

Metropolitan Water Reclamation District of Greater Chicago

## RESEARCH AND DEVELOPMENT DEPARTMENT

REPORT NO. 08-4

ANNUAL BIOSOLIDS MANAGEMENT REPORT FOR

2007

FEBRUARY 2008

February 15, 2008

Mr. Patrick Kuefler Chief of Enforcement Section 2 USEPA – Region V Water Enforcement and Compliance Assurance Branch (WC-15J) 77 West Jackson Blvd. Chicago, IL 60604-3590

Dear Mr. Kuefler:

Subject: 2007 Reporting Requirements Under the 40 CFR Part 503 Regulations

The Metropolitan Water Reclamation District of Greater Chicago (District) herein submits the 2007 records required under the 40 CFR Part 503 Regulations at Section 503.18, titled "Annual Biosolids Management Report for 2007."

We believe this report satisfies the reporting requirements under the 40 CFR Part 503 Regulations.

### Certification Statement Required for Record Keeping

"I certify under penalty of law, that the information that will be used to determine compliance with the Class A pathogen requirements, Class B pathogen requirements, vector attraction reduction requirements, management practices, site restrictions, and requirements to obtain information as described in Sections 503.32a5, 503.32a6, 503.32a8, 503.32b2, 503.32b3, 503.33b1, 503.33b9, 503.13, 503.14, and 503.16 for the District's land application sites was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment." Mr. Patrick Kuefler

Subject: 2007 Reporting Requirements Under the 40 CFR Part 503 Regulations

If you have any questions, please telephone me at (312) 751-5190.

Very truly yours,

Louis Kollias Director Research and Development

## LK:AC:spy Attachment cc w/att.:

Aistars (USEPA) Bramscher (USEPA) Keller (IEPA) Kluge (IEPA) Garretson (IEPA) Sulski (IEPA) Lanyon Jamjun Feldman Sobanski Stuba Granato O'Connor Cox Lindo

## ANNUAL BIOSOLIDS MANAGEMENT REPORT FOR 2007

By

Albert E. Cox Soil Scientist III

Pauline Lindo Soil Scientist I

Minaxi Patel Sanitary Chemist I

Thomas C. Granato Assistant Director of Research and Development Environmental Monitoring and Research Division

**Research and Development Department** Louis Kollias, Director

February 2008

| <br>Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, IL 60611-2803(312) 751-5600 |                                    |                |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|--|--|--|--|--|--|--|
| 100 East Erie Street                                                                                                   | Chicago, IL 60611-2803             | (312) 751-5600 |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
| 2007                                                                                                                   | REPORTING REQUIRMENTS              |                |  |  |  |  |  |  |  |
| UNDER TH                                                                                                               | HE 40 CFR PART 503 REGULATIO       | ONS            |  |  |  |  |  |  |  |
| Co                                                                                                                     | ppies of this Report Number 08-    |                |  |  |  |  |  |  |  |
| are a                                                                                                                  | available on the District Web Site |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |
|                                                                                                                        |                                    |                |  |  |  |  |  |  |  |

## TABLE OF CONTENTS

|                                                         | Page |
|---------------------------------------------------------|------|
| LIST OF TABLES                                          | iii  |
| ACKNOWLEDGEMENT                                         | V    |
| DISCLAIMER                                              | v    |
| FOREWORD                                                | vi   |
| INTRODUCTION                                            | 1    |
| LEMONT WRP                                              | 3    |
| JAMES C. KIRIE WRP                                      | 4    |
| NORTH SIDE WRP                                          | 5    |
| JOHN E. EGAN WRP                                        | 6    |
| Treatment Plant and Biosolids Process Train Description | 6    |
| Summary of Use and Disposal at Landfills                | 6    |
| Biosolids Conveyed to Other WRPs for Further Processing | 6    |
| Land Application of Centrifuge Cake Biosolids           | 6    |
| HANOVER PARK WRP                                        | 11   |
| Treatment Plant and Biosolids Process Train Description | 11   |
| Land Application of Liquid Biosolids                    | 11   |
| CALUMET WRP                                             | 16   |
| Treatment Plant and Biosolids Process Train Description | 16   |
| Summary of Use and Disposal at Landfills                | 17   |
| Land Application of Centrifuge Cake Biosolids           | 17   |
| Land Application of Aged, Air-Dried Biosolids           | 17   |

## TABLE OF CONTENTS (Continued)

|                                                                                                                          | Page   |
|--------------------------------------------------------------------------------------------------------------------------|--------|
| STICKNEY WRP                                                                                                             | 27     |
| Treatment Plant and Biosolids Process Train Description                                                                  | 27     |
| Summary of Use and Disposal at Landfills                                                                                 | 28     |
| Land Application of Centrifuge Cake Biosolids                                                                            | 28     |
| Land Application of Aged, Air-Dried Biosolids                                                                            | 28     |
| Centrifuge Cake Biosolids to Pelletizing Facility                                                                        | 36     |
| DISTRICT BIOSOLIDS DISTRIBUTED TO LANDFILLS UNDER 40<br>CFR PARTS 258 AND 261                                            | 37     |
| Stickney WRP                                                                                                             | 37     |
| Calumet WRP                                                                                                              | 37     |
| APPENDICES                                                                                                               |        |
| Biosolids Management Programs of the Metropolitan Water Reclamation<br>District of Greater Chicago Under 40 CFR Part 503 | AI-1   |
| Reduction in Frequency of Monitoring for Pathogens in Biosolids                                                          | AII-1  |
| Designation of Site-Specific Equivalency to PFRP for District Biosolids<br>Processing Trains                             | AIII-1 |

## LIST OF TABLES

| Table<br>No. |                                                                                                                                                                             | Page |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | 2007 Production and Uses of Sludge and Biosolids                                                                                                                            | 2    |
| 2            | Nitrogen and Metals Concentrations in Centrifuge Cake Biosolids<br>from the John E. Egan Water Reclamation Plant Applied to Farm-<br>land in 2007                           | 7    |
| 3            | Digester Temperatures and Detention Times for Biosolids from the John E. Egan Water Reclamation Plant Applied to Farmland in 2007                                           | 10   |
| 4            | Nitrogen and Metals Concentrations in Biosolids from the Hanover<br>Park Water Reclamation Plant Applied to the Fischer Farm Site in<br>2007                                | 12   |
| 5            | Digester Temperatures and Detention Times for Biosolids from the<br>Hanover Park Water Reclamation Plant Applied to the Fischer<br>Farm Site in 2007                        | 14   |
| 6            | Volatile Solids Reduction for Biosolids Generated at the Hanover<br>Park Water Reclamation Plant and Applied to the Fischer Farm<br>Site in 2007                            | 15   |
| 7            | Nitrogen and Metals Concentrations in Centrifuge Cake Biosolids<br>Generated at the Calumet Water Reclamation Plant Applied to<br>Farmland in 2007                          | 18   |
| 8            | Digester Temperatures and Detention Times for Centrifuge Cake<br>Biosolids from the Calumet Water Reclamation Plant and Applied<br>to Farmland in 2007                      | 19   |
| 9            | Quantities of Calumet Water Reclamation Plant Air-dried Biosol-<br>ids Utilized by Each Site Under the Controlled Solids Distribution<br>Program in 2007                    | 20   |
| 10           | Nitrogen Concentrations, Volatile Solids Reduction, and Metals<br>Concentrations in Air-Dried Biosolids from the Calumet Water<br>Reclamation Plant Applied to Land in 2007 | 22   |
| 11           | Data for Monitoring Part 503 Class A Pathogen Compliance at the Calumet Water Reclamation Plant in 2007                                                                     | 25   |

## LIST OF TABLES (Continued)

| Table<br>No. |                                                                                                                                                                               | Page |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 12           | Summary of Results of Additional Anaerobic Digestion Tests for<br>Volatile Solids Reduction at the Calumet Water Reclamation Plant<br>Following Option 2 of Section 503.33(b) | 26   |
| 13           | Nitrogen and Metals Concentrations in Centrifuge Cake Biosolids<br>from the Stickney Water Reclamation Plant Applied to Farmland<br>in 2007                                   | 29   |
| 14           | Digester Temperatures and Detention Times for Centrifuge Cake<br>Biosolids Generated at the Stickney Water Reclamation Plant Ap-<br>plied to Farmland in 2007                 | 33   |
| 15           | Nitrogen Concentrations, Volatile Solids Reduction, and Metals<br>Concentrations in Air-dried Biosolids from the Stickney Water<br>Reclamation Plant Applied to Land in 2007  | 34   |
| 16           | Data for Monitoring Part 503 Class A Pathogen Compliance at the Stickney Water Reclamation Plant in 2007                                                                      | 35   |

#### ACKNOWLEDGEMENT

The assistance of the following individuals is greatly appreciated: Mr. Daniel Collins, Principal Civil Engineer, Lawndale Avenue Solids Management Area; Mr. Raphael Frost, Senior Civil Engineer, Calumet Solids Management Area; Ms. Katarzyna Lai, Assistant Engineer of Treatment Plant Operations I, John E. Egan Water Reclamation Plant (WRP); Robert Podgorny, Engineering Technician IV, Hanover Park WRP; Mr. George Kedl, Assistant Civil Engineer, Stickney WRP; Dr. Geeta Rijal, Microbiologist IV, Analytical Microbiology and Biomonitoring Section; Mr. John Chavich, Sanitary Chemist IV, John E. Egan Analytical Laboratory Section; Mr. Tom Liston, Sanitary Chemist IV, Calumet Analytical Laboratory Section; Ms. Ellice Durham, Sanitary Chemist IV, Stickney Analytical Laboratory Section; and Dr. Heng Zhang, Research Scientist II, Wastewater Treatment Technology Research Section.

Special thanks are given to Ms. Sabina Yarn for the typing of this report.

#### DISCLAIMER

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

## FOREWORD

The data and information in this report fulfill the frequency of monitoring and the reporting requirements for Biosolids Management by the Metropolitan Water Reclamation District of Greater Chicago as specified in the United States Environmental Protection Agency's (USEPA) 40 CFR Part 503 Regulations for 2007.

## **INTRODUCTION**

The Metropolitan Water Reclamation District of Greater Chicago (District) herein reports the 2007 records required under the 40 CFR Part 503 Regulations at Section 503.18.

