

Metropolitan Water Reclamation District of Greater Chicago

## MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 10-08

CALUMET EAST SOLIDS MANAGEMENT AREA

MONITORING REPORT FOR

FOURTH QUARTER 2009

FEBRUARY 2010

## Metropolitan Water Reclamation District of Greater Chicago

100 East Erie Street

Chicago, Illinois 60611-3154

312.751.5190

Terrence J. O'Brien President
Kathleen Therese Meany Vice President
Gloria Alitto Majewski Chairman of Finance
Frank Avila
Patricia Horton
Barbara J. McGowan
Cynthia M. Santos
Debra Shore
Mariyana T. Spyropoulos

**Board of Commissioners** 

## Louis Kollias, P.E., BCEE

Director of Monitoring and Research louis.kollias@mwrd.org

February 26, 2010

Mr. S. Alan Keller, P.E. Manager, Permit Section Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794 – 9276

Dear Mr. Keller:

Subject: Calumet East Solids Management Area - Calumet Water Reclamation Plant, Illinois Environmental Protection Agency Permit No. 2005-AO-4281-2, Monitoring Report for October, November, and December 2009

The attached five tables contain the monitoring data for the Calumet East Solids Management Area for October, November, and December 2009 as required by Illinois Environmental Protection Agency (IEPA) Operating Permit No. 2005-AO-4281-2.

The data reported are as follows:

- <u>Table 1</u>, Analysis of Water from Lysimeters L-1N through L-6N at the Calumet East Solids Management Area Sampled on October 14, 2009
- <u>Table 2</u>, Analysis of Monthly Composited Digested Biosolids Placed in the Calumet East Solids Management Drying Area During October 2009
- <u>Table 3</u>, Analysis of Monthly Composited Digested Biosolids Placed in the Calumet East Solids Management Drying Area During November 2009
- <u>Table 4</u>, Analysis of Monthly Composited Processed Digested Biosolids Removed from the Calumet East Solids Management Drying Area During October 2009

Subject: Calumet East Solids Management Area - Calumet Water Reclamation Plant, Illinois Environmental Protection Agency Permit No. 2005-AO-4281-2, Monitoring Report for October, November, and December 2009

<u>Table 5</u>, Analysis of Monthly Composited Processed Digested Biosolids Removed from the Calumet East Solids Management Drying Area During November 2009

Four new lysimeters, L-2N, L-3N, L-4N, and L-6N, were installed at this site in September 2008 as replacements for L-2, L-3, L-4, and L-6, respectively. The new and old lysimeters have been monitored simultaneously. A request has been submitted to the IEPA to terminate monitoring of the old lysimeters.

A supplemental permit was issued by the IEPA on July 30, 2009, to modify the monitoring schedule for lysimeters at the Calumet East drying site to once per quarter.

Biosolids were placed in and removed from the solids drying area during October and November 2009.

Very truly yours,

Louis Kollias Director Monitoring and Research

LK:PL:kq
Attachments
cc w/att: Mr. Sulski, IEPA
Records Unit, IEPA
O'Connor/Cox/Lindo

TABLE 1: ANALYSIS OF WATER FROM LYSIMETERS L-1N THROUGH L-6N AT THE CALUMET EAST SOLIDS MANAGEMENT AREA SAMPLED ON OCTOBER 14, 2009

