cook Road and Oakton Street samples both contained nine EPT taxa, which was the most found in Hester Dendy samples within these systems. There were five stations which exhibited three EPT taxa for ponar samples; Lake Cook Road on Buffalo Creek, Higgins Road on Salt Creek, Arlington Road on Salt Creek, Wolf Road on Salt Creek, and Material Service Road on the DPR. Other stations contained less EPT taxa for ponar samples. Chironomid head capsule deformities were elevated at a few stations but were observed in less than half of the stations sampled.

#### **Sediment Chemistry**

Sediment quality can considerably impact overlying water quality, benthic community structure, food chain dynamics, and other elements of freshwater ecosystems. Since sediment acts as a reservoir for persistent or bioaccumulative contaminants, sediment data reflects a long-term record of quality. It should be noted that grab sample sediment data can be difficult to interpret, as samples may reflect a "hot spot," or an area with an unusually high concentration of a specific pollutant. This can be caused by an accidental release or spill of a contaminant that sinks down through the water column and resides in the sediment. Similarly, sediment chemistry can vary widely between side and center samples from the same station.

**General Chemistry**. The concentrations of the eight general chemistry constituents measured in the sediment from 20 sample stations are presented in <u>Table 15</u>. Sediment samples from the side at Oakton Street on the DPR and Springinsguth Road on the WBDR contained the highest concentrations of TKN (5,719 and 5,974 mg/kg respectively). Side and center sediment samples from Willow Springs Road on the DPR both exhibited the highest concentrations of TP (3,253 and 3,473 mg/kg). Sediment taken from the center at Stephen Street on the DPR

|                   |             |                    | Constituents (Expressed on a dry weight basis) |           |            |                               |                          |                |               |                    |                |
|-------------------|-------------|--------------------|------------------------------------------------|-----------|------------|-------------------------------|--------------------------|----------------|---------------|--------------------|----------------|
| WATERWAY          | SITE<br>NO. | LOCATION           |                                                | TS<br>(%) | TVS<br>(%) | NH <sub>3</sub> _N<br>(mg/kg) | $NO_2 + NO_3$<br>(mg/kg) | TKN<br>(mg/kg) | TP<br>(mg/kg) | Phenols<br>(mg/kg) | TCN<br>(mg/kg) |
| Duffala Creat     | 12          | Laka Caale Daad    | Cida                                           | 70        | 2          | 5                             | 2                        | 221            | 152           | 0.012              | 0.024          |
| Bullalo Creek     | 12          | Lake Cook Road     | Side                                           | /8        | 2          | 5                             | 2                        | 251            | 100           | 0.012              | 0.034          |
| Builaio Creek     | 12          | Lake Cook Road     | Center                                         | 80        | 3          | 0                             | 3                        | 357            | 239           | < 0.006            | 0.024          |
| Des Plaines River | 13          | Lake Cook Road     | Side                                           | 42        | 8          | 42                            | 4                        | 2,280          | 981           | 0.076              | 0.330          |
| Des Plaines River | 13          | Lake Cook Road     | Center                                         | /5        | l          | 4                             | 2                        | 196            | 293           | 0.023              | 0.038          |
| Des Plaines River | 17          | Oakton Street      | Side                                           | 48        | 8          | 40                            | 5                        | 5,719          | 1,955         | 0.439              | 0.212          |
| Des Plaines River | 17          | Oakton Street      | Center                                         | 79        | 2          | 2                             | 3                        | 172            | 184           | 0.019              | 0.065          |
| Higgins Creek     | 77          | Elmhurst Road      | Side                                           | 75        | 3          | 14                            | 3                        | 658            | 291           | 0.013              | 0.107          |
| Higgins Creek     | 77          | Elmhurst Road      | Center                                         | 68        | 5          | 18                            | 2                        | 1,243          | 414           | 0.059              | 0.233          |
| Higgins Creek     | 78          | Wille Road         | Center                                         | 73        | 3          | 4                             | 4                        | 367            | 356           | 0.046              | 0.030          |
| Des Plaines River | 19          | Belmont Avenue     | Side                                           | 51        | 9          | 59                            | 12                       | 2,668          | 1,485         | 0.133              | 0.065          |
| Des Plaines River | 20          | Roosevelt Road     | Side                                           | 50        | 10         | 87                            | 9                        | 544            | 571           | 0.121              | 0.085          |
| Des Plaines River | 20          | Roosevelt Road     | Center                                         | 73        | 3          | 4                             | 2                        | 318            | 381           | 0.047              | 0.196          |
| Salt Creek        | 79          | Higgins Road       | Side                                           | 63        | 5          | 13                            | 7                        | 947            | 304           | 0.046              | 0.043          |
| Salt Creek        | 79          | Higgins Road       | Center                                         | 48        | 8          | 67                            | 6                        | 4,035          | 1,099         | 0.157              | 0.236          |
| Salt Creek        | 80          | Arlington Hts. Rd. | Side                                           | 81        | 3          | 20                            | 12                       | 449            | 310           | 0.040              | 0.014          |
| Salt Creek        | 80          | Arlington Hts. Rd. | Center                                         | 83        | 2          | 4                             | 7                        | 333            | 228           | 0.062              | 0.017          |
| Salt Creek        | 18          | Devon Avenue       | Side                                           | 70        | 3          | 9                             | 8                        | 784            | 227           | 0.071              | 0.045          |
| Salt Creek        | 18          | Devon Avenue       | Center                                         | 73        | 2          | 4                             | 7                        | 249            | 397           | 0.059              | < 0.007        |
| Salt Creek        | 24          | Wolf Road          | Side                                           | 53        | 8          | 52                            | 23                       | 2,721          | 2,239         | 0.131              | 0.073          |
| Salt Creek        | 24          | Wolf Road          | Center                                         | 78        | 2          | 10                            | 3                        | 347            | 360           | 0.060              | 0.046          |
| Salt Creek        | 109         | Brookfield Avenue  | Side                                           | 73        | 3          | 6                             | 4                        | 548            | 524           | 0.068              | 0.079          |
| Salt Creek        | 109         | Brookfield Avenue  | Center                                         | 76        | 2          | 4                             | 4                        | 415            | 496           | 0.056              | < 0.007        |

#### TABLE 15: CHEMICAL CHARACTERISTICS OF SEDIMENT COLLECTED FROM THE DES PLAINES AND FOX RIVER SYSTEMS DURING 2008

|                   |      |                    |        |     |     | Constituen        | ts (Expressed | on a dry | weight ba | sis)    |         |
|-------------------|------|--------------------|--------|-----|-----|-------------------|---------------|----------|-----------|---------|---------|
| WATERWAY          | SITE | LOCATION           |        | TS  | TVS | NH <sub>3</sub> N | $NO_2 + NO_3$ | TKN      | TP        | Phenols | TCN     |
|                   | NO.  |                    |        | (%) | (%) | (mg/kg)           | (mg/kg)       | (mg/kg)  | (mg/kg)   | (mg/kg) | (mg/kg) |
|                   |      |                    |        |     |     |                   |               | × U U/   |           |         | × U U/  |
|                   |      |                    |        |     |     |                   |               |          |           |         |         |
| Des Plaines River | 22   | Ogden Avenue       | Side   | 34  | 16  | 93                | 7             | 2,606    | 1,849     | 0.178   | 0.392   |
| Des Plaines River | 22   | Ogden Avenue       | Center | 90  | 2   | 2                 | 2             | 218      | 329       | 0.030   | 0.024   |
| Des Plaines River | 23   | Willow Springs Rd. | Side   | 34  | 11  | 165               | 13            | 4,170    | 3,253     | 0.152   | 0.167   |
| Des Plaines River | 23   | Willow Springs Rd. | Center | 40  | 9   | 93                | 9             | 3,371    | 3,473     | 0.137   | 0.125   |
| Des Plaines River | 29   | Stephen Street     | Side   | 70  | 5   | 28                | 4             | 1,109    | 764       | 0.076   | 0.107   |
| Des Plaines River | 29   | Stephen Street     | Center | 27  | 15  | 240               | 17            | 4,638    | 2,658     | 0.191   | 0.459   |
| Des Plaines River | 91   | Material Ser. Rd.  | Side   | 79  | 2   | 3                 | 1             | 341      | 288       | 0.073   | 0.016   |
| Des Plaines River | 91   | Material Ser. Rd.  | Center | 76  | 2   | 4                 | 2             | 299      | 322       | 0.059   | 0.092   |
| WBDR              | 110  | Springinsguth Rd.  | Side   | 30  | 17  | 83                | 12            | 5,974    | 853       | 0.206   | 0.213   |
| WBDR              | 110  | Springinsguth Rd.  | Center | 34  | 13  | 35                | 17            | 4,345    | 706       | 0.206   | 0.131   |
| WBDR              | 89   | Walnut Lane        | Side   | 78  | 3   | 10                | 4             | 572      | 536       | 0.059   | 0.068   |
| WBDR              | 89   | Walnut Lane        | Center | 78  | 2   | 5                 | 4             | 304      | 342       | 0.070   | 0.028   |
| WBDR              | 64   | Lake Street        | Side   | 72  | 3   | 16                | 3             | 1,011    | 654       | 0.036   | 0.035   |
| WBDR              | 64   | Lake Street        | Center | 79  | 2   | 6                 | 4             | 583      | 647       | 0.024   | 0.704   |
| Poplar Creek      | 90   | Route 19           | Side   | 72  | 2   | 9                 | 3             | 564      | 244       | 0.032   | 0.074   |
| Poplar Creek      | 90   | Route 19           | Center | 71  | 2   | 9                 | 1             | 547      | 257       | 0.041   | 0.066   |
| 1                 |      |                    |        |     |     | -                 |               |          |           |         | *       |

### TABLE 15 (Continued): CHEMICAL CHARACTERISTICS OF SEDIMENT COLLECTED FROM THE DES PLAINES AND FOX RIVER SYSTEMS DURING 2008

ND= No Data

contained the highest concentration of NH<sub>3</sub>-N (240 mg/kg). The side sediment sample at Oakton Street on the DPR contained the highest concentration of total phenols (0.439 mg/kg).

**Trace Metals.** The 11 trace metal concentrations measured at these same stations are presented in <u>Table 16</u>. The side sample at Springinsguth Road on the WBDR exhibited the highest concentration of copper (133 mg/kg). Willow Springs Road on the DPR side sample contained the highest concentration of iron (24,603 mg/kg). Elevated levels of manganese (2,241 mg/kg) were observed at Lake Cook Road on Buffalo Creek. Significantly high levels of zinc (1,166 mg/kg) were observed for the center sample at Roosevelt Road on the DPR.