The District has four Illinois Environmental Protection Agency (IEPA) permitted biosolids management programs that must comply with Part 503. These programs are as follows:

- 1. Fulton County Dedicated Biosolids Application to Land Site (IEPA Permit No. 2005-SC-5073).
- 2. Hanover Park Fischer Farm Biosolids Application to Land Site (IEPA Permit Nos. 2002-SC-0672 and 2007-SC-2951).
- 3. Controlled Solids Distribution Program (Biosolids Application to Land in the Chicago Area under IEPA Permit No. 2005-SC-3793).
- 4. Land Application to Farmland (Application of biosolids from Calumet, Stickney, and John E. Egan Water Reclamation Plants (WRPs) to farmland under IEPA Permit No. 2004-SC-0701).

The 40 CFR Part 503 Regulations require that the District report certain data. In the following sections, we have prepared a short description of the sludge processing and biosolids management operations at the District's seven WRPs. The Lemont, James C. Kirie, and North Side WRPs do not produce a final biosolids product, while the Calumet, Stickney, John E. Egan, and Hanover Park WRPs produced final biosolids products that were used beneficially or disposed of in 2007. In addition, we also discuss the uses for these biosolids, outline the data reporting requirements under the 40 CFR Part 503 Regulations, and present the required monitoring data in summary tables. The 2007 production and final disposition of sludges and biosolids generated by the District are summarized in <u>Table 1</u>. It should be noted that the total biosolids production in any given year may not equal the amount of the final biosolids product distributed, since biosolids may be distributed from production inventory from a previous year, or biosolids produced in a given year may be stored or aged for distribution at a later time.

|                            | Water Reclamation Plants |                      |            |                   |                           |       |        |  |  |  |  |
|----------------------------|--------------------------|----------------------|------------|-------------------|---------------------------|-------|--------|--|--|--|--|
| Production and Use         | Stickney <sup>1</sup>    | Calumet <sup>1</sup> | North Side | Egan <sup>1</sup> | Hanover Park <sup>1</sup> | Kirie | Lemont |  |  |  |  |
|                            | Dry Tons                 |                      |            |                   |                           |       |        |  |  |  |  |
| Production <sup>2</sup>    | 119,821                  | 29,923               | 35,710     | 8,421             | 818                       | 7,870 | 310    |  |  |  |  |
| Land Applied               | 57,643                   | 21,675               | 0          | 8,164             | 1,106                     | 0     | 0      |  |  |  |  |
| Surface Disposal           | 0                        | 0                    | 0          | 0                 | 0                         | 0     | 0      |  |  |  |  |
| Landfill (Total)           | 31,874                   | 12,997               | 0          | 0                 | 0                         | 0     | 0      |  |  |  |  |
| Co-disposal                | 7,509                    | 1,908                |            |                   |                           |       |        |  |  |  |  |
| Daily cover                | 14,378                   | 0                    |            |                   |                           |       |        |  |  |  |  |
| Final Cover                | 9,987                    | 11,089               |            |                   |                           |       |        |  |  |  |  |
| Incinerated                | 0                        | 0                    | 0          | 0                 | 0                         | 0     | 0      |  |  |  |  |
| To Other WRPs <sup>3</sup> | 0                        | 0                    | 35,710     | 3,072             | 0                         | 7,780 | 310    |  |  |  |  |
| Other                      | 553 <sup>4</sup>         | 0                    | 0          | 1 <sup>5</sup>    | 0                         | 0     | 0      |  |  |  |  |

## TABLE 1: 2007 PRODUCTION AND USES OF SLUDGE AND BIOSOLIDS

<sup>1</sup>Differences between biosolids production and total use or disposal in 2007 were due to a net withdrawal or storage in lagoons or drying areas, and processing of biosolids imported from other WRPs.

<sup>2</sup>Stickney, Calumet, Egan, and Hanover Park produce biosolids while North Side, Kirie, and Lemont produce undigested sludge. Figures represent total solids generated at the end of each plant's processing train including those imported from other plants for further processing.

<sup>3</sup>For further processing or storage.

<sup>4</sup>Sent to pelletizing facility owned and operated by Metropolitan Biosolids Management, LLC, Stickney, Illinois, under Contract No. 98-RFP-10.

<sup>5</sup>Trucked to Interstate Brands Corp., Schiller Park, Illinois, for seeding digesters.

## LEMONT WRP

The Lemont WRP, located in Lemont, Illinois, has a design capacity of 3.4 mgd. Wastewater reclamation processes include both primary (primary settling) and secondary (activated sludge process) treatment. In 2007, the Lemont WRP produced 310 dry tons of solids (<u>Table 1</u>), which were gravity concentrated and transported to the Stickney WRP for further processing.

No final biosolids product is produced at this WRP.

## JAMES C. KIRIE WRP

The James C. Kirie WRP, located in Des Plaines, Illinois, has a design capacity of 72 mgd. Wastewater reclamation processes include grit tanks, secondary (activated sludge process), and tertiary (sand filtration) treatment. In 2007, the James C. Kirie WRP produced 7,870 dry tons of solids (<u>Table 1</u>), which were sent via force main to the John E. Egan WRP for further processing.

No final biosolids product is produced at this WRP.

## NORTH SIDE WRP

The North Side WRP, located in Skokie, Illinois, has a design capacity of 333 mgd. Wastewater reclamation processes at the North Side WRP include primary (primary settling) and secondary (activated sludge process) treatment. In 2007, the North Side WRP produced 35,710 dry tons of solids (<u>Table 1</u>), which were sent via pipeline to the Stickney WRP for further treatment. This total includes solids generated from water reclamation at the North Side WRP and biosolids conveyed from the John E. Egan WRP.

No final biosolids product is produced at this WRP.

### JOHN E. EGAN WRP

#### **Treatment Plant and Biosolids Process Train Description**

The John E. Egan WRP, located in Schaumburg, Illinois, has a design flow of 30 mgd. Wastewater reclamation processes include primary (primary settling), secondary (activated sludge process), and tertiary (sand filtration) treatment. All solids managed at the John E. Egan WRP are anaerobically digested. During winter or when the centrifuges are not operating, liquid digested biosolids are sent via sewers to the North Side WRP. Centrifuge centrate containing biosolids are also sent via sewers to the North Side WRP.

In 2007, the total biosolids production at the John E. Egan WRP was 8,421 dry tons ( $\underline{\text{Ta-ble 1}}$ ). This total includes biosolids generated from processing of sludge originating at the John E. Egan WRP as well as the sludge that was imported from the James C. Kirie WRP for further processing.

#### Summary of Use and Disposal at Landfills

In 2007, none of the biosolids generated at the John E. Egan WRP were sent to landfills.

#### **Biosolids Conveyed to Other WRPs for Further Processing**

In 2007, 532 dry tons of biosolids were pumped as centrifuge centrate to North Side WRP. In addition, 2,040 dry tons of centrifuge cake biosolids were trucked to the Calumet Solids Management Area before being land applied in 2007, and 500 dry tons to the Lawndale Avenue Solids Management Area to be stored until the 2008 land application season.

### Land Application of Centrifuge Cake Biosolids

In 2007, the John E. Egan WRP land applied a total of 8,164 dry tons of centrifuge cake biosolids to farmland under IEPA Permit No. 2004-SC-0701 through a contract with Synagro Midwest, Inc. This total consists of 5,527 dry tons trucked directly from the John E. Egan WRP and 2,637 dry tons that was stored (597 dry tons in 2006 and 2,040 dry tons in 2007). at the Calumet WRP Solids Management Area before being land applied. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is six times per year.

All John E. Egan WRP centrifuge cake biosolids that were land applied in 2007 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 2</u>), the Class B pathogen requirements of Section 503.32b2 (<u>Table 3</u>), and the vector attraction reduction requirements of Section 503.33b10. <u>Table 2</u> also shows the biosolids nitrogen concentration data that were used by the land applier to compute the agronomic loading rates at the farmland sites.

<u>The John E. Egan WRP did not have any additional requirement for reporting under Part</u> 503 in 2007.

| Sample<br>Date | TKN    | NH <sub>3</sub> -N | As   | Cd  | Cu  | Hg            | Мо | Ni  | Pb  | Se    | Zn  |
|----------------|--------|--------------------|------|-----|-----|---------------|----|-----|-----|-------|-----|
|                |        |                    |      |     | n   | ng/dry kg     |    |     |     |       |     |
|                |        |                    |      |     |     | ing, on y ing |    |     |     |       |     |
| 03/31/2007     | 48,745 | 7,153              | <1.0 | 4.4 | 614 | NA            | 13 | 60  | 46  | < 0.8 | 776 |
| 04/07/2007     | 30,994 | 6,358              | <1.0 | 4.7 | 569 | 1.2           | 12 | 60  | 43  | < 0.8 | 747 |
| 04/14/2007     | 29,555 | 4,271              | 3.0  | 3.6 | 586 | NA            | 11 | 59  | 41  | < 0.8 | 771 |
| 04/21/2007     | 34,863 | 5,659              | <1.0 | 4.5 | 595 | NA            | 14 | 62  | 48  | < 0.8 | 741 |
| 04/28/2007     | 22,262 | 5,826              | <1.0 | 4.9 | 620 | NA            | 13 | 65  | 45  | < 0.8 | 732 |
| 05/05/2007     | 33,330 | 5,362              | <1.0 | 3.3 | 596 | NA            | 12 | 61  | 45  | < 0.8 | 722 |
| 05/12/2007     | 21,280 | 5,381              | <1.0 | 3.6 | 677 | 1.2           | 12 | 69  | 42  | < 0.8 | 761 |
| 05/19/2007     | 27,895 | 5,000              | <1.0 | 3.4 | 668 | NA            | 13 | 65  | 44  | < 0.8 | 738 |
| 05/26/2007     | 25,518 | 6,737              | <1.0 | 3.3 | 672 | NA            | 13 | 63  | 40  | < 0.8 | 745 |
| 06/02/2007     | 41,325 | 5,105              | <1.0 | 4.3 | 723 | NA            | 16 | 107 | 60  | < 0.8 | 799 |
| 06/09/2007     | 41,505 | 5,655              | <1.0 | 4.0 | 735 | 2.5           | 17 | 69  | 41  | < 0.8 | 806 |
| 06/16/2007     | 22,756 | 5,165              | <1.0 | 3.4 | 707 | NA            | 18 | 62  | 40  | < 0.8 | 808 |
| 06/23/2007     | 15,045 | 4,749              | <1.0 | 3.2 | 669 | NA            | 19 | 56  | 103 | < 0.8 | 781 |
| 07/14/2007     | 13,816 | 4,985              | 5.0  | 3.3 | 704 | 0.94          | 22 | 54  | 44  | < 0.8 | 891 |
| 07/21/2007     | 15,649 | 4,812              | 1.7  | 3.4 | 730 | NA            | 23 | 55  | 46  | < 0.8 | 897 |
| 07/28/2007     | 13,840 | 3,826              | <1.0 | 3.2 | 644 | NA            | 20 | 51  | 42  | < 0.8 | 817 |
| 08/04/2007     | 16,230 | 4,917              | <1.0 | 3.2 | 716 | NA            | 21 | 59  | 46  | < 0.8 | 912 |
| 08/11/2007     | 22,034 | 4,165              | <1.0 | 2.8 | 658 | 0.73          | 19 | 55  | 43  | < 0.8 | 862 |