| Parameter         Unit         L-1N         L-2         L-2N         L-3         L-3N           pH¹         7.5         7.4         7.5         7.7         7.7           EC         mS/m         295         306         267         162         214           Total Dissolved Solids         mg/L         4,168         4,076         3,552         1,452         2,800           Total Diss. Org. Carbon         "         9         3         21         7         7           CI         "         181         194         156         32         65           SO₄=         "         1,913         2,005         1,584         525         1,149           TKN         "         12         0.6         4         0.3         2           NH3-N         "         4         <0.1         2         <0.1         0.6           NO2+NO3-N         "         0.24         <0.10         <0.10         <0.10         <0.10         <0.10           Total P         "         <0.25         <0.25         3.8         <0.25         1.0           Alkalimity²         "         545         500         575         444 <td< th=""><th></th><th></th><th colspan="5">Lysimeter No.</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |      | Lysimeter No. |         |         |         |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------|---------|---------|---------|---------|
| EC         mS/m         295         306         267         162         214           Total Dissolved Solids         mg/L         4,168         4,076         3,552         1,452         2,800           Total Diss. Org. Carbon         "9         3         21         7         7           Cl         "181         194         156         32         65           SO4=         "1,913         2,005         1,584         525         1,149           TKN         "12         0.6         4         0.3         2           NH3-N         "4         <0.1         2         <0.1         0.6           NO2+NO3-N         "0.24         <0.10         <0.10         <0.10         <0.10           Total P         "60.25         <0.25         3.8         <0.25         1.0           Alkalinity2         "545         500         575         444         498           Al         "61         574         483         184         376           Cd         "60         <0.002         <0.002         <0.002         <0.002         <0.002           Cr         "60         <0.003         <0.003         <0.003         <0.003 <th>Parameter</th> <th>Unit</th> <th>L-1N</th> <th></th> <th>•</th> <th></th> <th>L-3N</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parameter               | Unit | L-1N          |         | •       |         | L-3N    |
| EC         mS/m         295         306         267         162         214           Total Dissolved Solids         mg/L         4,168         4,076         3,552         1,452         2,800           Total Diss. Org. Carbon         "9         3         21         7         7           Cl         "181         194         156         32         65           SO4=         "1,913         2,005         1,584         525         1,149           TKN         "12         0.6         4         0.3         2           NH3-N         "4         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH¹                     |      | 7.5           | 7.4     | 7.5     | 7.7     | 7.7     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                       | mS/m |               |         |         |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |      |               |         |         |         |         |
| CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | _    | •             | *       | •       | •       | •       |
| SO4 <sup>=</sup> " 1,913         2,005         1,584         525         1,149           TKN         " 12         0.6         4         0.3         2           NH3-N         " 4         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>-</del>            | 44   |               |         |         |         |         |
| NH <sub>3</sub> -N  NH <sub>3</sub> -N  "  4  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $SO_4^=$                | "    |               |         |         |         |         |