Acid Volatile Sulfide, Simultaneously Extracted Metals, Total Organic Carbon, and Particle Size. <u>Table 17</u> presents the AVS, SEM, TOC, and particle size data for twenty sampled sites. The ratio of SEM to AVS can affect the bioavailability of divalent metals for which sulfide ions have a high affinity. For instance, if AVS is greater than SEM concentration (SEM/AVS<1), it is less likely that metals are available for biological uptake, thus rendering them less toxic to organisms. As a measure of oxidizable organic material, the TOC concentration in sediment affects nonionic organic chemical, as well as metal bioavailability. Five samples exhibited concentrations of TOC above 50,000 mg/kg. These stations were as follows: The center channel sample at Wille Road on Higgins Creek (68,000 mg/kg), side sample at Springinsguth Road on the WBDR (66,000 mg/kg), side sample at Ogden Avenue on the DPR (62,000 mg/kg), and the center and side samples at Stephen Street on the DPR (57,000 and 51,000 mg/kg respectively). Particle size is a useful analysis since it influences chemical reactions that take place in the sediment and the type of invertebrate taxa able to colonize on the substrate (USEPA, 2001).

**Organic Priority Pollutants.** There were 111 total OPPs analyzed for each sample collected (listed in <u>Table 3</u>). <u>Tables 18 - 22</u> present the concentrations of 19 OPPs that were detected in sediment samples during 2008. The sample with the largest number of OPPs detected in 2008 was the center sample collected at Wille Road on Higgins Creek containing 17. The other samples with a slightly less number of OPPs were the side samples collected at Brookfield Avenue on Salt Creek and Ogden Avenue on the DPR (16 and 15, respectively). Wille Road exhibited the highest concentration of most OPP's.

| WATERWAY          | SITE<br>NO | LOCATION                            |        | As           | Cd  | Cr       | Cu       | Fe     | Pb        | Mn         | Hg      | Ni            | Ag         | Zn           |
|-------------------|------------|-------------------------------------|--------|--------------|-----|----------|----------|--------|-----------|------------|---------|---------------|------------|--------------|
|                   | NO.        |                                     |        |              |     |          |          | (mg    | /kg dry   | weight)    |         |               |            |              |
| Buffalo Creek     | 12         | Lake Cook Road                      | Side   | < 20         | < 3 | 20       | 7        | 1/ 810 | 10        | 825        | <0.250  | 15            | < 1        | 35           |
| Buffalo Creek     | 12         | Lake Cook Road                      | Center | < 20         | < 3 | 20       | 8        | 21 808 | 10        | 223        | <0.230  | 13<br>22      | < 1        | 33           |
| Dos Plainas Divar | 12         | Lake Cook Road                      | Sido   | < 20         | < 3 | 27<br>18 | 20       | 12 840 | 12        | 2,241      | <0.230  | 12            | $\sim 1$   | 109          |
| Des Plaines River | 13         | Lake Cook Road                      | Contor | < 20         | < 3 | 10       | 20       | 5 708  | 20<br>8   | 2/2        | <0.230  | 12            | $\sim 1$   | 108          |
| Des Plaines River | 13         | Calton Street                       | Sido   | < 20         | < 3 | 22       | 27       | 12 2/0 | 0<br>17   | 612        | <0.230  | 11            | $\sim 1$   | 20<br>160    |
| Des Plaines River | 17         | Oakton Street                       | Contor | < 20         | < 3 | 17       | 5        | 7 020  | 47<br>20  | 458        | < 0.230 | 10            | $\sim 1$   | 100          |
| Ligging Crook     | 17         | Elmburst Pood                       | Sido   | < 20         | < 3 | 17       | 16       | 16 257 | 20        | 436        | <0.230  | 10            | $\sim 1$   | 41<br>64     |
| Higgins Creek     | 77         | Elimburst Road                      | Contor | < 20         | < 3 | 10       | 22       | 15 202 | 28        | 201        | <0.230  | 17            | $\sim 1$   | 120          |
| Higgins Creek     | 78         | Willo Dood                          | Contor | < 20         | < 3 | 10       | 15       | 13,293 | 20<br>21  | 1 2 2 9    | <0.230  | $\frac{1}{2}$ | $\sim 1$   | 120          |
| Des Dieines Diver | /0         | Polmont Avonuo                      | Side   | < 20         | < 5 | 40<br>50 | 15<br>07 | 22,620 | 21<br>169 | 622        | -0.230  | 24<br>27      | 1          | 222          |
| Des Plaines River | 19         | Definition Avenue<br>Deservalt Dead | Side   | < 20         | 4   | 59<br>62 | 0/       | 23,024 | 100       | 629        | 0.301   | 21            | > I<br>< 1 | 522<br>295   |
| Des Flaines River | 20         | Roosevelt Road                      | Contor | < 20<br>< 20 | 2   | 05<br>57 | 90<br>40 | 10 000 | 132       | 030<br>541 | 0.420   | 21            | > I<br>< 1 | 505<br>1 166 |
| Solt Crook        | 20         | Koosevelt Koad                      | Center | < 20         | < 3 | 37<br>17 | 42       | 10,900 | /0        | 202        | <0.230  | 20            | < 1<br>< 1 | 1,100        |
| Salt Creek        | 79         | Higgins Road                        | Side   | < 20         | < 3 | 1/       | 19       | 10,144 | 1/        | 502<br>251 | <0.230  | 20            | 1          | 38<br>104    |
| Salt Creek        | /9         | Auliustan Lita Dal                  | Center | < 20         | < 3 | 20       | 27       | 19,094 | 24<br>11  | 331<br>415 | <0.250  | 21<br>10      | < I<br>< 1 | 104          |
| Salt Creek        | 80         | Arlington Hts. Rd.                  | Side   | < 20         | < 3 | 18       | 10       | 10,339 | 11        | 415        | < 0.250 | 19            | < I        | /3           |
| Salt Creek        | 80         | Arlington Hts. Kd.                  | Center | < 20         | < 3 | 11       | 2        | 9,064  | 8         | 300        | < 0.250 | 10            | < I<br>< 1 | 29           |
| Salt Creek        | 18         | Devon Avenue                        | Side   | < 20         | < 3 | 24       | 2        | 6,050  | 9         | 144        | < 0.250 | 14            | < 1        | 26           |
| Salt Creek        | 18         | Devon Avenue                        | Center | < 20         | < 3 | 18       | 6        | 12,679 | 11        | 967        | < 0.250 | 13            | < [        | 38           |
| Salt Creek        | 24         | Wolf Road                           | Side   | < 20         | < 3 | 38       | 56       | 22,196 | 91        | 555        | < 0.250 | 22            | < [        | 228          |
| Salt Creek        | 24         | Wolf Road                           | Center | < 20         | < 3 | 14       | 8        | 8,003  | 13        | 318        | < 0.250 | 9             | < 1        | 50           |
| Salt Creek        | 109        | Brookfield Ave.                     | Side   | < 20         | < 3 | 26       | 18       | 11,070 | 24        | 344        | < 0.250 | 15            | < 1        | 83           |
| Salt Creek        | 109        | Brookfield Ave.                     | Center | < 20         | < 3 | 27       | 11       | 8,768  | 19        | 329        | < 0.250 | 11            | < 1        | 58           |

### TABLE 16: TRACE METALS IN SEDIMENT COLLECTED FROM THE DES PLAINES AND FOX RIVER SYSTEMS DURING 2008

| WATERWAY          | SITE<br>NO | LOCATION           |        | As                 | Cd  | Cr | Cu  | Fe     | Pb | Mn    | Hg      | Ni | Ag  | Zn  |
|-------------------|------------|--------------------|--------|--------------------|-----|----|-----|--------|----|-------|---------|----|-----|-----|
|                   | 110.       |                    |        | (mg/kg dry weight) |     |    |     |        |    |       |         |    |     |     |
| Des Plaines River | 22         | Ogden Avenue       | Side   | < 20               | 5   | 50 | 72  | 19,995 | 93 | 729   | 0.301   | 21 | < 1 | 298 |
| Des Plaines River | 22         | Ogden Avenue       | Center | < 20               | < 3 | 29 | 7   | 9,650  | 52 | 586   | < 0.250 | 16 | < 1 | 73  |
| Des Plaines River | 23         | Willow Springs Rd. | Side   | < 20               | < 3 | 56 | 85  | 24,603 | 84 | 801   | < 0.250 | 26 | < 1 | 357 |
| Des Plaines River | 23         | Willow Springs Rd. | Center | < 20               | < 3 | 43 | 63  | 23,805 | 68 | 999   | < 0.250 | 23 | < 1 | 278 |
| Des Plaines River | 29         | Stephen Street     | Side   | < 20               | < 3 | 59 | 59  | 19,779 | 88 | 603   | < 0.250 | 25 | < 1 | 210 |
| Des Plaines River | 29         | Stephen Street     | Center | < 20               | < 3 | 58 | 81  | 24,459 | 78 | 879   | 0.367   | 29 | < 1 | 340 |
| Des Plaines River | 91         | Material Ser. Rd.  | Side   | < 20               | < 3 | 19 | < 3 | 10,411 | 52 | 622   | < 0.250 | 10 | < 1 | 50  |
| Des Plaines River | 91         | Material Ser. Rd.  | Center | < 20               | < 3 | 17 | 14  | 6,666  | 25 | 198   | < 0.250 | 9  | < 1 | 95  |
| WBDR              | 110        | Springinsguth Rd.  | Side   | < 20               | < 3 | 38 | 133 | 19,681 | 61 | 487   | < 0.250 | 25 | 2   | 398 |
| WBDR              | 110        | Springinsguth Rd.  | Center | < 20               | < 3 | 19 | 24  | 15,542 | 27 | 195   | < 0.250 | 17 | < 1 | 121 |
| WBDR              | 89         | Walnut Lane        | Side   | < 20               | < 3 | 11 | 12  | 13,583 | 12 | 402   | < 0.250 | 11 | < 1 | 62  |
| WBDR              | 89         | Walnut Lane        | Center | < 20               | < 3 | 12 | 8   | 11,099 | 10 | 406   | < 0.250 | 8  | < 1 | 51  |
| WBDR              | 64         | Lake Street        | Side   | < 20               | < 3 | 11 | 10  | 9,552  | 12 | 243   | < 0.250 | 8  | < 1 | 65  |
| WBDR              | 64         | Lake Street        | Center | < 20               | < 3 | 25 | 7   | 16,858 | 12 | 1,575 | < 0.250 | 18 | < 1 | 57  |
| Poplar Creek      | 90         | Route 19           | Side   | < 20               | < 3 | 35 | 5   | 13,532 | 93 | 531   | < 0.250 | 9  | < 1 | 53  |
| Poplar Creek      | 90         | Route 19           | Center | < 20               | < 3 | 18 | 5   | 13,245 | 12 | 911   | < 0.250 | 10 | < 1 | 38  |