TABLE 2: NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROM THE JOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

| Sample<br>Date | TKN    | NH <sub>3</sub> -N | As   | Cd  | Cu  | Hg        | Мо | Ni | Pb | Se    | Zn    |
|----------------|--------|--------------------|------|-----|-----|-----------|----|----|----|-------|-------|
|                |        |                    |      |     | 1   | ng/dry kg |    |    |    |       |       |
| 08/25/2007     | 25,934 | 4,829              | <1.0 | 3.0 | 725 | NA        | 21 | 66 | 45 | < 0.8 | 996   |
| 09/01/2007     | 21,940 | 4,746              | <1.0 | 3.1 | 694 | NA        | 20 | 68 | 48 | < 0.8 | 987   |
| 090/8/2007     | 21,419 | 3,078              | <1.0 | 3.4 | 685 | 0.78      | 19 | 68 | 47 | < 0.8 | 973   |
| 09/29/2007     | 27,537 | 4,014              | <1.0 | 3.4 | 599 | NA        | 14 | 70 | 53 | < 0.8 | 870   |
| 10/06/2007     | 21,543 | 4,675              | <1.0 | 3.5 | 633 | NA        | 17 | 67 | 46 | < 0.8 | 912   |
| 10/13/2007     | 48,269 | 5,262              | <1.0 | 3.1 | 647 | 1.1       | 17 | 65 | 42 | < 0.8 | 916   |
| 10/20/2007     | 20,873 | 2,284              | <1.0 | 3.6 | 711 | NA        | 19 | 69 | 50 | < 0.8 | 989   |
| 10/27/2007     | 33,638 | 3,876              | <1.0 | 4.0 | 680 | NA        | 17 | 69 | 65 | < 0.8 | 924   |
| 11/03/2007     | 28,344 | 2,727              | <1.0 | 4.5 | 645 | NA        | 16 | 71 | 44 | < 0.8 | 917   |
| 11/10/2007     | 31,788 | 3,369              | <1.0 | 4.8 | 595 | 1.2       | 15 | 70 | 42 | < 0.8 | 840   |
| 11/17/2007     | 22,132 | 4,986              | <1.0 | 4.7 | 680 | NA        | 20 | 77 | 39 | < 0.8 | 891   |
| 11/24/2007     | 32,371 | 3,737              | 1.3  | 5.2 | 747 | 1.2       | 20 | 85 | 44 | < 0.8 | 965   |
| 12/01/2007     | 39,908 | 2,964              | <1.0 | 5.2 | 789 | NA        | 22 | 83 | 41 | < 0.8 | 1,046 |
| 12/08/2007     | 35,999 | 3,406              | 1.6  | 4.7 | 749 | 1.4       | 21 | 78 | 38 | < 0.8 | 991   |
| 12/15/2007     | 44,807 | 5,970              | <1.0 | 4.4 | 705 | NA        | 21 | 74 | 37 | < 0.8 | 921   |
| 12/22/2007     | 37,042 | 5,927              | <1.0 | 4.4 | 709 | NA        | 20 | 77 | 37 | < 0.8 | 955   |
| 12/29/2007     | 41,135 | 6,655              | 1.6  | 3.9 | 748 | NA        | 20 | 76 | 45 | < 0.8 | 940   |

TABLE 2 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROMTHE JOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

# TABLE 2 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROMTHE JOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

| Sample<br>Date       | TKN          | NH <sub>3</sub> -N | As      | Cd      | Cu           | Hg          | Мо       | Ni         | Pb         | Se          | Zn             |
|----------------------|--------------|--------------------|---------|---------|--------------|-------------|----------|------------|------------|-------------|----------------|
| -                    |              |                    |         |         | 1            | ng/dry kg - |          |            |            |             |                |
| Mean <sup>*</sup>    | 28,895       | 4,789              | 1       | 4       | 675          | 1           | 17       | 68         | 46         | < 0.8       | 867            |
| Minimum              | 13,816       | 2,284              | 1       | 3       | 569          | 1           | 11       | 51         | 37         | < 0.8       | 722            |
| Maximum<br>503 Limit | 48,745<br>NL | 7,153<br>NL        | 5<br>41 | 5<br>39 | 789<br>1,500 | 3<br>17     | 23<br>75 | 107<br>420 | 103<br>300 | <0.8<br>100 | 1,046<br>2,800 |

\*In calculating the means, values less than the detection limit were considered as the detection limit.

NA = No analysis.

NL = No limit.

| Month     | Average<br>Temperature | Average<br>Detention<br>Time | Meets Part 503<br>Class B<br>Requirements | Minimum Detention<br>Time Required<br>by 503.32b3 <sup>**</sup> |
|-----------|------------------------|------------------------------|-------------------------------------------|-----------------------------------------------------------------|
|           | <sup>o</sup> F         | days                         |                                           | days                                                            |
| January   | 96                     | 26.7                         | yes                                       | 15.0                                                            |
| February  | 97                     | 29.8                         | yes                                       | 15.0                                                            |
| March     | 97                     | 22.6                         | yes                                       | 15.0                                                            |
| April     | 97                     | 25.9                         | yes                                       | 15.0                                                            |
| May       | 97                     | 24.2                         | yes                                       | 15.0                                                            |
| June      | 97                     | 24.8                         | yes                                       | 15.0                                                            |
| July      | 96                     | 26.4                         | yes                                       | 15.0                                                            |
| August    | 97                     | 27.6                         | yes                                       | 15.0                                                            |
| September | 96                     | 26.7                         | yes                                       | 15.0                                                            |
| October   | 96                     | 27.6                         | yes                                       | 15.0                                                            |
| November  | 96                     | 26.2                         | yes                                       | 15.0                                                            |
| December  | 96                     | 24.2                         | yes                                       | 15.0                                                            |

## TABLE 3: DIGESTER<sup>\*</sup> TEMPERATURES AND DETENTION TIMES FOR BIOSOLIDS FROM THE JOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

\* Data are for primary Digesters A and C and do not include additional digestion achieved in secondary Digesters B and D.
 \*\* For anaerobic digestion at average temperature achieved.

#### HANOVER PARK WRP

#### **Treatment Plant and Biosolids Process Train Description**

The Hanover Park WRP, located in Hanover Park, Illinois, has a design capacity of 12 mgd. Wastewater reclamation processes at this WRP include primary (primary settling), secondary (activated sludge process), and tertiary (sand filtration) treatment. All solids produced at the Hanover Park WRP are anaerobically digested and stored in lagoons. The digested biosolids stored in the lagoons are then applied by injection at an on-site farm, formerly the Fischer Farm. All of the biosolids produced by the Hanover Park WRP are land applied at the Fischer Farm, which is contained on the plant grounds.

In 2007, the total biosolids production at this WRP was 818 dry tons (Table 1).

#### Land Application of Liquid Biosolids

In 2007, the Hanover Park WRP land applied a total of 1,106 dry tons of biosolids at the Hanover Park Fischer Farm site under the IEPA Permit Nos. 2002-SC-0672 and 2007-SC-2951. This included liquid biosolids and supernatant stored in a lagoon. The quantity of land applied biosolids was higher than the quantity of biosolids produced in 2007 due to net removal of biosolids that were stored in a lagoon. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is six times per year.

All Hanover Park WRP lagooned biosolids that were land applied in 2007 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 4</u>), the Class B pathogen anaerobic digester time and temperature requirements of Section 03.32b3 (<u>Table 5</u>), and the vector attraction reduction requirements of Section 503.33b1 (<u>Table 6</u>). Management practices at this land application site complied with Section 503.14 as previously described in a letter to Mr. Michael J. Mikulka dated January 28, 1994 (<u>Appendix I</u>).

| Composite<br>Sample Date | TKN     | NH <sub>3</sub> -N | As | Cd    | Cu    | Hg        | Мо | Ni | Pb | Se | Zn  |
|--------------------------|---------|--------------------|----|-------|-------|-----------|----|----|----|----|-----|
|                          |         |                    |    |       |       | mg/dry kg |    |    |    |    |     |
| 04/07/07*                | 446,636 | 367,727            | 24 | 12    | 286   | 0.37      | <2 | 30 | 16 | <3 | 298 |
| 04/28/07*                | 568,600 | 505,600            | 21 | 1     | 82    | 0.11      | <2 | 24 | 5  | <3 | 123 |
| 06/09/07*                | 395,214 | 365,857            | 8  | < 0.4 | 124   | 0.19      | <1 | 9  | 2  | 4  | 61  |
| 09/15/07*                | 290,833 | 269,417            | 17 | < 0.5 | 23    | < 0.04    | <2 | 21 | 4  | 3  | 36  |
| 09/22/07*                | 210,462 | 265,538            | 14 | < 0.5 | 18    | < 0.04    | <2 | 18 | 4  | 5  | 29  |
| 10/06/07*                | 218,000 | 225,833            | 20 | < 0.5 | 29    | 0.10      | <2 | 21 | 3  | 3  | 48  |
| 10/13/07*                | 219,250 | 224,667            | 15 | < 0.5 | 26    | 0.07      | <2 | 20 | 3  | <3 | 43  |
| 10/20/07*                | 218,182 | 212,273            | 17 | < 0.5 | 25    | 0.05      | 3  | 22 | <2 | 5  | 42  |
| 10/27/07*                | 303,455 | 300,273            | 17 | < 0.5 | 44    | 0.06      | <2 | 24 | <2 | <3 | 83  |
| 11/03/07*                | 240,167 | 228,917            | 12 | < 0.5 | 31    | 0.05      | 4  | 26 | 3  | <3 | 50  |
| 11/10/07*                | 357,455 | 334,455            | 20 | < 0.5 | 53    | < 0.05    | <2 | 25 | 5  | 5  | 83  |
| 11/17/07                 | 64,158  | 25,380             | 11 | 2     | 1,126 | 2.25      | 13 | 46 | 34 | 6  | 915 |
| 11/24/07                 | 70,245  | 14,570             | 11 | 2     | 1,243 | 2.12      | 14 | 52 | 38 | 6  | 930 |
| 11/24/07*                | 282,786 | 242,286            | 11 | < 0.4 | 119   | 0.16      | 3  | 21 | 2  | 3  | 169 |
| 12/01/07                 | 171,821 | 38,879             | 7  | 2     | 1,259 | 2.75      | 14 | 56 | 60 | 6  | 985 |