| NH <sub>3</sub> -IN  NO <sub>2</sub> +NO <sub>3</sub> -N  "  0.24  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  Total P  "  <0.25  <0.25  3.8  <0.25  1.0  Alkalinity <sup>2</sup> "  545  500  575  444  498   Al  "  0.108  0.125  0.113  0.060  0.092  Ca  "  461  574  483  184  376  Cd  "  <0.002  <0.002  <0.002  <0.002  <0.002  <0.002  <0.002  <0.002  Cr  "  <0.003  <0.003  <0.003  <0.003  <0.003  <0.001  Cu  "  <0.01  -0.01  -0.01  -0.01  -0.01  -0.01  Fe  "  11  -0.02  31  0.43  10  Hg  μg/L  -0.01  -0.01  -0.01  -0.01  Fe  Mg  μg/L  -0.20  -0.20  -0.20  -0.20  -0.20  -0.20  -0.20  -0.20  -0.20  -0.20  Na  "  0.274  0.010  0.832  0.056  0.672  Na  Ni  "  0.002  -0.002  -0.002  -0.002  -0.002  -0.003  -0.003  -0.004  Pb  "  0.002  -0.002  -0.002  -0.002  -0.002  -0.005  0.004  Pb  "  0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003  -0.003 | TKN                     | "    | 12            | 0.6     | 4       | 0.3     | 2       |
| NO2+NO3-IN       0.24       <0.10       <0.10       <0.10       <0.10         Total P       " <0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NH <sub>3</sub> -N      | "    | 4             | < 0.1   | 2       | < 0.1   | 0.6     |
| Alkalinity²       " 545       500       575       444       498         Al       " 0.108       0.125       0.113       0.060       0.092         Ca       " 461       574       483       184       376         Cd       " <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $NO_2+NO_3-N$           | "    | 0.24          | < 0.10  | < 0.10  | < 0.10  | < 0.10  |
| Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total P                 | "    | < 0.25        | < 0.25  | 3.8     | < 0.25  | 1.0     |
| Ca " 461 574 483 184 376 Cd " <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 Cr " <0.003 <0.003 <0.003 <0.003 <0.003 Cu " <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  Fe " 11 <0.02 31 0.43 10  Hg μg/L <0.20 <0.20 <0.20 <0.20 <0.20 <0.20  K mg/L 10 6 12 2 66  Mg " 260 265 211 110 169  Mn " 0.274 0.010 0.832 0.056 0.672  Na " 165 146 103 46 59  Ni " <0.002 0.003 <0.002 <0.004  Pb " <0.002 <0.02 <0.002 <0.002 <0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Alkalinity <sup>2</sup> | "    | 545           | 500     | 575     | 444     | 498     |
| Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Al                      | 44   | 0.108         | 0.125   | 0.113   | 0.060   | 0.092   |
| Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | "    |               | 574     | 483     | 184     |         |
| Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cd                      | "    | < 0.002       | < 0.002 | < 0.002 | < 0.002 | < 0.002 |
| Cu       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.01       <0.02       <0.02       <0.02       <0.02       <0.02       <0.02       <0.02       <0.02       <0.02       <0.02       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.002       <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cr                      | "    | < 0.003       | < 0.003 | < 0.003 | < 0.003 | < 0.003 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cu                      |      | < 0.01        | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fe                      |      | 11            | <0.02   | 31      | 0.43    | 10      |
| K     mg/L     10     6     12     2     6       Mg     "     260     265     211     110     169       Mn     "     0.274     0.010     0.832     0.056     0.672       Na     "     165     146     103     46     59       Ni     "     <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | ug/I |               |         |         |         |         |
| Mg       "       260       265       211       110       169         Mn       "       0.274       0.010       0.832       0.056       0.672         Na       "       165       146       103       46       59         Ni       "       <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                       |      |               |         |         |         |         |
| Mn       "       0.274       0.010       0.832       0.056       0.672         Na       "       165       146       103       46       59         Ni       "       <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      |               |         |         |         |         |
| Na 165 146 103 46 59 Ni " <0.002 0.003 <0.002 0.005 0.004 Pb " <0.02 <0.02 <0.02 <0.02 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | "    |               |         |         |         |         |
| Ni " <0.002 0.003 <0.002 0.005 0.004 Pb " <0.02 <0.02 <0.02 <0.02 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Na                      | "    | 165           | 146     | 103     | 46      | 59      |
| Pb " <0.02 <0.02 <0.02 <0.02 <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | "    |               |         |         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | "    |               |         |         |         |         |
| VIII VIVI VIVI VIVI VIVI VIVI VIVI VIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zn                      | "    | < 0.01        | 0.03    | 0.02    | 0.05    | < 0.01  |

