

Metropolitan Water Reclamation District of Greater Chicago

MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 10-45

HARLEM AVENUE SOLIDS MANAGEMENT AREA

MONITORING REPORT FOR

SECOND QUARTER 2010

AUGUST 2010

Metropolitan Water Reclamation District of Greater Chicago

100 East Erie Street

Chicago, Illinois 60611-3154

312.751.5190

Board of Commissioners
Terrence J. O'Brien
President
Kathleen Therese Meany
Vice President
Gloria Alitto Majewski
Chairman of Finance
Frank Avila
Patricia Horton
Barbara J. McGowan
Cynthia M. Santos
Debra Shore
Mariyana T. Spyropoulos

Louis Kollias, P.E., BCEE

Director of Monitoring and Research louis.kollias@mwrd.org

August 20, 2010

Mr. S. Alan Keller, P.E. Manager, Permit Section Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

Dear Mr. Keller:

Subject: Harlem Avenue Solids Management Area - Stickney Water Reclamation Plant, Illinois Environmental Protection Agency Permit No. 2009-AO-2715-1, Monitoring Report for April, May, and June 2010

The attached five tables contain the monitoring data for the Harlem Avenue Solids Management Area for April, May, and June 2010 as required by Illinois Environmental Protection Agency (IEPA) Operating Permit No. 2009-AO-2715-1.

The data reported are as follows:

- <u>Table 1</u>, Analysis of Water from Lysimeters L-1N1 through L-3N at the Harlem Avenue Solids Management Area Sampled on April 7, 2010
- <u>Table 2</u>, Analysis of Monthly Composited Biosolids Placed in the Harlem Avenue Solids Management Drying Area During April 2010
- <u>Table 3</u>, Analysis of Monthly Composited Biosolids Placed in the Harlem Avenue Solids Management Drying Area During May 2010
- <u>Table 4</u>, Analysis of Monthly Composited Biosolids Placed in the Harlem Avenue Solids Management Drying Area During June 2010

Subject: Harlem Avenue Solids Management Area - Stickney Water Reclamation Plant, Illinois Environmental Protection Agency Permit No. 2009-AO-2715-1, Monitoring Report for April, May, and June 2010

<u>Table 5</u>, Analysis of Monthly Composited Processed Digested Biosolids Removed from the Harlem Avenue Solids Management Drying Area During April 2010

Two new lysimeters, L-2N and L-3N, were installed at this site in September 2008 as replacements for L-2 and L-3, respectively. By a letter dated June 10, 2010, the IEPA approved termination of monitoring using the old lysimeters. Data for these lysimeters will not be included in future quarterly reports. Biosolids were placed in the solids drying area during April, May, and June and removed from the site during April 2010.

Very truly yours,

Louis Kollias Director Monitoring and Research

LK:PL:kq
Attachments
cc w/att: Mr. Sulski, IEPA
Records Unit, IEPA
Granato
O'Connor

TABLE 1: ANALYSIS OF WATER FROM LYSIMETERS L-1N1 THROUGH L-3N AT THE HARLEM AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON APRIL 7, 2010

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			J	Lysimeter No	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Unit			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pH^1		7.9	7.9	7.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EC	mS/m	228	337	347
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total Dissolved Solids	mg/L	1,918	3,220	3,988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total Dissolved Organic Carbon	,,	40	5	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,,	101	203	59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SO_4^{=}$,,	14	1,388	1,920
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TKN	,,	9	0.6	0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NH_3 - N	,,	7	< 0.1	< 0.1
Alkalinity as $CaCO_3$ " 1,212 504 507 Al " 0.062 0.092 0.101 Ca " 314 564 718 Cd " < 0.003	$NO_2 + NO_3$ -N	,,	0.14	4.9	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total P	,,	0.14	< 0.10	< 0.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Alkalinity as CaCO ₃	,,	1,212	504	507
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al	,,	0.062	0.092	0.101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca	,,	314	564	718
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd	,,	< 0.003	< 0.003	< 0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr	,,	< 0.003	< 0.003	< 0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu	,,	< 0.008	< 0.008	< 0.008
K mg/L 4 0.4 1 Mg " 184 145 203 Mn " 0.376 0.498 2.88 Na " 45 87 25 Ni " < 0.004 < 0.004 0.008 Pb " < 0.020 < 0.020 < 0.020	Fe	,,	10.8	< 0.025	< 0.025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg	μ g/L	< 0.20	< 0.20	< 0.20
Mg " 184 145 203 Mn " 0.376 0.498 2.88 Na " 45 87 25 Ni " < 0.004	_		4	0.4	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg	=	184	145	203
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	,,	0.376	0.498	2.88
Ni " < 0.004	Na	,,	45	87	25
Pb $^{"}$ < 0.020 < 0.020 < 0.020		,,	< 0.004	< 0.004	0.008
		,,			
	Zn	,,			