TABLE 4: NITROGEN AND METALS CONCENTRATIONS IN BIOSOLIDS FROM THE HANOVER PARKWATER RECLAMATION PLANT APPLIED TO THE FISCHER FARM SITE IN 2007

## TABLE 4 (Continued): TABLE 4: NITROGEN AND METALS CONCENTRATIONS IN BIOSOLIDS FROM THE HANOVER PARK WATER RECLAMATION PLANT APPLIED TO THE FISCHER FARM SITE IN 2007

| Composite          |         |                    |    |     |       |           |    |     |     |     |       |
|--------------------|---------|--------------------|----|-----|-------|-----------|----|-----|-----|-----|-------|
| Sample Date        | TKN     | NH <sub>3</sub> -N | As | Cd  | Cu    | Hg        | Mo | Ni  | Pb  | Se  | Zn    |
|                    |         |                    |    |     | m     | ng/dry kg |    |     |     |     |       |
| Minimum            | 64,158  | 14,570             | 7  | <04 | 18    | 0.05      | <1 | 9   | <2  | <3  | 29    |
| Mean <sup>**</sup> | 270,484 | 241,445            | 15 | 2   | 299   | 0.56      | 5  | 28  | 12  | 4   | 260   |
| Maximum            | 568,600 | 505,600            | 24 | 12  | 1,259 | 3         | 14 | 56  | 60  | 6   | 985   |
| 503 Limit          | NL      | NL                 | 41 | 39  | 1,500 | 17.0      | 75 | 420 | 300 | 100 | 2,800 |

\*Biosolids applied as supernatant. \*\*In calculating the mean, values less than the detection limit were considered as the detection limit.

NL = No limit.

| Month     | Average<br>Temperature | Average<br>Detention<br>Time | Meets Part 503<br>Class B<br>Requirements | Minimum Detention<br>Time Required<br>by 503.32b3 <sup>*</sup> |
|-----------|------------------------|------------------------------|-------------------------------------------|----------------------------------------------------------------|
|           | °F                     | days                         |                                           | days                                                           |
| January   | 96                     | 25.3                         | yes                                       | 15.0                                                           |
| February  | 96                     | 25.4                         | yes                                       | 15.0                                                           |
| March     | 96                     | 33.4                         | yes                                       | 15.0                                                           |
| April     | 96                     | 25.9                         | yes                                       | 15.0                                                           |
| May       | 96                     | 21.2                         | yes                                       | 15.0                                                           |
| June      | 95                     | 19.7                         | yes                                       | 15.0                                                           |
| July      | 97                     | 18.1                         | yes                                       | 15.0                                                           |
| August    | 96                     | 21.7                         | yes                                       | 15.0                                                           |
| September | 96                     | 29.3                         | yes                                       | 15.0                                                           |
| October   | 96                     | 32.1                         | yes                                       | 15.0                                                           |
| November  | 95                     | 30.3                         | yes                                       | 15.0                                                           |
| December  | 96                     | 28.7                         | yes                                       | 15.0                                                           |

## TABLE 5: DIGESTER TEMPERATURES AND DETENTION TIMES FOR BIOSOLIDS FROM THE HANOVER PARK WATER RECLAMATION PLANT APPLIED TO THE FISCHER FARM SITE IN 2007

\*For anaerobic digestion at average temperature achieved.

## TABLE 6: VOLATILE SOLIDS REDUCTION FOR BIOSOLIDS GENERATED AT THE HANOVER PARK WATER RECLAMATION PLANT AND APPLIED TO THE FISCHER FARM SITE IN 2007

| Month                   | Digester<br>Feed | Digester<br>Draw    | Lagoon<br>Biosolids | Volatile Solids<br>Reduction <sup>*</sup> |
|-------------------------|------------------|---------------------|---------------------|-------------------------------------------|
|                         | %                | Total Volatile Soli | ds                  | %                                         |
| April <sup>**</sup>     | 83.9             | 73.3                | 46.6                | 83.3                                      |
| June <sup>**</sup>      | 85.6             | 77.0                | 59.7                | 75.0                                      |
| September <sup>**</sup> | 81.1             | 73.4                | 56.8                | 69.3                                      |
| October <sup>**</sup>   | 84.1             | 74.3                | 61.3                | 70.0                                      |
| November                | 85.1             | 75.2                | 58.4                | 75.4                                      |
| December                | 84.8             | 75.0                | 69.1                | 60.1                                      |

\*Volatile solids reduction computed using digester feed and lagoon biosolids data, and only for the months that biosolids were applied to the fields. \*\*Biosolids applied as supernatant.

## CALUMET WRP

## **Treatment Plant and Biosolids Process Train Description**

The Calumet WRP, located in Chicago, Illinois, has a design capacity of 354 mgd. Wastewater reclamation processes at this WRP include primary (primary settling) and secondary (activated sludge process) treatment. All solids produced at the Calumet WRP are anaerobically digested. Calumet WRP biosolids are then:

- a. Placed into lagoons for dewatering, aging and stabilization, and then transported to paved cells and air-dried prior to:
  - 1. Application to land as Exceptional Quality (EQ) biosolids under the District's Controlled Solids Distribution Permit.
  - 2. Use at local municipal solid waste landfills as final landfill cover.
  - 3. Disposal in local municipal solid waste landfills.
- b. Dewatered by centrifuging to approximately 25 percent solids content, and then applied to farmland by a private contractor as a Class B cake.
- c. Dewatered by centrifuging to approximately 25 percent solids content, and then transported to paved cells and air-dried prior to use as daily landfill cover.
- d. Dewatered by centrifuging to approximately 25 percent solids content, placed into lagoons for aging and stabilization, and transported to paved cells and airdried prior to:
  - 1. Application to land as EQ biosolids under the District's Controlled Solids Distribution Permit.
  - 2. Use at local municipal solid waste landfills as final landfill cover.

In 2007, the total biosolids production at the Calumet WRP was 29,923 dry tons (<u>Table</u> <u>1</u>). The quantity of biosolids that were used and disposed of in 2007 (34,672 dry tons) was higher than the total production for the Calumet WRP due to net withdrawal of biosolids stored in lagoons or on drying cells.

#### Summary of Use and Disposal at Landfills

In 2007, the Calumet WRP sent 12,997 dry tons of biosolids to landfills. Of this amount, 11,089 dry tons were used as final cover and 1,908 dry tons were co-disposed with municipal solid wastes. This practice is exempt from the Part 503 Regulations and requires no further reporting.

#### Land Application of Centrifuge Cake Biosolids

In 2007, the Calumet WRP land applied 16,914 dry tons of centrifuge cake biosolids to farmland under IEPA Permit No. 2004-SC-0701 through a contract with Synagro Midwest, Inc. This does not include the 2,597 dry tons of centrifuge cake biosolids that was transported from the John E. Egan WRP to the Calumet Solids Management Area, prior to being applied to farmland by Synagro Midwest, Inc. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is twelve times per year.

All Calumet WRP centrifuge cake biosolids that were land applied in 2007, met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 7</u>), the Class B pathogen anaerobic digester time and temperature requirements of Section 503.32b3 (<u>Table 8</u>), and the vector attraction reduction requirements of Section 503.33b10. <u>Table 7</u> also contains the biosolids nitrogen concentration data that were utilized by the land applier to compute the agronomic loading rates at the farmland sites.

#### Land Application of Aged, Air-Dried Biosolids

In 2007, the Calumet WRP land applied a total of 4,761 dry tons of air-dried EQ biosolids through the District's Controlled Solids Distribution Program under IEPA Permit No. 2005-SC-3743 for maintenance of golf courses, landscaping, nurseries, and construction of recreation fields. The quantities of biosolids utilized by each site under the Controlled Solids Distribution Program and how they were used are shown in <u>Table 9</u>. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is six times per year.

The USEPA Region V designated, on a site-specific basis for the Calumet and Stickney WRPs, two of the District's biosolids processing trains as equivalent to a Process to Further Reduce Pathogens (PFRP). The PFRP equivalency took effect on August 1, 2002 (<u>Appendix III</u>), and on this basis, all EQ biosolids produced by the Calumet WRP met the Part 503 Class A pathogen requirements of 503.32a8 in 2007.