TABLE 1 (Continued): ANALYSIS OF WATER FROM LYSIMETERS L-1N THROUGH L-6N AT THE CALUMET EAST SOLIDS MANAGEMENT AREA SAMPLED ON OCTOBER 14, 2009

| Parameter                           | Unit | L-4     | L-4N    | Lysimeter No<br>L-5 | L-6     | L-6N    |
|-------------------------------------|------|---------|---------|---------------------|---------|---------|
| pH <sup>1</sup>                     |      | 7.4     | 7.2     | 7.8                 | 7.9     | 8.0     |
| EC                                  | mS/m | 320     | 480     | 181                 | 136     | 130     |
| Total Dissolved Solids              | mg/L | 4,080   | 5,920   | 1,680               | 1,324   | 1,288   |
| Total Diss. Org. Carbon             | "    | 4       | 14      | 1,000               | 1       | 8       |
| Cl <sup>-</sup>                     | "    | 554     | 861     | 247                 | 16      | 24      |
| $SO_4^=$                            | 44   | 1,625   | 2,340   | 566                 | 639     | 447     |
| TKN                                 | 44   | 0.9     | 4       | 0.5                 | 0.3     | 2       |
| NH <sub>3</sub> -N                  | "    | 0.5     | 2       | 0.4                 | 0.3     | 1       |
| NO <sub>2</sub> +NO <sub>3</sub> -N | "    | 0.26    | < 0.10  | 0.21                | 0.26    | 0.18    |
| Total P                             | "    | < 0.25  | < 0.25  | < 0.25              | 0.28    | 5.3     |
| Alkalinity <sup>2</sup>             | 44   | 388     | 691     | 242                 | 278     | 340     |
| Al                                  | "    | 0.116   | 0.120   | 0.065               | 0.051   | 0.047   |
| Ca                                  | "    | 511     | 557     | 195                 | 157     | 164     |
| Cd                                  | 44   | < 0.002 | < 0.002 | < 0.002             | < 0.002 | < 0.002 |
| Cr                                  | "    | < 0.003 | < 0.003 | < 0.003             | < 0.003 | < 0.003 |
| Cu                                  | "    | < 0.01  | < 0.01  | < 0.01              | < 0.01  | < 0.01  |
| Fe                                  | "    | 13      | 70      | 1.1                 | 0.46    | 2.7     |
| Hg                                  | μg/L | < 0.20  | < 0.20  | < 0.20              | < 0.20  | < 0.20  |
| K                                   | mg/L | 7       | 13      | 4                   | 4       | 5       |
| Mg                                  | "    | 275     | 271     | 93                  | 79      | 69      |
| Mn                                  | 44   | 0.114   | 0.597   | 0.064               | 0.058   | 0.268   |
| Na                                  | "    | 165     | 597     | 84                  | 67      | 65      |
| Ni                                  | 46   | < 0.002 | < 0.002 | < 0.002             | < 0.002 | < 0.002 |
| Pb                                  | 44   | < 0.02  | < 0.02  | < 0.02              | < 0.02  | < 0.02  |
| Zn                                  | "    | < 0.01  | 0.01    | < 0.01              | < 0.01  | 0.01    |

<sup>&</sup>lt;sup>1</sup>pH analyzed beyond recommended holding time of 15 minutes. <sup>2</sup>As CaCO<sub>3</sub>.

TABLE 2: ANALYSIS OF MONTHLY COMPOSITED DIGESTED BIOSOLIDS PLACED IN THE CALUMET EAST SOLIDS MANAGEMENT DRYING AREA **DURING OCTOBER 2009** 

| Parameter                                       | Unit     | Concentration <sup>1</sup> |  |
|-------------------------------------------------|----------|----------------------------|--|
| рН                                              | <i>α</i> | 7.7                        |  |
| Total Solids Total Volatile Solids <sup>2</sup> | %<br>"   | 13.0<br>35.8               |  |
| TKN                                             | mg/kg    | 27,732                     |  |
| NH <sub>3</sub> -N                              | "        | 5,973                      |  |

<sup>&</sup>lt;sup>1</sup>Values are the means of four samples.
<sup>2</sup>Total volatile solids as a percentage of total solids.

TABLE 3: ANALYSIS OF MONTHLY COMPOSITED DIGESTED BIOSOLIDS PLACED IN THE CALUMET EAST SOLIDS MANAGEMENT DRYING AREA **DURING NOVEMBER 2009** 

| Unit  | Concentration <sup>1</sup> |                                         |
|-------|----------------------------|-----------------------------------------|
|       | 7.9                        |                                         |
| %     | 27.0                       |                                         |
| 44    | 23.6                       |                                         |
| mg/kg | 13,962                     |                                         |
| "     | 3,128                      |                                         |
|       | %<br>"<br>mg/kg            | 7.9<br>% 27.0<br>" 23.6<br>mg/kg 13,962 |

<sup>&</sup>lt;sup>1</sup>Values are the means of five samples. <sup>2</sup>Total volatile solids as a percentage of total solids.