TABLE 1: (Continued) ANALYSIS OF WATER FROM LYSIMETERS L-1N1 THROUGH L-3N AT THE HARLEM AVENUE SOLIDS MANAGEMENT AREA SAMPLED ON APRIL 7, 2010

		Ly	vsimeter No.
Parameter	Unit	L-3	L-3N
pH^1		7.9	7.9
EC	mS/m	210	160
Total Dissolved Solids	mg/L	1,732	1,508
Total Dissolved Organic Carbon	,,	6	8
Cl ⁻	,,	130	158
$SO_4^{=}$,,	273	214
TKN	,,	< 0.5	5 2
NH ₃ -N	,,	< 0.1	
$NO_2 + NO_3 - N$,,	0.8	
Total P	,,	< 0.1	
Alkalinity as CaCO ₃	,,	872	636
			0.54
Al	,,		0.054
Ca	,,	311	252
Cd	,,	< 0.0	
Cr	,,	< 0.0	
Cu	,,	< 0.0	0.008 < 0.008
Fe	,,	0.4	120 14.6
Hg	μ g/L	< 0.2	< 0.20
K	mg/L	1	1
Mg	,,	125	88.2
Mn	,,	1.8	0.689
Na	,,	57	65
Ni	,,	< 0.0	
Pb	,,	< 0.0	
Zn	,,	< 0.0	

¹pH analyzed beyond recommended holding time of 15 minutes.

TABLE 2: ANALYSIS OF MONTHLY COMPOSITED BIOSOLIDS PLACED IN THE HARLEM AVENUE SOLIDS MANAGEMENT DRYING AREA DURING APRIL 2010

Parameter	Unit	Concentration ¹
pH Total Solids Total Volatile Solids ² TKN NH ₃ -N	% ,, mg/kg ,,	7.9 23.2 46.5 44,128 9,402

¹Values are the means of five samples.

²Total volatile solids as a percentage of total solids.

TABLE 3: ANALYSIS OF MONTHLY COMPOSITED BIOSOLIDS PLACED IN THE HARLEM AVENUE SOLIDS MANAGEMENT DRYING AREA **DURING MAY 2010**

Parameter	Unit	Concentration ¹
pH Total Solids Total Volatile Solids ² TKN NH ₃ -N	% ,, mg/kg ,,	8.3 25.0 52.0 42,701 6,325

¹Values are for one sample.
²Total volatile solids as a percentage of total solids.

TABLE 4: ANALYSIS OF MONTHLY COMPOSITED BIOSOLIDS PLACED IN THE HARLEM AVENUE SOLIDS MANAGEMENT DRYING AREA DURING JUNE 2010

Unit	Concentration ¹
	7.9
%	25.9
,,	48.5
mg/kg	27,335
"	3,157
	% ,, mg/kg

¹Values are for one sample.
²Total volatile solids as a percentage of total solids.

TABLE 5: ANALYSIS OF MONTHLY COMPOSITED PROCESSED DIGESTED BIOSOLIDS REMOVED FROM THE HARLEM AVENUE SOLIDS MANAGEMENT DRYING AREA DURING APRIL 2010

Parameter	Unit	Concentration ¹
рН		7.6
Total Solids	%	30.0
Total Volatile Solids ²	,,	63.2
TKN	mg/kg	53,384
NH ₃ -N	,,	8,434
Total P	"	26,839
Al	,,	6,944
As	,,	10
Ca	,,	32,576
Cd	,,	2
Cr	"	86
Cu	"	649
Fe	,,	29,844
Hg	,,	1.4
K	,,	1,613
Mg	"	6,491
Mn	,,	739
Mo	,,	14
Na	,,	961
Ni	,,	63
Pb	,,	43
Se	"	20
Zn	"	694

¹Values are for one sample.

²Total volatile solids as a percentage of total solids.