All Calumet WRP EQ biosolids that were land applied in 2007 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 10</u>), the Class A pathogen limits of Section 503.32a8 (<u>Table 11</u>), and the vector attraction reduction requirements of Section 503.33b1 (<u>Table 10</u>) or Section 503.33b2 (<u>Table 12</u>). Management practices complied with Section 503.14 as previously described in a letter to Mr. Michael J. Mikulka dated January 28, 1994 (<u>Appendix I</u>).

| Sample<br>Date    | TKN    | NH <sub>3</sub> -N | As | Cd | Cu    | Hg          | Мо | Ni  | Pb  | Se  | Zn    |
|-------------------|--------|--------------------|----|----|-------|-------------|----|-----|-----|-----|-------|
|                   |        |                    |    |    | r     | -           |    |     |     |     |       |
|                   |        |                    |    |    | 1     | iig/ui y kg |    |     |     |     |       |
| 05/14-18/07       | 80,152 | 12,367             | 2  | 5  | 807   | 1.52        | 19 | 72  | 46  | 9   | 943   |
| 07/31/07          | 25,343 | 4,749              | 12 | 4  | 394   | 0.69        | 13 | 37  | 89  | 3   | 992   |
| 07/31/07          | 36,729 | 6,122              | 3  | 4  | 762   | 0.86        | 18 | 66  | 56  | 7   | 948   |
| 08/08/07          | 27,861 | 6,400              | 11 | 4  | 376   | 0.61        | 13 | 38  | 99  | 4   | 946   |
| 08/14/07          | 32,041 | 9,431              | 11 | 3  | 375   | 0.64        | 11 | 34  | 96  | 2   | 900   |
| 08/22/07          | 26,902 | 8,149              | 9  | 4  | 394   | 0.54        | 12 | 36  | 96  | 2   | 963   |
| 09/26/07          | 42,892 | 10,541             | 12 | 5  | 441   | 1.15        | 14 | 55  | 124 | 3   | 898   |
| 10/30/07          | 22,406 | 3,840              | 11 | 3  | 380   | 1.02        | 12 | 35  | 106 | 5   | 1,016 |
| 10/30/07          | 24,422 | 3,328              | 11 | 3  | 393   | 0.95        | 14 | 34  | 111 | 5   | 1,061 |
| 11/06/07          | 29,282 | 4,996              | 8  | 3  | 357   | 1.12        | 14 | 32  | 103 | 5   | 992   |
| 11/14/07          | 25,379 | 4,139              | 9  | 3  | 354   | 0.93        | 12 | 32  | 101 | 4   | 973   |
| 11/14/07          | 19,598 | 2,103              | 10 | 4  | 430   | 1.00        | 17 | 34  | 109 | 5   | 977   |
| 11/14/07          | 16,468 | 2,228              | 10 | 4  | 424   | 1.20        | 17 | 34  | 110 | 4   | 979   |
| Minimum           | 16,468 | 2,103              | 2  | 3  | 354   | 0.54        | 11 | 32  | 46  | 2   | 898   |
| Mean <sup>*</sup> | 31,498 | 6,030              | 9  | 4  | 453   | 0.94        | 14 | 42  | 96  | 4   | 968   |
| Maximum           | 80,152 | 12,367             | 12 | 5  | 807   | 1.52        | 19 | 72  | 124 | 9   | 1,061 |
| 503 Limit         | NL     | NL                 | 41 | 39 | 1,500 | 17          | 75 | 420 | 300 | 100 | 2,800 |

TABLE 7: NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS GENERATED AT THE CALUMET WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

<sup>\*</sup>In calculating the mean, values less than the detection limit were considered as the detection limit. NL = No limit.

| Month     | Average<br>Temperature | Average<br>Detention Time | Meets Part 503<br>Class B<br>Requirements | Minimum Detention<br>Time Required<br>by 503.32b3 <sup>**</sup> |
|-----------|------------------------|---------------------------|-------------------------------------------|-----------------------------------------------------------------|
|           | <sup>o</sup> F         | days                      |                                           | days                                                            |
| January   | 96                     | 21.9                      | yes                                       | 15.0                                                            |
| February  | 97                     | 23.6                      | yes                                       | 15.0                                                            |
| March     | 97                     | 20.4                      | yes                                       | 15.0                                                            |
| April     | 97                     | 19.5                      | yes                                       | 15.0                                                            |
| May       | 97                     | 18.3                      | yes                                       | 15.0                                                            |
| June      | 97                     | 17.3                      | yes                                       | 15.0                                                            |
| July      | 96                     | 18.7                      | yes                                       | 15.0                                                            |
| August    | 96                     | 19.0                      | yes                                       | 15.0                                                            |
| September | 97                     | 24.4                      | yes                                       | 15.0                                                            |
| October   | 96                     | 21.3                      | yes                                       | 15.0                                                            |
| November  | 97                     | 22.5                      | yes                                       | 15.0                                                            |
| December  | 96                     | 27.9                      | yes                                       | 15.0                                                            |

## TABLE 8: DIGESTER<sup>\*</sup> TEMPERATURES AND DETENTION TIMES FOR CENTRIFUGE CAKE BIOSOLIDS FROM THE CALUMET WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

\*Temperatures and detention times are for primary digesters 1 through 8 at the Calumet WRP. All biosolids exiting these primary digesters also received additional processing in secondary digesters 9 through 12.

\*\*For anaerobic digestion at average temperature achieved.

## TABLE 9: QUANTITIES OF CALUMET WATER RECLAMATION PLANT AIR-DRIED BIOSOLIDS UTILIZED BY EACH SITE UNDER THE CONTROLLED SOLIDS DISTRIBUTION PROGRAM IN 2007

| User                                                          | Location                                          | Quantity |
|---------------------------------------------------------------|---------------------------------------------------|----------|
|                                                               |                                                   | Dry Tons |
| Andrew High School, Tinley Park                               | School athletic fields                            | 34.0     |
| Arlington Heights Park District, Arlington Heights            | Arlington Heights Golf Course                     | 32.3     |
| Bensenville Park District, Bensenville                        | White Pines Golf Club                             | 87.0     |
| Blue Island Park District, Blue Island Park                   | Centennial Park                                   | 32.1     |
|                                                               | Memorial Park                                     | 29.4     |
| Bremen High School, Midlothian                                | School athletic fields                            | 21.2     |
| Burbank Elementary School, Chicago                            | School athletic fields                            | 101.7    |
| Burbank Park District, Burbank                                | McCarthy Park                                     | 26.3     |
| Burbank Park District, Burbank                                | Fitzgerald Park                                   | 88.9     |
| Champion Lawn Maintenance Inc., Schaumburg                    | Commercial landscaping, Chi-<br>cago <sup>*</sup> | 30.2     |
| Chicago Heights Park District, Chicago Heights                | East Golf Course                                  | 29.3     |
| Coyote Run Golf Course, Flossmoor                             | Golf course                                       | 231.9    |
| Dominican University, River Forest                            | Athletic fields on campus grounds <sup>*</sup>    | 173.9    |
| Driscoll Catholic High School, Addison                        | School athletic fields                            | 32.2     |
| Elmhurst Park District, Elmhurst                              | Plunkett Park                                     | 27.6     |
| ·                                                             | Berens Park                                       | 102.1    |
| Frankfort Park District, Frankfort                            | Founders Park                                     | 29.7     |
| Frankfort Square Park District, Frankfort                     | Hilder Walker Park                                | 69.8     |
| Glenwoodie Golf Course, Glenwood                              | Golf course                                       | 13.6     |
| Hickory Hills Baseball League, Hickory Hills                  | Little league field                               | 20.7     |
| Hickory Hills Golf Course, Hickory Hills                      | Golf course                                       | 31.5     |
| Homer Athletic Club, Homer-Glen                               | Baseball field <sup>*</sup>                       | 221.3    |
| Joliet Country Club, Joliet                                   | Golf course                                       | 59.2     |
| Lakepoint Club Corp./DBA Cinder Ridge, Wil-<br>mington        | Golf course                                       | 212.2    |
| Lombard Park District, Lombard                                | Soccer field at 227 Parkside Ave                  | 32.3     |
| Midlothian Park District                                      | Memorial Park                                     | 279.2    |
| Moody Bible Institute, Chicago                                | Soccer field on campus grounds                    | 14.5     |
| Metropolitan Water Reclamation District of<br>Greater Chicago | Calumet WRP grounds*                              | 99.5     |
| - · · · · · · · · · · · · · · · · · · ·                       | Stickney WRP Research plots <sup>*</sup>          | 17.4     |
| Park District of Franklin Park, Franklin Park                 | Birch Park <sup>*</sup>                           | 133.7    |

## TABLE 9 (Continued): QUANTITIES OF CALUMET WATER RECLAMATION PLANT AIR-DRIED BIOSOLIDS UTILIZED BY EACH SITE UNDER THE CONTROLLED SOLIDS DISTRIBUTION PROGRAM IN 2007

| User                                                      | Location                                                             | Quantity |
|-----------------------------------------------------------|----------------------------------------------------------------------|----------|
|                                                           | -                                                                    | Dry Tons |
| Plainfield School District, Plainfield                    | Plainfield South High School ath-<br>letic fields                    | 86.7     |
|                                                           | Plainfield North High School ath-<br>letic fields                    | 101.3    |
|                                                           | Plainfield Central High School athletic fields                       | 86.3     |
|                                                           | Plainfield East High School ath-<br>letic fields                     | 74.9     |
| Reavis High School, Burbank                               | School athletic fields                                               | 143.0    |
| Ross Design Inc., Lincolnshire                            | Landscaping on office site <sup>*</sup>                              | 32.2     |
| South Suburban Chicago Christian School, Palos<br>Heights | School athletic fields                                               | 31.6     |
| St. Charles Park District, St. Charles                    | Campton Hills Park                                                   | 147.1    |
|                                                           | Potawatomie Golf Course                                              | 283.3    |
| St. Xavier University, Chicago                            | Athletic fields on campus grounds                                    | 70.3     |
| Summit Park District, Summit                              | Main Park                                                            | 465.3    |
| Tinley Park High School, Tinley Park                      | School athletic fields                                               | 83.9     |
| U.S. Army Corps Eng./Chicago Park District,<br>Chicago    | $40^{\text{th}} - 41^{\text{st}}$ Street Shoreline Park <sup>*</sup> | 426.4    |
| Village of South Holland                                  | Veterans Memorial Park <sup>*</sup>                                  | 298.0    |
| Westmont Park District, Westmont                          | Bellerive Park                                                       | 31.8     |
|                                                           | Ty Warner Park                                                       | 42.7     |
|                                                           | Veterans Memorial Park                                               | 41.6     |
| Total                                                     |                                                                      | 4,761.1  |

\*Biosolids were used as soil amendment; all others used as nutrient source for turf growth.