TABLE 4: ANALYSIS OF MONTHLY COMPOSITED PROCESSED DIGESTED BIOSOLIDS REMOVED FROM THE CALUMET EAST SOLIDS MANAGEMENT DRYING AREA DURING OCTOBER 2009

| Parameter                          | Unit  | Concentration <sup>1</sup> |  |
|------------------------------------|-------|----------------------------|--|
| рН                                 |       | 7.6                        |  |
| Total Solids                       | %     | 41.9                       |  |
| Total Volatile Solids <sup>2</sup> | 66    | 46.5                       |  |
| TKN                                | mg/kg | 36,760                     |  |
| NH <sub>3</sub> -N                 | "     | 5,919                      |  |
| Total P                            | "     | 21,467                     |  |
| Al                                 | "     | 10,809                     |  |
| As                                 | "     | 8                          |  |
| Ca                                 | 44    | 48,676                     |  |
| Cd                                 | "     | 3                          |  |
| Cr                                 | "     | 84                         |  |
| Cu                                 | "     | 433                        |  |
| Fe                                 | 44    | 28,366                     |  |
| Hg                                 | "     | 0.82                       |  |
| K                                  | "     | 2,295                      |  |
| Mg                                 | "     | 16,616                     |  |
| Mn                                 | "     | 1,016                      |  |
| Mo                                 | "     | 17                         |  |
| Na                                 | "     | 967                        |  |
| Ni                                 | "     | 42                         |  |
| Pb                                 | "     | 103                        |  |
| Se                                 | "     | 6                          |  |
| Zn                                 | "     | 1,138                      |  |

<sup>&</sup>lt;sup>1</sup>Values are the means of three samples.
<sup>2</sup>Total volatile solids as a percentage of total solids.

TABLE 5: ANALYSIS OF MONTHLY COMPOSITED PROCESSED DIGESTED BIOSOLIDS REMOVED FROM THE CALUMET EAST SOLIDS MANAGEMENT DRYING AREA DURING NOVEMBER 2009

| Parameter                          | Unit  | Concentration <sup>1</sup> |  |
|------------------------------------|-------|----------------------------|--|
| рН                                 |       | 7.1                        |  |
| Total Solids                       | %     | 47.5                       |  |
| Total Volatile Solids <sup>2</sup> | "     | 44.2                       |  |
| TKN                                | mg/kg | 26,745                     |  |
| NH <sub>3</sub> -N                 | "     | 3,326                      |  |
| Total P                            | "     | 21,611                     |  |
| Al                                 | "     | 13,743                     |  |
| As                                 | "     | 9                          |  |
| Ca                                 | "     | 48,366                     |  |
| Cd                                 | "     | 4                          |  |
| Cr                                 | "     | 87                         |  |
| Cu                                 | "     | 448                        |  |
| Fe                                 | "     | 29,303                     |  |
| Hg                                 | "     | 0.96                       |  |
| K                                  | "     | 3,117                      |  |
| Mg                                 | "     | 15,945                     |  |
| Mn                                 | "     | 976                        |  |
| Mo                                 | "     | 16                         |  |
| Na                                 | "     | 858                        |  |
| Ni                                 | "     | 40                         |  |
| Pb                                 | "     | 109                        |  |
| Se                                 | "     | 5                          |  |
| Zn                                 | "     | 1,141                      |  |

<sup>&</sup>lt;sup>1</sup>Values are the means of six samples.
<sup>2</sup>Total volatile solids as a percentage of total solids.