### TABLE 16 (Continued): TRACE METALS IN SEDIMENT COLLECTED FROM THE DES PLAINES AND FOX RIVER SYSTEMS DURING 2008

ND = No Data

|                   |      |                    |        |        |          |       |         |             | ~         | ~. )       |      |
|-------------------|------|--------------------|--------|--------|----------|-------|---------|-------------|-----------|------------|------|
|                   |      |                    |        |        |          |       |         |             | (Particle | Size)      |      |
| WATERWAY          | SITE | LOCATIO            | N      | AVS    | SEM      | SEM/  | TOC     | GRAVEL      | SAND      | SILT       | CLAY |
|                   | NO.  |                    |        |        |          | AVS   | _       |             |           |            |      |
|                   |      |                    |        |        | (umoles/ | g)    | (mg/kg) | (%)         | (%)       | (%)        | (%)  |
| Buffalo Creek     | 12   | Lake Cook Road     | Side   | 75     | 0.5      | 0.1   | 23 000  | 25.3        | 66 7      | 5.4        | 27   |
| Buffalo Creek     | 12   | Lake Cook Road     | Center | <0.78  | 0.5      | >0.1  | 25,000  | <i>46</i> 0 | 48 9      | 5.4<br>4.5 | 2.7  |
| Des Plaines River | 12   | Lake Cook Road     | Side   | 22.0   | 1.8      | 0.5   | 43 000  | 14          | 50.2      | 36.4       | 12.1 |
| Des Plaines River | 13   | Lake Cook Road     | Center | <0.78  | 0.4      | >0.1  | 23,000  | 2.9         | 94 4      | 27         | 0.1  |
| Des Plaines River | 17   | Oakton Street      | Side   | 79     | 2.5      | 0.3   | 28,000  | 3.2         | 47.4      | 40.4       | 9.0  |
| Des Plaines River | 17   | Oakton Street      | Center | <0.78  | 0.4      | >0.5  | 13 000  | 23.2        | 77.0      | 0.7        | 0.0  |
| Higgins Creek     | 77   | Elmhurst Road      | Side   | 2.8    | 1.0      | 0.4   | 16.000  | 4.1         | 61.4      | 18.6       | 15.8 |
| Higgins Creek     | 77   | Elmhurst Road      | Center | 18.0   | 1.6      | 0.1   | 33.000  | 6.0         | 61.8      | 20.8       | 11.4 |
| Higgins Creek     | 78   | Wille Road         | Center | < 0.78 | 0.6      | >0.8* | 68,000  | 16.6        | 82.1      | 1.7        | 0.0  |
| Des Plaines River | 19   | Belmont Avenue     | Side   | 17.0   | 6.2      | 0.4   | 30,000  | 0.4         | 20.4      | 52.7       | 26.5 |
| Des Plaines River | 20   | Roosevelt Road     | Side   | 20.0   | 6.9      | 0.4   | 3,900   | 0.0         | 23.0      | 54.3       | 22.7 |
| Des Plaines River | 20   | Roosevelt Road     | Center | < 0.78 | 2.0      | >2.6* | 36,000  | 16.1        | 72.4      | 8.4        | 3.1  |
| Salt Creek        | 79   | Higgins Road       | Side   | 2.6    | 0.9      | 0.3   | 13,000  | 47.4        | 24.3      | 11.1       | 17.2 |
| Salt Creek        | 79   | Higgins Road       | Center | 13.0   | 1.7      | 0.1   | 23,000  | 3.0         | 23.6      | 37.7       | 35.7 |
| Salt Creek        | 80   | Arlington Hts. Rd. | Side   | < 0.78 | 0.5      | >0.6* | 10,000  | 31.3        | 29.6      | 12.9       | 26.3 |
| Salt Creek        | 80   | Arlington Hts. Rd. | Center | < 0.78 | 0.4      | >0.5* | 15,000  | 20.1        | 78.1      | 1.8        | 0.0  |
| Salt Creek        | 18   | Devon Avenue       | Side   | < 0.78 | 0.6      | >0.8* | 10,000  | 26.6        | 62.9      | 6.1        | 4.3  |
| Salt Creek        | 18   | Devon Avenue       | Center | < 0.78 | 0.4      | >0.5* | 5,100   | 10.1        | 86.4      | 3.0        | 0.5  |
| Salt Creek        | 24   | Wolf Road          | Side   | < 0.78 | 4.3      | >5.5* | 28,000  | 1.9         | 42.7      | 42.7       | 12.7 |
| Salt Creek        | 24   | Wolf Road          | Center | < 0.78 | 0.6      | >0.8* | 5,400   | 21.7        | 73.4      | 3.6        | 1.3  |
| Salt Creek        | 109  | Brookfield Ave.    | Side   | < 0.78 | 1.3      | >1.7* | 19,000  | 6.0         | 87.0      | 5.0        | 2.0  |
| Salt Creek        | 109  | Brookfield Ave.    | Center | < 0.78 | 1.0      | >1.3* | 11,000  | 0.5         | 96.5      | 3.4        | 0.0  |

## TABLE 17: ACID VOLATILE SULFIDE, SIMULTANEOUSLY EXTRACTED METALS, TOTAL ORGANIC CARBON, AND PARTICLE SIZE DATA IN SEDIMENT COLLECTED FROM THE DES PLAINES AND FOX RIVER SYSTEMS DURING 2008

|                   |             |                    |        |        |          |             |         |        | (Particle | Size) |      |
|-------------------|-------------|--------------------|--------|--------|----------|-------------|---------|--------|-----------|-------|------|
| WATERWAY          | SITE<br>NO. | LOCATION           |        | AVS    | SEM      | SEM/<br>AVS | TOC     | GRAVEL | SAND      | SILT  | CLAY |
|                   |             |                    |        |        | (umoles/ | g)          | (mg/kg) | (%)    | (%)       | (%)   | (%)  |
| Des Plaines River | 22          | Ogden Avenue       | Side   | 10.0   | 5.7      | 0.6         | 62,000  | 0.5    | 32.5      | 51.1  | 15.9 |
| Des Plaines River | 22          | Ogden Avenue       | Center | < 0.78 | 0.6      | >0.8*       | 22,000  | 37.1   | 61.1      | 1.8   | 0.1  |
| Des Plaines River | 23          | Willow Springs Rd. | Side   | 10.0   | 6.0      | 0.6         | 47,000  | 0.0    | 6.6       | 65.5  | 27.8 |
| Des Plaines River | 23          | Willow Springs Rd. | Center | 3.7    | 4.9      | 1.3         | 25,000  | 1.7    | 30.2      | 43.7  | 24.4 |
| Des Plaines River | 29          | Stephen Street     | Side   | 11.0   | 4.8      | 0.4         | 51,000  | 30.3   | 44.0      | 14.7  | 11.1 |
| Des Plaines River | 29          | Stephen Street     | Center | < 0.78 | 5.6      | >7.2*       | 57,000  | 0.0    | 15.9      | 53.9  | 30.2 |
| Des Plaines River | 91          | Material Ser. Rd.  | Side   | < 0.78 | 0.8      | >1.0*       | 30,000  | 28.0   | 70.6      | 1.4   | 0.1  |
| Des Plaines River | 91          | Material Ser. Rd.  | Center | 2.0    | 1.2      | 0.6         | 24,000  | 7.8    | 87.1      | 4.5   | 0.6  |
| WBDR              | 110         | Springinsguth Rd.  | Side   | 42.0   | 2.3      | 0.1         | 66,000  | 36.7   | 34.2      | 21.1  | 8.0  |
| WBDR              | 110         | Springinsguth Rd.  | Center | 23.0   | 1.8      | 0.1         | 36,000  | 6.2    | 59.4      | 20.3  | 14.1 |
| WBDR              | 89          | Walnut Lane        | Side   | < 0.78 | 0.8      | >1.0*       | 17,000  | 22.9   | 71.8      | 2.9   | 2.3  |
| WBDR              | 89          | Walnut Lane        | Center | < 0.78 | 0.6      | >0.8*       | 12,000  | 26.1   | 70.9      | 2.9   | 0.1  |
| WBDR              | 64          | Lake Street        | Side   | < 0.78 | 0.6      | >0.8*       | 11,000  | 2.7    | 81.3      | 10.0  | 6.0  |
| WBDR              | 64          | Lake Street        | Center | < 0.78 | 0.5      | >0.6*       | 5,000   | 23.5   | 66.0      | 6.4   | 4.1  |
| Poplar Creek      | 90          | Route 19           | Side   | 1.8    | 1.1      | 0.6         | 9,600   | 20.5   | 72.7      | 4.5   | 2.3  |
| Poplar Creek      | 90          | Route 19           | Center | 1.3    | 0.5      | 0.4         | 6,900   | 32.6   | 61.3      | 5.5   | 0.7  |

# TABLE 17 (Continued): ACID VOLATILE SULFIDE, SIMULTANEOUSLY EXTRACTED METALS, TOTAL ORGANIC CARBON, AND PARTICLE SIZE DATA IN SEDIMENT COLLECTED FROM THE DES PLAINES AND FOX RIVER SYSTEMS DURING 2008

\*SEM/AVS calculated using 0.78 as an AVS value.