|                |        |                    |                  | *                             |    |    |     |      |          |    |     |    |       |
|----------------|--------|--------------------|------------------|-------------------------------|----|----|-----|------|----------|----|-----|----|-------|
| Sample<br>Date | TKN    | NH <sub>3</sub> -N | TVS <sup>*</sup> | TVS <sup>*</sup><br>Reduction | As | Cd | Cu  | Hg   | Мо       | Ni | Pb  | Se | Zn    |
|                | mg/c   | lry kg             |                  | %                             |    |    |     |      | mg/dry k | g  |     |    |       |
| 05/02/07       | 8,874  | 13                 | 19.6             | 85.1                          | 9  | 7  | 214 | 1.09 | 5        | 34 | 85  | 2  | 651   |
| 05/15/07       | 6,751  | 75                 | 18.9             | 85.8                          | 5  | 7  | 212 | 0.82 | 4        | 35 | 91  | 12 | 626   |
| 05/15/07       | 9,978  | 596                | 31.3             | 72.2                          | 8  | 9  | 329 | 1.20 | 8        | 34 | 108 | 12 | 988   |
| 05/15/07       | 15,007 | 670                | 32.1             | 71.1                          | 8  | 9  | 338 | 1.47 | 9        | 36 | 116 | 11 | 1,027 |
| 05/15/07       | 11,027 | 696                | 29.9             | 74.0                          | 8  | 9  | 331 | 1.01 | 8        | 35 | 118 | 12 | 987   |
| 05/29/07       | 17,668 | 2,052              | 38.7             | 61.4                          | 10 | 8  | 432 | 1.48 | 12       | 38 | 120 | 12 | 1,217 |
| 05/29/07       | 20,671 | 1,805              | 38.7             | 61.5                          | 7  | 8  | 378 | NA   | 11       | 38 | 115 | 14 | 1,205 |
| 05/29/07       | 13,348 | 1,316              | 35.1             | 67.0                          | 4  | 9  | 411 | 1.61 | 16       | 38 | 122 | 10 | 1,219 |
| 060/6/07       | 11,275 | 274                | 29.1             | 74.5                          | 8  | 9  | 291 | 0.62 | 8        | 34 | 104 | 4  | 875   |
| 06/06/07       | 11,795 | 430                | 25.7             | 78.5                          | 6  | 10 | 276 | 0.34 | 8        | 36 | 111 | 5  | 882   |
| 06/13/07       | 15,400 | 139                | 34.6             | 67.1                          | 6  | 9  | 292 | 1.74 | 10       | 36 | 108 | 7  | 948   |
| 06/13/07       | 16,039 | 154                | 28.6             | 75.0                          | 7  | 4  | 462 | 0.77 | 16       | 37 | 99  | 8  | 933   |
| 06/27/07       | 13,945 | 682                | 34.1             | 67.8                          | 11 | 9  | 363 | 1.00 | 11       | 40 | 116 | 17 | 1,046 |
| 06/27/07       | 13,059 | 582                | 34.2             | 67.7                          | 11 | 9  | 386 | 0.88 | 12       | 39 | 117 | 10 | 948   |
| 070/4/07       | 13,766 | 544                | 32.6             | 67.9                          | 13 | 9  | 354 | 0.91 | 12       | 40 | 122 | 16 | 1,035 |
| 07/12/07       | 15,160 | 121                | 33.4             | 66.8                          | 9  | 9  | 383 | 0.95 | 12       | 37 | 130 | 7  | 1,158 |
| 07/24/07       | 13,252 | 122                | 33.4             | 66.8                          | 10 | 9  | 354 | 0.68 | 12       | 37 | 119 | 5  | 1,044 |
| 07/24/07       | 14,293 | 104                | 33.3             | 67.0                          | 9  | 9  | 390 | 0.37 | 13       | 36 | 126 | 9  | 1,105 |
| 07/31/07       | 12,143 | 109                | 31.5             | 69.6                          | 10 | 9  | 369 | 0.80 | 12       | 36 | 124 | 7  | 1,120 |
| 08/08/07       | 13,539 | 39                 | 33.2             | 57.9                          | 11 | 9  | 341 | 0.76 | 12       | 36 | 115 | 7  | 1,048 |
| 09/05/07       | 16,699 | 124                | 37.8             | 56.0                          | 10 | 9  | 447 | 0.72 | 13       | 36 | 133 | 9  | 1,198 |
| 09/05/07       | 15,472 | 148                | 37.1             | 57.3                          | 10 | 9  | 465 | 0.78 | 13       | 38 | 138 | 9  | 1,192 |

# TABLE 10: NITROGEN CONCENTRATIONS, VOLATILE SOLIDS REDUCTION, AND METALS CONCENTRATIONS IN AIR-DRIED BIOSOLIDS FROM THE CALUMET WATER RECLAMATION PLANT APPLIED TO LAND IN 2007

|                    |        |                    |                  |                               |    | LAND | IN 2007 |      |          |     |     |      |       |
|--------------------|--------|--------------------|------------------|-------------------------------|----|------|---------|------|----------|-----|-----|------|-------|
| Sample<br>Date     | TKN    | NH <sub>3</sub> -N | $\mathrm{TVS}^*$ | TVS <sup>*</sup><br>Reduction | As | Cd   | Cu      | Hg   | Mo       | Ni  | Pb  | Se   | Zn    |
|                    | mg/c   | lry kg             |                  | %                             |    |      |         |      | mg/dry l | кg  |     |      |       |
| 09/11/07           | 12,711 | 36                 | 32.7             | 64.8                          | 11 | 10   | 411     | 0.81 | 13       | 39  | 133 | 8    | 1,203 |
| 09/11/07           | 12,852 | 32                 | 31.4             | 66.9                          | 10 | 9    | 392     | 0.67 | 12       | 37  | 133 | 7    | 1,137 |
| 09/11/07           | 9,679  | 304                | 24.9             | 75.9                          | 11 | 9    | 302     | 0.79 | 11       | 36  | 120 | 3    | 842   |
| 09/18/07           | 13,138 | 32                 | 33.0             | 64.3                          | 10 | 9    | 365     | 1.15 | 12       | 37  | 130 | 7    | 1,124 |
| 10/17/07           | 11,312 | 49                 | 29.9             | 72.2                          | 11 | 10   | 395     | 1.07 | 13       | 38  | 133 | 8    | 1,163 |
| 10/17/07           | 13,023 | 37                 | 31.8             | 69.6                          | 10 | 9    | 354     | 1.23 | 11       | 34  | 122 | 7    | 1,068 |
| 10/25/07           | 12,970 | 54                 | 29.1             | 73.3                          | 11 | 9    | 362     | 1.02 | 11       | 36  | 125 | 5    | 1,042 |
| 11/06/07           | 10,237 | 28                 | 23.8             | 86.0                          | 8  | 9    | 317     | 0.98 | 10       | 35  | 123 | 6    | 978   |
| 110/6/07           | 9,702  | 46                 | 26.6             | 83.8                          | 9  | 9    | 309     | 0.82 | 10       | 34  | 119 | 6    | 947   |
| 11/06/07           | 10,744 | 30                 | 26.7             | 83.7                          | 9  | 9    | 306     | 1.19 | 10       | 34  | 113 | 6    | 928   |
| 11/06/07           | 9,161  | 28                 | 21.5             | 87.7                          | 10 | 5    | 291     | 0.81 | 11       | 35  | 110 | 3    | 694   |
| 11/06/07           | 11,454 | 23                 | 27.3             | 83.2                          | 10 | 6    | 326     | 1.02 | 12       | 36  | 122 | 3    | 774   |
| 11/06/07           | 11,498 | 33                 | 25.4             | 84.7                          | 11 | 5    | 305     | 1.34 | 12       | 37  | 115 | 1.4  | 715   |
| 11/14/07           | 15,479 | 54                 | 29.9             | 80.9                          | 9  | 5    | 339     | 1.35 | 13       | 36  | 102 | 3    | 787   |
| 11/14/07           | 13,176 | 22                 | 31.8             | 79.1                          | 10 | 5    | 373     | 0.97 | 14       | 38  | 110 | 4    | 843   |
| 11/21/07           | 10,784 | 16                 | 31.2             | 79.7                          | 12 | 4    | 312     | 0.85 | 14       | 38  | 91  | 3    | 728   |
| 11/21/07           | 11,317 | 28                 | 35.9             | 74.9                          | 12 | 5    | 425     | 1.07 | 14       | 39  | 115 | 2    | 886   |
| 11/27/07           | 9,288  | 23                 | 28.0             | 82.5                          | 11 | 4    | 313     | 1.11 | 12       | 42  | 93  | <1.4 | 679   |
| Minimum            | 6,751  | 13                 | 18.9             | 56.0                          | 4  | 4    | 212     | 0.34 | 4        | 34  | 85  | <1.4 | 626   |
| Mean <sup>**</sup> | 12,692 | 292                | 30.6             | 72.8                          | 9  | 8    | 350     | 0.98 | 11       | 37  | 116 | 7    | 975   |
| Maximum            | 20,671 | 2,052              | 38.7             | 87.7                          | 13 | 10   | 465     | 1.74 | 16       | 42  | 138 | 17   | 1,219 |
| 503 Limit          | NL     | NL                 | NL               | 38                            | 41 | 39   | 1,500   | 17   | 75       | 420 | 300 | 100  | 2,800 |

## TABLE 10 (Continued): NITROGEN CONCENTRATIONS, VOLATILE SOLIDS REDUCTION, AND METALS CONCENTRATIONS IN AIR-DRIED BIOSOLIDS FROM THE CALUMET WATER RECLAMATION PLANT APPLIED TO

## TABLE 10 (Continued): NITROGEN CONCENTRATIONS, VOLATILE SOLIDS REDUCTION, AND METALS CONCENTRATIONS IN AIR-DRIED BIOSOLIDS FROM THE CALUMET WATER RECLAMATION PLANT APPLIED TO LAND IN 2007

| Sample<br>Date | TKN  | NH <sub>3</sub> -N | $TVS^*$ | TVS <sup>*</sup><br>Reduction | As | Cd | Cu | Hg | Mo       | Ni | Pb | Se | Zn |
|----------------|------|--------------------|---------|-------------------------------|----|----|----|----|----------|----|----|----|----|
|                | mg/o | dry kg             |         | - %                           |    |    |    |    | mg/dry k | g  |    |    |    |

<sup>\*</sup>TVS = Total Volatile Solids.

<sup>\*\*</sup>In calculating the mean, values less than the detection limit were considered as the detection limit.

NA = No analysis.

NL = No limit: not applicable.

| Sample Date | Lagoon Source | Total Solids | Fecal Coliform |
|-------------|---------------|--------------|----------------|
|             |               | %            | No./g          |
| 04/19/2007  | 6             | 77.7         | 37             |
| 04/19/2007  | 6             | 72.2         | 53             |
| 04/23/2007  | 7             | 73.8         | 51             |
| 05/08/2007  | 7             | 79.8         | 5              |
| 05/22/2007  | 7             | 79.0         | 64             |
| 06/12/2007  | 7             | 72.0         | 14             |
| 08/14/2007  | 3             | 68.4         | 100            |
| 09/11/2007  | 3             | 69.7         | 72             |
| 10/09/2007  | 3             | 75.9         | 38             |
|             |               |              |                |

# TABLE 11: DATA FOR MONITORING PART 503 CLASS A PATHOGEN COMPLIANCEAT THE CALUMET WATER RECLAMATION PLANT IN 2007

| Test Start  | Befo   | re Test          | Afte | r Test | Volatile Solid            | ls Reduction |
|-------------|--------|------------------|------|--------|---------------------------|--------------|
| Date        | $TS^*$ | TVS <sup>*</sup> | TS   | TVS    | By Equation <sup>**</sup> | By Mass      |
|             |        |                  |      | ó      |                           |              |
| 01/04/07*** | 2.06   | 52.74            | 1.87 | 47.36  | 19.4                      | 18.5         |
| 02/08/07    | 2.09   | 53.14            | 1.95 | 48.58  | 16.7                      | 14.5         |
| 03/01/07    | 1.76   | 52.86            | 1.70 | 50.67  | 8.4                       | 7.7          |
| 04/19/07    | 2.73   | 50.32            | 2.55 | 47.56  | 10.5                      | 11.9         |
| 05/18/07    | 2.39   | 51.27            | 2.24 | 47.04  | 15.6                      | 13.9         |
| 05/31/07    | 2.33   | 50.35            | 2.18 | 47.46  | 10.9                      | 11.8         |
| 06/07/07    | 2.29   | 50.54            | 2.17 | 46.70  | 14.3                      | 12.4         |
| 07/12/07    | 2.30   | 50.16            | 2.18 | 46.87  | 12.3                      | 11.4         |
| 08/09/07    | 2.34   | 50.11            | 2.22 | 45.69  | 16.2                      | 13.4         |
| 08/23/07    | 2.88   | 46.78            | 2.72 | 43.20  | 13.5                      | 13.0         |
| 09/07/07    | 2.91   | 45.88            | 2.78 | 42.88  | 11.4                      | 10.7         |
| 10/04/07    | 2.12   | 47.09            | 2.01 | 44.15  | 11.2                      | 11.1         |
| 11/08/07    | 2.09   | 49.67            | 1.95 | 46.50  | 11.9                      | 12.4         |
| 12/14/07    | 1.96   | 54.03            | 1.83 | 52.77  | 4.9                       | 8.6          |

## TABLE 12: SUMMARY OF RESULTS OF ADDITIONAL ANAEROBIC DIGESTION TESTS FOR VOLATILE SOLIDS REDUCTION AT THE CALUMET WATER RECLAMATION PLANT FOLLOWING OPTION 2 OF SECTION 503.33(b)

\*TS = Total Solids content, TVS = Total Volatile Solids content.
\*\* The Van Kleeck Equation was used in calculations.
\*\*\* According to <u>Table 10</u>, volatile solids reduction greater than 38 percent achieved in January.

## STICKNEY WRP

#### **Treatment Plant and Biosolids Process Train Description**

The Stickney WRP, located in Stickney, Illinois, has a design capacity of 1,200 mgd. Wastewater reclamation processes include primary (Imhoff and primary settling) and secondary (activated sludge process) treatment. All solids produced at this WRP are anaerobically digested. Stickney WRP biosolids are then:

- a. Placed into lagoons for dewatering, aging, and stabilization, and then transported to paved cells and air-dried prior to:
  - 1. Application to land as EQ biosolids under the District's Controlled Solids Distribution Permit.
  - 2. Use at local municipal solid waste landfills as final landfill cover.
  - 3. Disposal in local municipal solid waste landfills.
- b. Dewatered by centrifuging to approximately 25 percent solids content, and then applied to land by a private contractor as a Class B cake.
- c. Dewatered by centrifuging to approximately 25 percent solids content, transported to paved cells, and air-dried prior to use as daily landfill cover.
- d. Dewatered by centrifuging to approximately 25 percent solids content, placed into lagoons for aging and stabilization, and transported to paved cells and airdried prior to:
  - 1. Application to land as EQ biosolids under the District's Controlled Solids Distribution Permit.
  - 2. Use at local municipal solid waste landfills as final landfill cover.
  - 3. Disposal in local municipal solid waste landfills.

In 2007, the total biosolids production at the Stickney WRP was 119,821 dry tons (<u>Table 1</u>). This total includes biosolids generated from processing of sludge originating at the Stickney WRP as well as the sludge that was imported from the North Side and Lemont WRPs for further processing. The quantity of biosolids that were used and disposed of (90,070 dry tons) was less than the total 2007 production for the Stickney WRP due to a net storage of biosolids in lagoons and on drying cells.

#### Summary of Use and Disposal at Landfills

In 2007, the Stickney WRP sent 31,874 dry tons of biosolids to landfills. Of this amount, 14,378 dry tons were used as daily cover, 9,987 dry tons were used as final cover, and 7,509 dry tons were co-disposed with municipal solid waste. These practices are exempt from the Part 503 Regulations and require no further reporting.

#### Land Application of Centrifuge Cake Biosolids

In 2007, the Stickney WRP land applied 56,603 dry tons of centrifuge cake biosolids to farmland under IEPA Permit No. 2004-SC-0701 through contracts with Synagro Midwest, Inc. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is 12 times per year.

All Stickney WRP centrifuge cake biosolids that were land applied in 2007 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 13</u>), the Class B pathogen anaerobic digester time and temperature requirements of Section 503.32b3 (<u>Table 14</u>), and the vector attraction reduction requirements of Section 503.33b10. <u>Table 13</u> also contains the biosolids nitrogen concentration data that were used by the land applier to compute the agronomic loading rates at the farmland sites.

#### Land Application of Aged, Air-Dried Biosolids

In 2007, 275 dry tons of air-dried EQ biosolids from the Stickney WRP were land applied at Land of Lincoln Tree Nursery Inc., Oregon, Illinois, through the District's Controlled Solids Distribution Program under IEPA Permit No. 2005-SC-3793. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is once per year.

These air-dried biosolids at the Stickney WRP were not generated by the PFRP equivalent processing train. Therefore, the biosolids were tested for Class A compliance in accordance with Section 503.32a5.

All Stickney EQ biosolids that were land applied in 2006 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 15</u>), the Class A pathogen limits of Section 503.32a5 (<u>Table 16</u>), and the vector attraction reduction requirements of Section 503.33b1 (<u>Table 15</u>) or Section 503.33b2 (<u>Table 12</u>). Management practices complied with Section 503.14 as previously described in a letter to Mr. Michael J. Mikulka dated January 28, 1994 (<u>Appendix I</u>).

In 2007, 765 dry tons of air-dried Class B biosolids from the Stickney WRP were land applied at Land of Lincoln Tree Nursery Inc., Oregon, Illinois, through the District's Controlled Solids Distribution Program under IEPA Permit No. 2005-SC-3793. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is four times per year.

| Sample<br>Date | TKN    | NH <sub>3</sub> -N | As | Cd | Cu  | Hg          | Мо | Ni | Pb  | Se | Zn  |
|----------------|--------|--------------------|----|----|-----|-------------|----|----|-----|----|-----|
|                |        |                    |    |    |     | mg/dry kg - |    |    |     |    |     |
| 01/08/07       | 41,952 | 6,194              | <5 | 3  | 337 | 1.22        | 12 | 44 | 121 | <4 | 785 |
| 01/31/07       | 30,188 | 6,313              | <5 | 5  | 449 | 1.70        | 21 | 69 | 161 | <4 | 965 |
| 02/06/07       | 39,281 | 8,712              | <5 | 3  | 387 | 0.75        | 13 | 46 | 122 | <4 | 821 |
| 02/07/07       | 37,900 | 6,971              | <5 | 4  | 382 | 0.75        | 13 | 46 | 113 | <4 | 815 |
| 03/05/07       | 58,169 | 6,609              | <5 | 4  | 345 | 0.37        | 13 | 44 | 99  | <4 | 735 |
| 03/13/07       | 50,877 | 8,459              | <5 | 4  | 370 | 0.94        | 14 | 48 | 127 | <4 | 791 |
| 04/09/07       | 44,687 | 6,252              | <5 | 4  | 364 | 1.01        | 12 | 43 | 124 | <4 | 787 |
| 04/19/07       | 53,621 | 10,434             | <5 | 4  | 364 | 0.49        | 13 | 54 | 107 | 7  | 737 |
| 04/23/07       | 47,859 | 8,298              | <5 | 4  | 374 | 0.87        | 12 | 50 | 111 | <4 | 756 |
| 04/24/07       | 26,445 | 6,255              | <5 | 4  | 449 | 1.61        | 18 | 57 | 142 | <4 | 887 |
| 05/3-5/07      | 38,980 | 8,309              | <5 | 4  | 388 | 0.30        | 15 | 53 | 141 | 5  | 835 |
| 05/07/07       | 41,779 | 5,273              | <5 | 3  | 346 | 1.22        | 11 | 40 | 114 | <4 | 764 |
| 05/07-12/07    | 38,227 | 8,866              | <5 | 4  | 355 | 0.74        | 14 | 50 | 120 | 5  | 789 |
| 05/21/07       | 30,177 | 4,726              | <5 | 4  | 425 | 0.98        | 19 | 55 | 138 | <4 | 861 |
| 06/04/07       | 42,397 | 9,657              | <5 | 4  | 410 | 1.03        | 16 | 47 | 139 | 4  | 858 |
| 06/04/07       | 35,139 | 5,718              | <5 | 4  | 491 | 1.03        | 25 | 55 | 136 | 8  | 958 |
| 06/04/07       | 45,372 | 4,699              | <5 | 3  | 379 | 0.79        | 15 | 38 | 118 | <4 | 800 |
| 07/02-03/07    | 39,154 | 8,582              | <5 | 4  | 384 | 0.62        | 14 | 47 | 134 | <4 | 824 |
| 07/07/07       | 27,192 | 4,829              | <5 | 4  | 436 | 0.82        | 19 | 54 | 135 | <4 | 831 |
| 07/09/07       | 36,229 | 4,099              | <5 | 3  | 396 | 0.73        | 14 | 39 | 130 | <4 | 888 |
| 07/09-11/07    | 24,796 | 4,708              | <5 | 4  | 447 | 0.81        | 19 | 55 | 148 | <4 | 864 |