### TABLE 18: ORGANIC PRIORITY POLLUTANTS DETECTED IN SEDIMENT COLLECTED FROM BUFFALO CREEK AND THE DES PLAINES RIVER DURING 2008

| Compound <sup>1</sup>  | o Creek |           | Des Plaine | Des Plaines River |         |           |
|------------------------|---------|-----------|------------|-------------------|---------|-----------|
|                        | 12 side | 12 center | 13 side    | 13 center         | 17 side | 17 center |
| Accurately and         | ND      | ND        | ND         | ND                | ND      | ND        |
| Acenaphtnene           | ND      | ND        | ND         |                   | ND      |           |
| Anthracene             | ND      | ND        | ND         | ND                |         | ND        |
| Benzo(a)anthracene     | ND      | ND        | 1,530      | ND                | 7,100   | ND        |
| Benzo(a)pyrene         | 403     | 299       | 1,880      | ND                | 8,610   | ND        |
| 3,4-Benzofluoranthene  | 614     | 522       | 3,640      | ND                | 16,200  | 383       |
| Benzo(ghi)perylene     | ND      | ND        | 910        | ND                | 5,500   | ND        |
| Benzo(k)fluoranthene   | ND      | ND        | 1,200      | ND                | 5,800   | ND        |
| Butylbenzyl phthalate  | ND      | ND        | ND         | ND                | ND      | ND        |
| Chrysene               | 437     | 285       | 2,310      | ND                | 10,600  | 282       |
| Dibenzo(a,h)anthracene | ND      | ND        | ND         | ND                | 1,340   | ND        |
| Fluoranthene           | 1,040   | 682       | 5,210      | ND                | 21,000  | 613       |
| Fluorene               | ND      | ND        | ND         | ND                | ND      | ND        |
| Indeno(1,2,3-cd)pyrene | 255     | ND        | 1,120      | ND                | 6,310   | ND        |
| Naphthalene            | ND      | ND        | ND         | ND                | ND      | ND        |
| Phenanthrene           | 531     | 288       | 2,180      | ND                | 9,420   | 304       |
| Pyrene                 | 765     | 534       | 3,880      | ND                | 15,800  | 470       |
| 4,4'-DDT               | ND      | ND        | ND         | ND                | ND      | ND        |
| 4,4'-DDE               | ND      | ND        | ND         | ND                | 32.2    | ND        |
| 4,4'-DDD               | ND      | ND        | ND         | ND                | 49.6    | 18.1      |

<sup>1</sup>Concentrations expressed as  $\mu g/kg dry$  weight. ND = Not Detectable.

| Compound <sup>1</sup>  | Des Plaines River |         |           |         |           |  |  |  |  |  |
|------------------------|-------------------|---------|-----------|---------|-----------|--|--|--|--|--|
| · ·                    | 19 side           | 20 side | 20 center | 22 side | 22 center |  |  |  |  |  |
| Accomentations         | ND                | ND      | ND        | ND      |           |  |  |  |  |  |
| Acciliapitulelle       | ND                | ND      | ND<br>662 | 1 130   |           |  |  |  |  |  |
| Benzo(a)anthracene     | 2 520             | 3 100   | 2 300     | 4 910   | ND        |  |  |  |  |  |
| Benzo(a)pyrene         | 3,500             | 4 220   | 2,300     | 6 2 5 0 | 365       |  |  |  |  |  |
| 3.4-Benzofluoranthene  | 7.320             | 9,950   | 4.560     | 12.800  | 623       |  |  |  |  |  |
| Benzo(ghi)pervlene     | 1,600             | 2,880   | 1,110     | 3,300   | ND        |  |  |  |  |  |
| Benzo(k)fluoranthene   | 2,680             | 3,460   | 1,350     | 4,430   | ND        |  |  |  |  |  |
| Butylbenzyl phthalate  | ND                | ND      | ND        | ND      | ND        |  |  |  |  |  |
| Chrysene               | 4,630             | 6,060   | 3,210     | 8,990   | 413       |  |  |  |  |  |
| Dibenzo(a,h)anthracene | 462               | 819     | 331       | 919     | ND        |  |  |  |  |  |
| Fluoranthene           | 7,350             | 8,110   | 5,560     | 14,000  | 982       |  |  |  |  |  |
| Fluorene               | ND                | ND      | ND        | ND      | ND        |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene | 1,880             | 3,140   | 1,200     | 3,360   | ND        |  |  |  |  |  |
| Naphthalene            | ND                | ND      | ND        | ND      | ND        |  |  |  |  |  |
| Phenanthrene           | 3,010             | 2,780   | 2,200     | 6,230   | 556       |  |  |  |  |  |
| Pyrene                 | 6,030             | 6,090   | 4,360     | 11,000  | 772       |  |  |  |  |  |
| 4,4'-DDT               | 18.8              | 32.4    | 7.8       | 43.1    | ND        |  |  |  |  |  |
| 4,4'-DDE               | 53.2              | 26.2    | ND        | 83.4    | ND        |  |  |  |  |  |
| 4,4'-DDD               | 277               | 85.3    | 32.7      | 162.0   | 9.1       |  |  |  |  |  |

### TABLE 19: ORGANIC PRIORITY POLLUTANTS DETECTED IN SEDIMENTCOLLECTED FROM THE DES PLAINES RIVER DURING 2008

| Compound <sup>1</sup>  | Des Plaines River |           |         |           |         |           |  |  |  |  |
|------------------------|-------------------|-----------|---------|-----------|---------|-----------|--|--|--|--|
| 1                      | 23 side           | 23 center | 29 side | 29 center | 91 side | 91 center |  |  |  |  |
|                        |                   |           |         |           |         |           |  |  |  |  |
| Acenaphthene           | ND                | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Anthracene             | ND                | ND        | ND      | ND        | 578     | ND        |  |  |  |  |
| Benzo(a)anthracene     | 2,870             | 2,400     | 1,210   | 2,780     | 1,760   | ND        |  |  |  |  |
| Benzo(a)pyrene         | 4,300             | 3,400     | 2,080   | 4,640     | 1,970   | ND        |  |  |  |  |
| 3,4-Benzofluoranthene  | 10,800            | 8,570     | 4,930   | 10,700    | 3,020   | 437       |  |  |  |  |
| Benzo(ghi)perylene     | 1,800             | 1,420     | 867     | 2,200     | 1,120   | ND        |  |  |  |  |
| Benzo(k)fluoranthene   | 3,600             | 2,710     | 1,460   | 3,280     | 1,140   | ND        |  |  |  |  |
| Butylbenzyl phthalate  | ND                | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Chrysene               | 5,820             | 4,610     | 2,410   | 5,860     | 1,820   | 254       |  |  |  |  |
| Dibenzo(a,h)anthracene | ND                | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Fluoranthene           | 8,600             | 6,940     | 3,450   | 7,980     | 4,410   | 391       |  |  |  |  |
| Fluorene               | ND                | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Indeno(1,2,3-cd)pyrene | 2,170             | 1,650     | 1,120   | 2,530     | 1,200   | ND        |  |  |  |  |
| Naphthalene            | ND                | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Phenanthrene           | 2,680             | 2,550     | 1,040   | 2,400     | 1,880   | ND        |  |  |  |  |
| Pyrene                 | 6,740             | 5,530     | 2,870   | 6,500     | 3,280   | 330       |  |  |  |  |
| 4,4'-DDT               | ND                | 27.7      | ND      | 25.0      | ND      | ND        |  |  |  |  |
| 4,4'-DDE               | 44.2              | 38.1      | 29.2    | 41.8      | ND      | ND        |  |  |  |  |
| 4,4'-DDD               | 83.3              | 81.3      | 51.5    | 64.5      | ND      | ND        |  |  |  |  |

### TABLE 19 (Continued): ORGANIC PRIORITY POLLUTANTS DETECTED IN SEDIMENT COLLECTED FROM THE DES PLAINES RIVER DURING 2008

<sup>1</sup>Concentrations expressed as  $\mu g/kg dry$  weight. ND = Not Detectable.

| Compound <sup>1</sup>  |         | Higgins Creek | -<br>-    | Poplar Creek |           |  |  |
|------------------------|---------|---------------|-----------|--------------|-----------|--|--|
|                        | 77 side | 77 center     | 78 center | 90 side      | 90 center |  |  |
|                        |         |               |           |              |           |  |  |
| Acenaphthene           | ND      | ND            | 4,010     | ND           | ND        |  |  |
| Anthracene             | ND      | 1,300         | 9,570     | 1,440        | 667       |  |  |
| Benzo(a)anthracene     | 1,240   | 3,470         | 18,000    | 5,400        | 2,340     |  |  |
| Benzo(a)pyrene         | 1,460   | 3,450         | 17,100    | 5,820        | 2,370     |  |  |
| 3,4-Benzofluoranthene  | 2,720   | 6,870         | 22,500    | 9,950        | 4,100     |  |  |
| Benzo(ghi)perylene     | 718     | 1,480         | 8,080     | 2,990        | 1,120     |  |  |
| Benzo(k)fluoranthene   | 1,000   | 2,420         | 10,300    | 3,250        | 1,420     |  |  |
| Butylbenzyl phthalate  | ND      | ND            | 794       | ND           | ND        |  |  |
| Chrysene               | 1,970   | 5,090         | 19,100    | 6,780        | 2,910     |  |  |
| Dibenzo(a,h)anthracene | ND      | 429           | 2,170     | 780          | 310       |  |  |
| Fluoranthene           | 3,970   | 10,600        | 59,700    | 15,200       | 7,000     |  |  |
| Fluorene               | ND      | ND            | 4,800     | 746          | ND        |  |  |
| Indeno(1,2,3-cd)pyrene | 774     | 1,550         | 8,170     | 3,440        | 1,360     |  |  |
| Naphthalene            | ND      | ND            | 692       | ND           | ND        |  |  |
| Phenanthrene           | 2,150   | 5,280         | 54,500    | 9,200        | 3,940     |  |  |
| Pyrene                 | 3,100   | 8,030         | 46,300    | 11,400       | 5,350     |  |  |
| 4,4'-DDT               | ND      | ND            | ND        | ND           | ND        |  |  |
| 4,4'-DDE               | ND      | 13.9          | 8.1       | ND           | ND        |  |  |
| 4,4'-DDD               | 7.0     | 26.2          | ND        | ND           | ND        |  |  |

### TABLE 20: ORGANIC PRIORITY POLLUTANTS DETECTED IN SEDIMENT COLLECTED FROM HIGGINS CREEK AND POPLAR CREEK DURING 2008

<sup>1</sup>Concentrations expressed as  $\mu g/kg dry$  weight. ND = Not Detectable.

| Compound <sup>1</sup>  | Salt Creek |           |         |           |         |           |  |  |  |  |
|------------------------|------------|-----------|---------|-----------|---------|-----------|--|--|--|--|
| · _                    | 79 side    | 79 center | 80 side | 80 center | 18 side | 18 center |  |  |  |  |
|                        |            | ND        |         |           |         |           |  |  |  |  |
| Acenaphthene           | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Anthracene             | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Benzo(a)anthracene     | ND         | 1,070     | ND      | ND        | ND      | ND        |  |  |  |  |
| Benzo(a)pyrene         | ND         | 1,660     | ND      | ND        | ND      | ND        |  |  |  |  |
| 3,4-Benzofluoranthene  | 437        | 4,430     | ND      | ND        | ND      | ND        |  |  |  |  |
| Benzo(ghi)perylene     | ND         | 1,500     | ND      | ND        | ND      | ND        |  |  |  |  |
| Benzo(k)fluoranthene   | ND         | 1,250     | ND      | ND        | ND      | ND        |  |  |  |  |
| Butylbenzyl phthalate  | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Chrysene               | ND         | 2,400     | ND      | ND        | ND      | ND        |  |  |  |  |
| Dibenzo(a,h)anthracene | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Fluoranthene           | 496        | 4,000     | ND      | ND        | ND      | 440       |  |  |  |  |
| Fluorene               | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Indeno(1,2,3-cd)pyrene | ND         | 1,580     | ND      | ND        | ND      | ND        |  |  |  |  |
| Naphthalene            | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| Phenanthrene           | ND         | 1,100     | ND      | ND        | ND      | ND        |  |  |  |  |
| Pyrene                 | 345        | 2,800     | ND      | ND        | ND      | 349       |  |  |  |  |
| 4,4'-DDT               | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| 4,4'-DDE               | ND         | ND        | ND      | ND        | ND      | ND        |  |  |  |  |
| 4,4'-DDD               | ND         | 13.7      | ND      | ND        | ND      | ND        |  |  |  |  |

### TABLE 21: ORGANIC PRIORITY POLLUTANTS DETECTED IN SEDIMENT<br/>COLLECTED FROM SALT CREEK DURING 2008

| Compound <sup>1</sup>  | Salt Creek |           |          |            |  |  |
|------------------------|------------|-----------|----------|------------|--|--|
| - <u>-</u>             | 24 side    | 24 center | 109 side | 109 center |  |  |
| Acenaphthene           | ND         | ND        | ND       | ND         |  |  |
| Anthracene             | ND         | ND        | 1 020    | ND         |  |  |
| Benzo(a)anthracene     | 1.980      | 1.070     | 3.510    | ND         |  |  |
| Benzo(a)pyrene         | 2,600      | 1.110     | 4.150    | ND         |  |  |
| 3.4-Benzofluoranthene  | 5.120      | 1.920     | 7.870    | 434        |  |  |
| Benzo(ghi)pervlene     | 1,280      | 424       | 1,520    | ND         |  |  |
| Benzo(k)fluoranthene   | 1,670      | 550       | 3,080    | ND         |  |  |
| Butylbenzyl phthalate  | ND         | ND        | ND       | ND         |  |  |
| Chrysene               | 3,270      | 1,240     | 6,060    | 420        |  |  |
| Dibenzo(a,h)anthracene | ND         | ND        | 462      | ND         |  |  |
| Fluoranthene           | 6,020      | 2,480     | 12,900   | 1,120      |  |  |
| Fluorene               | ND         | ND        | 612      | ND         |  |  |
| Indeno(1,2,3-cd)pyrene | 1,630      | 584       | 1,740    | ND         |  |  |
| Naphthalene            | ND         | ND        | ND       | ND         |  |  |
| Phenanthrene           | 2,060      | 1,160     | 9,510    | 435        |  |  |
| Pyrene                 | 4,620      | 2,040     | 9,800    | 1,000      |  |  |
| 4,4'-DDT               | 237        | ND        | 32.1     | ND         |  |  |
| 4,4'-DDE               | 65.1       | 9.7       | 56.8     | 27.8       |  |  |
| 4,4'-DDD               | 83.8       | 14.9      | 180      | 159        |  |  |

# TABLE 21 (Continued): ORGANIC PRIORITY POLLUTANTS DETECTED IN SEDIMENT COLLECTED FROM SALT CREEK DURING 2008

<sup>1</sup>Concentrations expressed as  $\mu g/kg dry$  weight. ND = Not Detectable.

| Compound <sup>1</sup>  | West Branch DuPage River |            |         |           |         |           |
|------------------------|--------------------------|------------|---------|-----------|---------|-----------|
|                        | 110 side                 | 110 center | 89 side | 89 center | 64 side | 64 center |
| Acenaphthene           | ND                       | ND         | ND      | ND        | ND      | ND        |
| Anthracene             | ND                       | ND         | ND      | 651       | ND      | ND        |
| Benzo(a)anthracene     | 975                      | 579        | 2.270   | 1.610     | 587     | 465       |
| Benzo(a)pyrene         | 1,330                    | 942        | 2,700   | 1,620     | 622     | 438       |
| 3,4-Benzofluoranthene  | 3,080                    | 1,920      | 5,250   | 3,100     | 1,160   | 732       |
| Benzo(ghi)perylene     | 707                      | 494        | 962     | 704       | 304     | ND        |
| Benzo(k)fluoranthene   | 1,000                    | 645        | 1,870   | 1,220     | 387     | 314       |
| Butylbenzyl phthalate  | ND                       | ND         | 1,730   | ND        | ND      | ND        |
| Chrysene               | 1,680                    | 1,160      | 3,570   | 2,100     | 767     | 527       |
| Dibenzo(a,h)anthracene | ND                       | ND         | ND      | ND        | ND      | ND        |
| Fluoranthene           | 2,920                    | 2,110      | 6,510   | 4,390     | 1,750   | 1,230     |
| Fluorene               | ND                       | ND         | ND      | ND        | ND      | ND        |
| Indeno(1,2,3-cd)pyrene | 905                      | 582        | 1,220   | 835       | 353     | ND        |
| Naphthalene            | ND                       | ND         | ND      | ND        | ND      | ND        |
| Phenanthrene           | 1,090                    | 924        | 2,940   | 2,900     | 748     | 757       |
| Pyrene                 | 2,160                    | 1,560      | 5,070   | 3,280     | 1,240   | 864       |
| 4,4'-DDT               | ND                       | ND         | ND      | ND        | ND      | ND        |
| 4,4'-DDE               | ND                       | ND         | ND      | ND        | 7.9     | ND        |
| 4,4'-DDD               | 15.5                     | 8.4        | ND      | ND        | ND      | ND        |

### TABLE 22: ORGANIC PRIORITY POLLUTANTS DETECTED IN SEDIMENT COLLECTED FROM THE WEST BRANCH DUPAGE RIVER DURING 2008

<sup>1</sup>Concentrations expressed as  $\mu g/kg dry$  weight. ND = Not Detectable.

#### **Sediment Toxicity**

The toxicity data resulting from the *Chironomus tentans* ten-day toxicity tests for each sediment sample collected are presented in <u>Table 23</u>. A significant difference in *Chironomus* survival compared to the control sediment indicates that the collected sediment constitutes an unsuitable habitat for *Chironomus* survival. A significantly lower *Chironomus* dried weight and or *Chironomus* ash-free dried weight compared to the control sediment indicates that the collected sediment constitutes an unsuitable habitat for optimal *Chironomus* growth.

Both side and center samples at Springinsguth Road and the center sample at Walnut Lane on the WBDR exhibited a survival rate significantly lower than the control results (21.5, 1.3, and 50.0 percent, respectively). Side samples at Arlington Heights Road, Brookfield Avenue, and Devon Avenue on Salt Creek were shown to have survival rates significantly lower than the control results (11.3, 41.3, and 42.5 percent, respectively). The center sample at Route 19 on Poplar Creek exhibited a significantly lower survival rate than the control results (65 percent). The side sample at Willow Springs Road and the center sample at Stephen Street on the Des Plaines River were shown to have survival rates significantly different than the control results (13.8, and 47.5 percent, respectively). None of the sites had significantly different ash-free dried weight than the West Bearskin Lake control results.

|                      |                     | LOCATION            |       | (Chironumus tentans 10-Day Test Data)<br>Ash-free |  |  |
|----------------------|---------------------|---------------------|-------|---------------------------------------------------|--|--|
| WATERWAY SIT         | E LOCATIO           |                     |       | Dried Weight                                      |  |  |
| No                   |                     |                     | (%)   | (mg/org)                                          |  |  |
|                      |                     | a: 1 1              |       | 0.54                                              |  |  |
| Buffalo Creek 12     | Lake Cook Road      | Side <sup>1</sup>   | 90.0  | 0.56                                              |  |  |
| Buffalo Creek 12     | Lake Cook Road      | Center              | 83.8  | 0.58                                              |  |  |
| Des Plaines River 13 | Lake Cook Road      | Side <sup>4</sup>   | 81.3  | 0.48                                              |  |  |
| Des Plaines River 13 | Lake Cook Road      | Center <sup>1</sup> | 90.0  | 0.44                                              |  |  |
| Des Plaines River 17 | Oakton Street       | Side <sup>2</sup>   | 77.5  | 0.69                                              |  |  |
| Des Plaines River 17 | Oakton Street       | Center <sup>2</sup> | 73.8  | 0.83                                              |  |  |
| Higgins Creek 77     | Elmhurst Road       | Side                | 78.8  | 0.47                                              |  |  |
| Higgins Creek 77     | Elmhurst Road       | Center <sup>2</sup> | 85.0  | 0.45                                              |  |  |
| Higgins Creek 78     | Wille Road          | Center <sup>2</sup> | 73.8  | 0.95                                              |  |  |
| Des Plaines River 19 | Belmont Avenue      | Side                | 80.0  | 0.36                                              |  |  |
| Des Plaines River 20 | Roosevelt Road      | Side                | 68.8  | 0.61                                              |  |  |
| Des Plaines River 20 | Roosevelt Road      | Center              | 60.0  | 0.55                                              |  |  |
| Salt Creek 79        | Higgins Road        | Side <sup>1</sup>   | 85.0  | 0.46                                              |  |  |
| Salt Creek 79        | Higgins Road        | Center <sup>2</sup> | 73.8  | 0.80                                              |  |  |
| Salt Creek 80        | Arlington Hts. Rd.  | Side <sup>3</sup>   | 11.3* | 0.48                                              |  |  |
| Salt Creek 80        | Arlington Hts. Rd.  | Center <sup>3</sup> | 68.8  | 0.85                                              |  |  |
| Salt Creek 18        | Devon Avenue        | Side <sup>3</sup>   | 42.5* | 1.09                                              |  |  |
| Salt Creek 18        | Devon Avenue        | Center <sup>3</sup> | 68.8  | 1.04                                              |  |  |
| Salt Creek 24        | Wolf Road           | Side <sup>3</sup>   | 61.3  | 1.14                                              |  |  |
| Salt Creek 24        | Wolf Road           | Center <sup>3</sup> | 80.0  | 0.76                                              |  |  |
| Salt Creek 109       | Brookfield Avenue   | Side <sup>3</sup>   | 41.3* | 1.22                                              |  |  |
| Salt Creek 109       | Brookfield Avenue   | Center <sup>3</sup> | 80.0  | 0.79                                              |  |  |
| Des Plaines River 22 | Ogden Avenue        | Side <sup>2</sup>   | 93.8  | 0.82                                              |  |  |
| Des Plaines River 22 | Ogden Avenue        | Center <sup>2</sup> | 86.3  | 0.98                                              |  |  |
| Des Plaines River 23 | Willow Springs Rd.  | Side <sup>3</sup>   | 13.8* | 1.07                                              |  |  |
| Des Plaines River 23 | Willow Springs Rd.  | Center <sup>3</sup> | 58.8  | 0.79                                              |  |  |
| Des Plaines River 29 | Stephen Street      | Side <sup>3</sup>   | 82.2  | 0.60                                              |  |  |
| Des Plaines River 29 | Stephen Street      | Center <sup>3</sup> | 47.5* | 1.05                                              |  |  |
| Des Plaines River 91 | Material Ser. Rd.   | Side <sup>1</sup>   | 83.8  | 0.98                                              |  |  |
| Des Plaines River 91 | Material Ser. Rd.   | Center <sup>2</sup> | 90.0  | 0.61                                              |  |  |
| WBDR 110             | ) Springinsguth Rd. | Side <sup>3</sup>   | 21.5* | 0.39                                              |  |  |
| WBDR 110             | ) Springinsguth Rd  | Center <sup>3</sup> | 1.3*  | 1.11                                              |  |  |
| WBDR 89              | Walnut Lane         | Side <sup>3</sup>   | 70.0  | 0.96                                              |  |  |
| WBDR 89              | Walnut Lane         | Center <sup>3</sup> | 50.0* | 1.38                                              |  |  |

### TABLE 23: TOXICITY DATA FROM SEDIMENT COLLECTED FOR THE AMBIENTWATER QUALITY MONITORING PROGRAM DURING 2008

### TABLE 23 (Continued): TOXICITY DATA FROM SEDIMENT COLLECTED FOR THE AMBIENT WATER QUALITY MONITORING PROGRAM DURING 2008

|              |             | LOCATION    |                     | (Chironumus tentans 10-Day Test Data) |                                      |  |
|--------------|-------------|-------------|---------------------|---------------------------------------|--------------------------------------|--|
| WATERWAY     | SITE<br>No. |             |                     | Survival<br>(%)                       | Ash-free<br>Dried Weight<br>(mg/org) |  |
| WBDR         | 64          | Lake Street | Side <sup>2</sup>   | 70.0                                  | 0.72                                 |  |
| WBDR         | 64          | Lake Street | Center <sup>1</sup> | 75.0                                  | 0.66                                 |  |
| Poplar Creek | 90          | Route 19    | Side <sup>2</sup>   | 82.5                                  | 0.53                                 |  |
| Poplar Creek | 90          | Route 19    | Center <sup>1</sup> | 65.0*                                 | 0.53                                 |  |

.

\* Significantly lower than the West Bearskin Lake control results.
 <sup>1</sup> Trial 3, West Bearskin Lake Control Survival 85.0%, Ash-free Dried Weight 0.59mg/org.
 <sup>2</sup> Trial 2, West Bearskin Lake Control Survival 46.3%, Ash-free Dried Weight 0.47mg/org.
 <sup>3</sup> Trial 1, West Bearskin Lake Control Survival 92.5%, Ash-free Dried Weight 0.34mg/org.

#### REFERENCES

American Public Health Association, American Water Works Association, and Water Environment Federation (publishers). *Standard Methods for the Examination of Water and Wastewater*, 19<sup>th</sup> ed. 1998.

Illinois Environmental Protection Agency, "Illinois Water Quality Report 1994-1995, Volume I," Illinois Environmental Protection Agency Report No. IEPA/BOW/96-060a, September, 1996.

Karr, J.R., K.D. Faush, P.L. Angermeier, P.R. Yant, and I.J. Schlosser, *Assessing Biological Integrity in Running Waters, A Method and Its Rationale*. Special Publication 5, Illinois Natural History Survey, Champaign, Illinois, 1986.

Rankin, E. T. "Analysis of Physical Habitat Quality and Limitations to Waterways in the Chicago Area." Prepared for USEPA Region V, 2004.

Rankin, E. T. "The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application." Ohio Environmental Protection Agency – Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio, 1989.

USEPA Report No. EPA-600-R-99-064, "Methods for Measuring the Toxicity and Bioaccumulation of Sediment – Associated Contaminants with Freshwater Invertebrates," Second Ed. Office of Research and Development. March 2000.

USEPA Report No. EPA-823-B-01-002, "Methods for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analyses." October, 2001.

#### APPENDIX A

.

#### METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO PHYSICAL HABITAT ASSESSMENT

.
## FIGURE A-1: METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO PHYSICAL HABITAT ASSESSMENT

| Date                           |                                        | Station Nu                              | mber                                    |                                         |           |                                          |                                        |
|--------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------|------------------------------------------|----------------------------------------|
| Station Name                   |                                        |                                         | _                                       | Latitude                                |           |                                          |                                        |
| Waterbody                      |                                        |                                         | -                                       | Longitude                               |           |                                          |                                        |
| Assessment Observer(s)         | ······································ |                                         |                                         |                                         |           |                                          |                                        |
| Weather Conditions             | <pre></pre>                            | SUNNY                                   | *************************************** | CLOUDY                                  |           | RAIN                                     | (circle one)                           |
| Stream Order                   |                                        | Assessmen                               | t Location                              | BEGINN                                  | NG        | END                                      | (circle one)                           |
| <b>Assessment Location Fac</b> | ing Upstream                           | *************************************** | ***************************             | LEFT                                    | CENTER    | RIGHT                                    | (circle one)                           |
| Channel Habitat                |                                        |                                         |                                         | POOL                                    | RUN       | RIFFLE                                   | (circle one)                           |
| Water Depth (ft)               |                                        |                                         | Channel                                 | Width (ft)                              | ·····     |                                          |                                        |
| Water Level LOW                | V NORMA                                | L                                       | HIGH                                    |                                         | FLOOD     | ED                                       | (circle one)                           |
| Man-made Structures            | (circle all applic                     | able)                                   | ///=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  |           | ,                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| DAM                            | RIPRAP                                 | BRIDGE                                  |                                         | LEVEE                                   |           | ISLAND                                   |                                        |
|                                | OUTFAL                                 | L                                       | SHEET P                                 | ILING                                   | OTHER     |                                          |                                        |
| Channelization                 | YES                                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  | NO                                      |                                         |           |                                          | (circle one)                           |
| Bank Erosion                   | NONE                                   | SLIGHT                                  | ******                                  | MODERA                                  | ſE        | SEVERE                                   | (circle one)                           |
| Floatable Materials            | YES =                                  | l                                       | NO                                      | **************************************  | (circle   | 0 <b>ne)</b>                             |                                        |
|                                | If YES, d                              | haracterize:                            |                                         |                                         | (circle   | all applicable                           | )                                      |
| STREET                         | LITTER                                 | SANITAR                                 | Y SEWAG                                 | E                                       | VEGE      | TATIVE MA                                | TERIAL                                 |
| Aquatic Vegetation             | YES =                                  | J                                       | NO                                      |                                         | (circle   | 0 <b>ne)</b>                             |                                        |
|                                | If YES, i                              | s vegetation:                           |                                         |                                         | (circle : | all applicable                           | )                                      |
| ROOTED EMERGENT                | ROOTEI                                 | ) SUBMERG                               | ENT                                     | ROOTED                                  | FLOATIN   | IG                                       |                                        |
| ATTACHED ALGAE                 | FLOATT                                 | NG ALGAE                                |                                         | OTHER (                                 | specify)  |                                          |                                        |
| Instream Cover for Fish        | (circle all applica                    | able)                                   | 44228944446664499944468944414           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           | 420 ************************************ | ***********                            |
| AQUATIC VEGE                   | TATION                                 | BOULDEI                                 | RS                                      | BRUSH-DI                                | EBRIS JAN | /IS                                      | LOGS                                   |
| SUBMERGED TR                   | LEE ROOTS                              | SUBMER                                  | GED TERR                                | ESTRIAL V                               | EGETATI   | ON                                       |                                        |
| UNDER CUT BAI                  | NK                                     | ROCK LE                                 | DGE                                     | OTHER (S                                | becify)   | ****                                     |                                        |
| Canopy Cover                   | OPEN                                   | PARTLY                                  | SHADED                                  |                                         | SHADED    |                                          | (circle one)                           |
| Immediate Shore Cover          |                                        | ************************************    | Riparian                                | Land Use                                |           | ,, ,, , , , , , , , , , , , , , , , , ,  |                                        |
| DENUDEI                        | )%                                     |                                         | -                                       | GRA                                     | SSLAND    |                                          | %                                      |
| GRASSES                        | S%                                     |                                         | U                                       | RBAN RESI                               | DENTIAL   |                                          | %                                      |
| SHRUBS                         | S%                                     | URBA                                    | N COMME                                 | RCIAL/IND                               | USTRIAL   |                                          | - %                                    |
| TREES                          | s%                                     |                                         |                                         | W                                       | ETLAND    |                                          | - %                                    |
|                                |                                        |                                         |                                         | D CI                                    | FOREST    |                                          | - 70                                   |
| OTHER (Specify)                | 0/2                                    | OTHER (S                                | necify)                                 | KO                                      | w CROPS   |                                          | - %                                    |
|                                | /0                                     |                                         | peenyj                                  |                                         |           |                                          | - / 0                                  |

## FIGURE A-1 (Continued): METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO PHYSICAL HABITAT ASSESSMENT

|                            |                  |                                        | Station Number     |           |              |  |  |
|----------------------------|------------------|----------------------------------------|--------------------|-----------|--------------|--|--|
| Sediment Composition       | Plant Debris     |                                        |                    |           | %            |  |  |
| •                          | Clay             |                                        |                    |           | %            |  |  |
|                            | Inorganic Sil    | t                                      |                    |           | %            |  |  |
|                            | Organic Sluc     | lge                                    |                    |           | %            |  |  |
|                            | Sånd (0.06 n     | nm to 2 mm diameter)                   | · · · ·            |           | %            |  |  |
|                            | Gravel (>2 n     | nm to 64 mm diameter)                  |                    |           | %            |  |  |
|                            | Cobble (>64      | mm to 256 mm diameter)                 |                    |           | %            |  |  |
|                            | Boulder (>2      | 56 mm diameter)                        |                    |           | %            |  |  |
|                            | Bedrock or (     | Concrete                               |                    |           | %            |  |  |
| Sediment Color             |                  |                                        | Sediment Odor      |           |              |  |  |
| Oil in Sediment            | NONE             | LIGHT                                  | MODERATE           | HEAVY     | (circle one) |  |  |
| Embeddedness               | NONE             | NORMAL                                 | MODERATE           | EXTENSIVE | (circle one) |  |  |
| Sinuosity                  | NONE             | LOW                                    | MODERATE           | HIGH      | (circle one) |  |  |
| Depth of Fines (In feet us | ing 1 inch diame | eter probe)                            |                    |           |              |  |  |
| Photo Numbers              | Looking Upst     | ream                                   | Looking Downstream | m         |              |  |  |
| Site Location/Map          | (Draw a mag      | of the site and indicate t             | he area assessed)  |           |              |  |  |
| -                          |                  |                                        |                    |           |              |  |  |
|                            |                  |                                        |                    |           |              |  |  |
|                            |                  |                                        |                    |           |              |  |  |
|                            |                  |                                        |                    |           |              |  |  |
|                            |                  |                                        |                    |           |              |  |  |
|                            |                  |                                        |                    |           |              |  |  |
|                            |                  |                                        |                    |           |              |  |  |
|                            |                  |                                        |                    |           |              |  |  |
| Additional Demarks         |                  |                                        |                    |           |              |  |  |
| Augitional Actual NS       |                  |                                        |                    |           |              |  |  |
|                            |                  | <u></u>                                |                    |           | <u></u>      |  |  |
|                            |                  | ······································ |                    |           | <u></u>      |  |  |
|                            |                  |                                        |                    | <b></b>   | . <u></u>    |  |  |
| <u></u>                    |                  |                                        |                    | <u>.</u>  | <u></u>      |  |  |
|                            |                  |                                        |                    |           | <del> </del> |  |  |
|                            | <u> </u>         |                                        |                    |           |              |  |  |

(Complete both sides of page)

#### APPENDIX B

### NUMBER OF FISH COLLECTED FROM EACH STATION

.

#### TABLE B-1: NUMBER OF FISH COLLECTED FROM EACH STATION ON THE NORTH SHORE CHANNEL, THE DEEP-DRAFT PORTION OF THE NORTH BRANCH CHICAGO RIVER, CHICAGO SANITARY AND SHIP CANAL, CALUMET-SAG CHANNEL, LITTLE CALUMET RIVER, AND CALUMET RIVER DURING 2008

| Fish Species or<br>Hybrid (x) | North Shore<br>Channel<br>Station<br>No. 36<br>Touhy<br>Avenue | North Branch<br>Chicago River<br>Station<br>No. 46<br>Grand<br>Avenue | Chicago<br>Station<br>No. 75<br>Cicero<br>Avenue | Sanitary and<br>Station<br>No. 41<br>Harlem<br>Avenue | Ship Canal<br>Station<br>No. 92<br>Lockport<br>(16th Street) | Cal-Sag<br><u>Channel</u><br>Station<br>No. 59<br>Cicero<br>Avenue | Little Calumet<br><u>River</u><br>Station<br>No. 76<br>Halsted<br>Street | Calumet<br><u>River</u><br>Station<br>No. 55<br>130 <sup>th</sup><br>Street |
|-------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Gizzard shad                  | 8                                                              | 37                                                                    | 2                                                | 52                                                    | 118                                                          | 54                                                                 | 8                                                                        | 91                                                                          |
| Chinook salmon                | 1                                                              | 0                                                                     | Ō                                                | 0                                                     | 0                                                            | 0                                                                  | 1                                                                        | 0                                                                           |
| Northern pike                 | 0                                                              | 0                                                                     | 0                                                | 0                                                     | 0                                                            | 0                                                                  | 0                                                                        | 1                                                                           |
| Goldfish                      | 0                                                              | 0                                                                     | 1                                                | 2                                                     | 0                                                            | 0                                                                  | 1                                                                        | 0                                                                           |
| Common carp                   | 13                                                             | 7                                                                     | 21                                               | 1                                                     | 3                                                            | 8                                                                  | 16                                                                       | 10                                                                          |
| Common carp x goldfish        | 1                                                              | 0                                                                     | 0                                                | 0                                                     | 0                                                            | 0                                                                  | 0                                                                        | 0                                                                           |
| Golden shiner                 | • 2                                                            | 0                                                                     | 0                                                | 0                                                     | 0                                                            | 0                                                                  | 0                                                                        | 2                                                                           |
| Emerald shiner                | 0                                                              | 0                                                                     | 1                                                | 6                                                     | 25                                                           | 0                                                                  | 4                                                                        | 110                                                                         |
| Spotfin shiner                | 1                                                              | 0                                                                     | 0                                                | 4                                                     | 0                                                            | : <b>0</b>                                                         | 0                                                                        | 0                                                                           |
| Bluntnose minnow              | 0                                                              | 2                                                                     | 3                                                | 41                                                    | 14                                                           | • 0                                                                | 2                                                                        | 3                                                                           |
| Fathead minnow                | 0                                                              | 0                                                                     | 0                                                | 0                                                     | 0                                                            | 0                                                                  | 3                                                                        | 0                                                                           |
| White sucker                  | 1                                                              | 0                                                                     | 0                                                | 0                                                     | 0                                                            | 0                                                                  | 1                                                                        | 0                                                                           |
| Channel catfish               | 1                                                              | 0                                                                     | 1                                                | 0                                                     | 2                                                            | 0                                                                  | 0                                                                        | 0                                                                           |
| Yellow bullhead               | 0                                                              | 0                                                                     | 8                                                | 4                                                     | 1                                                            | 0                                                                  | 0                                                                        | 0                                                                           |
| Mosquitofish                  | 0                                                              | 0                                                                     | 0                                                | 2                                                     | 0                                                            | 0                                                                  | 0                                                                        | 0                                                                           |
| Brook silverside              | 0                                                              | 0                                                                     | 0                                                | 0                                                     | 0                                                            | 0                                                                  | 0                                                                        | 5                                                                           |
| White perch                   | 0                                                              | 0                                                                     | 0                                                | 1                                                     | 0                                                            | 0                                                                  | 0                                                                        | 0                                                                           |

### TABLE B-1 (Continued): NUMBER OF FISH COLLECTED FROM EACH STATION ON THE NORTH SHORE CHANNEL, THE DEEP-DRAFT PORTION OF THE NORTH BRANCH CHICAGO RIVER, CHICAGO SANITARY AND SHIP CANAL, CALUMET-SAG CHANNEL, LITTLE CALUMET RIVER, AND CALUMET RIVER DURING 2008

| Fish Species on      | North Shore<br><u>Channel</u><br>Station<br>No. 36 | North Branch<br>Chicago River<br>Station<br>No. 46 | <u>Chicago</u><br>Station<br>No. 75 | Sanitary and<br>Station<br>No. 41 | l Ship Canal<br>Station<br>No. 92 | Cal-Sag<br>Channel<br>Station<br>No. 59 | Little Calumet<br><u>River</u><br>Station<br>No. 76<br>Heleted | Calumet<br><u>River</u><br>Station<br>No. 55 |
|----------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------|
| Hybrid (x)           | Avenue                                             | Avenue                                             | Avenue                              | Avenue                            | (16th Street)                     | Avenue                                  | Street                                                         | Street                                       |
| Rock bass            | 4                                                  | 0                                                  | 0                                   | 0                                 | 0                                 | 0                                       | 0                                                              | 4                                            |
| Green sunfish        | 0                                                  | 0                                                  | 5                                   | 5                                 | 0                                 | 1                                       | 3                                                              | 1                                            |
| Pumpkinseed          | 12                                                 | 1                                                  | 10                                  | 64                                | 4                                 | 0                                       | 1                                                              | 2                                            |
| Bluegill             | 9                                                  | 3                                                  | 5                                   | 4                                 | 0                                 | 0                                       | 0                                                              | 0                                            |
| Green sunfish x      |                                                    |                                                    |                                     |                                   |                                   |                                         |                                                                |                                              |
| Bluegill             | 0                                                  | 0                                                  | 0                                   | 0                                 | 1                                 | 0                                       | 0                                                              | 0                                            |
| Largemouth bass      | 12                                                 | 9                                                  | 1                                   | 0                                 | 2                                 | 3                                       | 4                                                              | 12                                           |
| Smallmouth bass      | 0                                                  | 0                                                  | 0                                   | 0                                 | 0                                 | 0                                       | 0                                                              | 2                                            |
| White crappie        | 1                                                  | 0                                                  | 0                                   | 0                                 | 0                                 | 0                                       | 0                                                              | 0                                            |
| Black crappie        | 2                                                  | 0                                                  | 0                                   | 0                                 | 0                                 | 0                                       | 0                                                              | 0                                            |
| Yellow perch         | 0                                                  | 0                                                  | 0                                   | 0                                 | 0                                 | 0                                       | 1                                                              | 11                                           |
| Freshwater drum      | 0                                                  | 0                                                  | 0                                   | 0                                 | 1                                 | 0                                       | 0                                                              | 0                                            |
| Total Number of Fish | 68                                                 | 59                                                 | 58                                  | 186                               | 171                               | 66                                      | 45                                                             | 254                                          |

|                               | Des Plaines River                      |                                       |                                        |                                        |                                      |                                             |                                        |                                               |  |  |  |
|-------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------------------|--|--|--|
| Fish Species or<br>Hybrid (x) | Station<br>No. 13<br>Lake-Cook<br>Road | Station<br>No. 17<br>Oakton<br>Street | Station<br>No. 19<br>Belmont<br>Avenue | Station<br>No. 20<br>Roosevelt<br>Road | Station<br>No. 22<br>Ogden<br>Avenue | Station<br>No. 23<br>Willow Springs<br>Road | Station<br>No. 29<br>Stephen<br>Street | Station<br>No. 91<br>Material Service<br>Road |  |  |  |
| Gizzard shad                  | 0                                      | 0                                     | 0                                      | 0                                      | 0                                    | 9                                           | 0                                      | 0                                             |  |  |  |
| Central mudminnow             | 0                                      | 0                                     | 0                                      | 0                                      | 0                                    | 0                                           | 0                                      | 0                                             |  |  |  |
| Northern pike                 | 0                                      | 5                                     | 1                                      | 1                                      | 0                                    | 1                                           | 0                                      | 1                                             |  |  |  |
| Common carp                   | 0                                      | 2                                     | 2                                      | 2                                      | 1                                    | 4                                           | 1                                      | 0                                             |  |  |  |
| Common carp x                 |                                        |                                       | _                                      |                                        |                                      |                                             |                                        | 0                                             |  |  |  |
| Goldfish                      | 0                                      | 0                                     | 0                                      | 1                                      | 0                                    | 0                                           | 0                                      |                                               |  |  |  |
| Hornyhead chub                | 0                                      | 0                                     | Ō                                      | 0                                      | 17                                   | 0                                           | 0                                      | 0                                             |  |  |  |
| Golden shiner                 | 0                                      | 0                                     | Ō                                      | 0                                      | 0                                    | 0                                           | 23                                     | 0                                             |  |  |  |
| Spottail shiner               | 0                                      | 0                                     | 0                                      | 0                                      | 0                                    | 0                                           | 0                                      | 0                                             |  |  |  |
| Spotfin shiner                | 13                                     | 1                                     | 0                                      | 0                                      | 0                                    | 2                                           | 17                                     | 0                                             |  |  |  |
| Sand shiner                   | 0                                      | 0                                     | 0                                      | 0                                      | • 7                                  | 0                                           | 0                                      | 0                                             |  |  |  |
| Bluntnose minnow              | 2                                      | 0                                     | 0                                      | 0                                      | 34                                   | 0                                           | 30                                     | 17                                            |  |  |  |
| Fathead minnow                | 0                                      | 0                                     | 0                                      | 0                                      | 0                                    | 0                                           | 2                                      | 0                                             |  |  |  |
| Creek chub                    | 0                                      | 0                                     | 1                                      | 0                                      | 5                                    | 0                                           | 0                                      | 0                                             |  |  |  |
| White sucker                  | 0                                      | 0                                     | · 2                                    | 0                                      | 1                                    | 0                                           | 0                                      | 0                                             |  |  |  |
| Spotted sucker                | 0                                      | 2                                     | 0                                      | 0                                      | 0                                    | 0                                           | 0                                      | 0                                             |  |  |  |
| Oriental weatherfish          | 0                                      | 0                                     | 0                                      | 0                                      | 8                                    | 0                                           | 2                                      | 2                                             |  |  |  |
| Yellow bullhead               | 3                                      | 1                                     | 0                                      | 0                                      | 0                                    | 0                                           | 1                                      | 6                                             |  |  |  |
| Tadpole madtom                | 1                                      | 0                                     | 0                                      | 0                                      | 1                                    | 0                                           | 0                                      | 1                                             |  |  |  |
| Blackstripe topminnow         | 84                                     | 0                                     | 0                                      | 1                                      | 2                                    | 0                                           | 41                                     | 10                                            |  |  |  |
| Mosquitofish                  | 0                                      | 0                                     | 0                                      | 0                                      | 0                                    | 0                                           | 17                                     | 13                                            |  |  |  |

# TABLE B-2: NUMBER OF FISH COLLECTED FROM EACH STATION ON THE DES PLAINES RIVER DURING 2008

|                               | Des Plaines River                      |                                       |                                        |                                        |                                      |                                             |                                        |                                               |  |  |  |
|-------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------------------|--|--|--|
| Fish Species or<br>Hybrid (x) | Station<br>No. 13<br>Lake-Cook<br>Road | Station<br>No. 17<br>Oakton<br>Street | Station<br>No. 19<br>Belmont<br>Avenue | Station<br>No. 20<br>Roosevelt<br>Road | Station<br>No. 22<br>Ogden<br>Avenue | Station<br>No. 23<br>Willow Springs<br>Road | Station<br>No. 29<br>Stephen<br>Street | Station<br>No. 91<br>Material Service<br>Road |  |  |  |
| Rock bass                     | 1                                      | 0                                     | 0                                      | 0                                      | 0                                    | 1                                           | 0                                      | 0                                             |  |  |  |
| Green sunfish                 | 86                                     | 5                                     | 6                                      | 0                                      | 12                                   | 1                                           | 10                                     | 2                                             |  |  |  |
| Pumpkinseed                   | 0                                      | 0                                     | Ō                                      | 0                                      | 2                                    | 0                                           | 0                                      | 0                                             |  |  |  |
| Orangespotted sunfish         | 0                                      | 0                                     | 0                                      | 0                                      | 2                                    | 1                                           | 2                                      | 0                                             |  |  |  |
| Bluegill                      | 17                                     | 1                                     | 0                                      | 0                                      | 9                                    | 1                                           | 23                                     | 1                                             |  |  |  |
| Largemouth bass               | 3                                      | 0                                     | 1                                      | 0                                      | 2                                    | 2                                           | 3                                      | 1                                             |  |  |  |
| Black crappie                 | 1                                      | 4                                     | 0                                      | 0                                      | 0                                    | 1                                           | 4                                      | 0                                             |  |  |  |
| Green sunfish x Bluegill      | 2                                      | 0                                     | 0                                      | 0                                      | 1                                    | 0                                           | 0                                      | 0                                             |  |  |  |
| Johnny darter                 | 1                                      | 0                                     | 0                                      | 0                                      | 5                                    | 0                                           | 0                                      | 4                                             |  |  |  |
| Blackside darter              | 0                                      | 0                                     | 0                                      | 0                                      | 0                                    | 0                                           | 0                                      | 2                                             |  |  |  |
| Walleye                       | 0                                      | 0                                     | 0                                      | 0                                      | 0                                    | 1                                           | 0                                      | 0                                             |  |  |  |
| Round goby                    | 0                                      | 0                                     | 0                                      | 0                                      | 8                                    | 0                                           | 0                                      | 12                                            |  |  |  |
| Total Number of Fish          | 214                                    | 21                                    | 13                                     | 5                                      | 117                                  | 24                                          | 176                                    | 72                                            |  |  |  |

TABLE B-2 (Continued): NUMBER OF FISH COLLECTED FROM EACH STATION ON THE DES PLAINES RIVER DURING 2008

.

|                       |         | Salt              | Creek   |         |            | Higgins  | Creek   | Buffalo Creek |
|-----------------------|---------|-------------------|---------|---------|------------|----------|---------|---------------|
|                       | Station | Station           | Station | Station | Station    | Station  | Station | Station       |
|                       | No. 79  | No. 80            | No. 18  | No. 24  | No. 109    | No. 77   | No. 78  | No. 12        |
| Fish Species or       | Higgins | Arlington Heights | Devon   | Wolf    | Brookfield | Elmhurst | Wille   | Lake-Cook     |
| Hybrid (x)            | Road    | Road              | Avenue  | Road    | Avenue     | Road     | Road    | Road          |
| Gizzard shad          | 1       | 6                 | 0       | 0       | 0          | 0        | 0       | 0             |
| Common carp           | 4       | 13                | 0       | 1       | 0          | 0        | 0       | 0             |
| Goldfish              | 0       | 0.                | 0       | 0       | 0          | 1        | 0       | 0             |
| Hornyhead chub        | 0       | 0                 | 0       | 2       | 2          | 0        | 0       | 0             |
| Golden shiner         | 1       | 0                 | 0       | 0       | 0          | 0        | 0       | 1             |
| Bigmouth shiner       | 0       | 0                 | 0       | 0       | 22         | 0        | 0       | 0             |
| Spotfin shiner        | 0       | 0                 | 0       | 2       | 1          | 0        | 0       | 0             |
| Sand shiner           | 0       | 0                 | 0       | 0       | 2          | 0        | 0       | 0             |
| Bluntnose minnow      | 0       | 0                 | 0       | 7       | 5          | 56       | 1       | 0             |
| Fathead minnow        | 0       | 0                 | 0       | 0       | 2          | 23       | 14      | 8             |
| Creek chub            | 0       | 0                 | 0       | 5       | 3          | 0        | 0       | 9             |
| White sucker          | 0       | 0                 | 0       | 1       | 0          | 0        | 1       | 1             |
| Yellow bullhead       | 0       | 0                 | 1       | 1       | 3          | 0        | 2       | 10            |
| Blackstripe topminnow | 0       | 0                 | 1       | 2       | 0          | 0        | 0       | 2             |
| Green sunfish         | 3       | 1                 | 3       | 1       | 0          | 27       | 2       | 21            |
| Pumpkinseed           | 13      | 0                 | 0       | 0       | 0          | 0        | 0       | 0             |
| Orangespotted sunfish | 1       | 6                 | 0       | 0       | 0          | 0        | 0       | 0             |
| Bluegill              | 56      | 18                | 1       | 1       | 1          | 0        | 0       | 38            |
| Largemouth bass       | 1       | 0                 | 0       | 0       | 0          | 0        | 0       | 4             |
| Black crappie         | 3       | 2                 | 0       | 0       | 0          | 0        | 0       | 1             |
| Johnny darter         | 0       | 0                 | 0       | 0       | 1          | 0        | 0       | 0             |
| Walleye               | 0       | 6                 | 0       | 0       | 0          | 0        | 0       | 0             |
| Total Number of Fish  | 83      | 52                | 6       | 23      | 42         | 107      | 20      | 95            |

## TABLE B-3: NUMBER OF FISH COLLECTED FROM EACH STATION ON SALT, HIGGINS, AND BUFFALO CREEKS DURING 2008

|                                          | North Branch Chicago<br>River      | West Br                                     | anch DuPage                         | River                            | Poplar Creek                  |
|------------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------|----------------------------------|-------------------------------|
| Fish Species or<br>Hybrid (x)            | Station<br>No. 96<br>Albany Avenue | Station<br>No. 110<br>Springinsguth<br>Road | Station<br>No. 89<br>Walnut<br>Lane | Station<br>No. 64<br>Lake Street | Station<br>No. 90<br>Route 19 |
| Common carp                              | 1                                  | 0                                           | . 0                                 | 2                                | 0                             |
| Hornyhead chub                           | 0                                  | 0                                           | 0                                   | 0                                | 3                             |
| Common shiner                            | 0                                  | 0                                           | 0                                   | . 0                              | 2                             |
| Spotfin shiner                           | 0                                  | 0                                           | 0                                   | 2                                | 0                             |
| Bluntnose minnow                         | . 0                                | 0                                           | 0                                   | 4                                | 1                             |
| Fathead minnow                           | 28                                 | 0                                           | 0                                   | 0                                | 0                             |
| Creek chub                               | 0                                  | 0                                           | 0                                   | 0                                | 2                             |
| White sucker                             | 5                                  | 0                                           | 0                                   | 6                                | 0                             |
| Yellow bullhead                          | 0                                  | 0                                           | 3                                   | 3                                | 3                             |
| Blackstripe topminnow                    | 3                                  | 0                                           | 0                                   | 0                                | 0                             |
| Green sunfish                            | 15                                 | 0                                           | 42                                  | 67                               | 5                             |
| Orangespotted sunfish                    | 0                                  | 0                                           | 0                                   | 1                                | 0                             |
| Bluegill                                 | 0                                  | 3                                           | 4                                   | 4                                | 1                             |
| Fantail darter                           | 0                                  | 0                                           | 0                                   | 0                                | 1                             |
| Johnny darter                            | 0                                  | 0                                           | 0                                   | 0                                | 2                             |
| Green sunfish x<br>Orangespotted sunfish | 0                                  | 0                                           | 0                                   | 1                                | 0                             |
| Total number of Fish                     | 52                                 | 3                                           | 49                                  | 90                               | 20                            |

## TABLE B-4: NUMBER OF FISH COLLECTED FROM EACH STATION ON WADEABLE PORTION OF THE NORTH BRANCH OF THE CHICAGO RIVER AND THE WEST BRANCH OF THE DUPAGE RIVER AND POPLAR CREEK DURING 2008