## TABLE 13: NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDSFROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

| Sample<br>Date | TKN    | NH <sub>3</sub> -N | As | Cd | Cu  | Hg          | Мо | Ni | Pb  | Se | Zn    |
|----------------|--------|--------------------|----|----|-----|-------------|----|----|-----|----|-------|
|                |        |                    |    |    | ]   | mg/dry kg - |    |    |     |    |       |
| 7/12/07        | 30,280 | 3,433              | <5 | 4  | 413 | 0.99        | 11 | 46 | 126 | <4 | 920   |
| 07/12-14/07    | 20,372 | 3,856              | <5 | 4  | 487 | 0.97        | 21 | 59 | 162 | <4 | 924   |
| 07/16/07       | 36,175 | 7,157              | <5 | 3  | 660 | 1.10        | 21 | 70 | 119 | <4 | 879   |
| 07/21/07       | 38,435 | 8,054              | <5 | 4  | 471 | 0.76        | 22 | 52 | 141 | <4 | 911   |
| 07/23-26/07    | 30,907 | 7,424              | <5 | 4  | 457 | 0.97        | 21 | 51 | 133 | 6  | 942   |
| 07/30/07       | 32,390 | 8,074              | <5 | 4  | 452 | 0.78        | 19 | 51 | 134 | 5  | 865   |
| 07/31/07       | 44,453 | 13,033             | <5 | 5  | 524 | 0.30        | 17 | 59 | 168 | 8  | 1,133 |
| 08/01-03/07    | 51,756 | 13,040             | <5 | 4  | 382 | 0.70        | 14 | 48 | 127 | <4 | 892   |
| 08/02/07       | 37,603 | 6,907              | <5 | 3  | 384 | 0.63        | 12 | 46 | 115 | 4  | 823   |
| 08/09/07       | 36,847 | 4,460              | <5 | 3  | 403 | 0.67        | 15 | 40 | 148 | <4 | 935   |
| 08/11/07       | 49,815 | 15,001             | <5 | 4  | 378 | 0.71        | 13 | 46 | 106 | <4 | 819   |
| 08/13-17/07    | 43,543 | 10,560             | <5 | 5  | 381 | 0.82        | 15 | 49 | 130 | <4 | 908   |
| 08/17-18/07    | 32,131 | 6,827              | 10 | 4  | 449 | 0.63        | 13 | 53 | 137 | <4 | 945   |
| 08/30-31/07    | 27,303 | 5,938              | 12 | 4  | 485 | 0.72        | 13 | 54 | 138 | 5  | 920   |
| 08/30-31/07    | 35,930 | 7,069              | <5 | 3  | 412 | 0.90        | 16 | 44 | 152 | <4 | 962   |
| 09/01/07       | 40,692 | 9,108              | <5 | 3  | 393 | 1.18        | 15 | 43 | 148 | <4 | 917   |
| 09/04/07       | 33,993 | 3,064              | <5 | 4  | 416 | 0.55        | 13 | 44 | 158 | 4  | 929   |
| 09/04-06/07    | 36,553 | 8,309              | <5 | 3  | 391 | 1.41        | 15 | 42 | 147 | <4 | 900   |
| 09/04-06/07    | 21,093 | 6,074              | 13 | 5  | 482 | 0.78        | 15 | 58 | 150 | <4 | 1,007 |
| 09/06/07       | 46,863 | 13,122             | <5 | 4  | 391 | 1.09        | 16 | 47 | 127 | <4 | 850   |
| 09/10/07       | 46,767 | 8,461              | 9  | 5  | 456 | 0.67        | 14 | 53 | 117 | <4 | 890   |
|                |        |                    |    |    |     |             |    |    |     |    |       |

# TABLE 13 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDSFROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

| Sample<br>Date | TKN    | NH <sub>3</sub> -N | As | Cd | Cu  | Hg          | Mo | Ni | Pb  | Se | Zn  |
|----------------|--------|--------------------|----|----|-----|-------------|----|----|-----|----|-----|
| -              |        |                    |    |    |     | mg/dry kg - |    |    |     |    |     |
| 09/12/07       | 34,121 | 6,037              | <5 | 4  | 391 | 0.59        | 15 | 43 | 153 | <4 | 946 |
| 09/12/07       | 45,802 | 7,829              | 9  | 7  | 446 | 0.70        | 14 | 52 | 120 | 4  | 876 |
| 09/12-15/07    | 47,239 | 11,798             | <5 | 4  | 405 | 1.27        | 15 | 48 | 126 | <4 | 890 |
| 09/13-14/07    | 42,879 | 7,727              | 8  | 5  | 468 | 1.06        | 14 | 53 | 119 | <4 | 920 |
| 09/15/07       | 39,601 | 7,989              | 9  | 6  | 458 | 0.85        | 14 | 54 | 115 | <4 | 877 |
| 09/17/07       | 41,099 | 12,030             | 12 | 6  | 470 | 0.78        | 14 | 54 | 117 | 5  | 901 |
| 09/17-22/07    | 51,272 | 14,550             | <5 | 4  | 431 | 0.96        | 14 | 60 | 120 | <4 | 881 |
| 09/18-20/07    | 58,197 | 11,173             | 13 | 5  | 459 | 1.02        | 14 | 56 | 131 | <4 | 918 |
| 09/21-22/07    | 42,892 | 10,541             | 12 | 5  | 441 | 1.15        | 14 | 55 | 124 | <4 | 898 |
| 09/24-25/07    | 46,582 | 7,756              | 11 | 4  | 274 | 0.97        | 12 | 34 | 93  | 5  | 721 |
| 09/24-25/07    | 52,880 | 15,504             | <5 | 4  | 390 | 1.10        | 14 | 50 | 120 | 4  | 837 |
| 10/01/07       | 41,685 | 3,524              | <5 | 3  | 393 | 1.14        | 15 | 41 | 145 | <4 | 888 |
| 10/05/07       | 42,348 | 9,758              | <5 | 4  | 393 | 0.91        | 14 | 48 | 107 | <4 | 815 |
| 10/06-08/07    | 50,073 | 10,124             | <5 | 4  | 384 | 1.41        | 14 | 51 | 126 | <4 | 863 |
| 10/09-13/07    | 50,466 | 15,124             | <5 | 4  | 371 | 0.98        | 14 | 51 | 120 | <4 | 827 |
| 10/15/07       | 50,651 | 16,317             | <5 | 4  | 384 | 0.84        | 14 | 52 | 124 | <4 | 868 |
| 10/22-25/07    | 45,955 | 13,631             | <5 | 4  | 376 | 4.15        | 14 | 48 | 126 | 5  | 857 |
| 10/25/07       | 31,439 | 6,671              | <5 | 4  | 398 | 0.89        | 12 | 42 | 149 | <4 | 931 |
| 10/26/07       | 49,069 | 14,954             | <5 | 4  | 412 | 0.78        | 14 | 52 | 120 | <4 | 893 |
| 10/30-31/07    | 50,031 | 15,160             | <5 | 5  | 411 | 0.74        | 16 | 49 | 118 | 4  | 890 |

## TABLE 13 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDSFROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

| Sample<br>Date    | TKN    | NH <sub>3</sub> -N | As | Cd | Cu    | Hg          | Mo | Ni  | Pb  | Se  | Zn    |
|-------------------|--------|--------------------|----|----|-------|-------------|----|-----|-----|-----|-------|
| -                 |        |                    |    |    |       | mg/dry kg · |    |     |     |     |       |
| 11/01-03/07       | 50,572 | 11,660             | <5 | 4  | 418   | 0.97        | 15 | 51  | 148 | 4   | 949   |
| 11/02-07/07       | 35,212 | 7,667              | 10 | 4  | 460   | 0.89        | 13 | 52  | 122 | 4   | 885   |
| 11/05-09/07       | 47,891 | 9,156              | <5 | 4  | 403   | 0.87        | 14 | 49  | 124 | 4   | 897   |
| 11/06/07          | 48,298 | 5,282              | 7  | 3  | 383   | 1.05        | 15 | 40  | 121 | <4  | 803   |
| 11/09-10/07       | 35,027 | 6,717              | <5 | 4  | 392   | 1.20        | 14 | 43  | 150 | <4  | 930   |
| 11/15/07          | 38,126 | 7,522              | <5 | 4  | 389   | 1.11        | 14 | 42  | 151 | <4  | 921   |
| 12/04/07          | 49,353 | 5,975              | <5 | 3  | 379   | 0.78        | 15 | 37  | 102 | 4   | 759   |
| Minimum           | 20,372 | 3,064              | <5 | 3  | 274   | 0.30        | 11 | 34  | 93  | <4  | 721   |
| Mean <sup>*</sup> | 40,914 | 8,480              | 6  | 4  | 413   | 0.95        | 15 | 49  | 130 | 4   | 873   |
| Maximum           | 58,197 | 16,317             | 13 | 7  | 660   | 4.15        | 25 | 70  | 168 | 8   | 1,133 |
| 503 Limit         | NL     | NL                 | 41 | 39 | 1,500 | 17          | 75 | 420 | 300 | 100 | 2,800 |

## TABLE 13 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDSFROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

\*In calculating the mean, values less than the detection limit were considered as the detection limit.

.

NL = No limit.

| Month     | Average<br>Temperature | Average<br>Detention<br>Time | Meets Part 503<br>Class B<br>Requirements | Minimum Detention<br>Time Required<br>by 503.32b3* |
|-----------|------------------------|------------------------------|-------------------------------------------|----------------------------------------------------|
|           | °F                     | days                         |                                           | days                                               |
| January   | 97                     | 23.3                         | yes                                       | 15.0                                               |
| February  | 97                     | 24.4                         | yes                                       | 15.0                                               |
| March     | 96                     | 18.7                         | yes                                       | 15.0                                               |
| April     | 97                     | 22.8                         | yes                                       | 15.0                                               |
| May       | 98                     | 21.5                         | yes                                       | 15.0                                               |
| June      | 98                     | 20.2                         | yes                                       | 15.0                                               |
| July      | 98                     | 25.4                         | yes                                       | 15.0                                               |
| August    | 97                     | 29.2                         | yes                                       | 15.0                                               |
| September | 98                     | 27.7                         | yes                                       | 15.0                                               |
| October   | 97                     | 27.3                         | yes                                       | 15.0                                               |
| November  | 97                     | 26.4                         | yes                                       | 15.0                                               |
| December  | 97                     | 24.5                         | yes                                       | 15.0                                               |

## TABLE 14: DIGESTER TEMPERATURES AND DETENTION TIMES FOR CENTRIFUGE CAKE BIOSOLIDS GENERATED AT THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2007

\*For anaerobic digestion at average temperature achieved.

### TABLE 15: NITROGEN CONCENTRATIONS, VOLATILE SOLIDS REDUCTION, AND METALS CONCENTRATIONS IN AIR-DRIED BIOSOLIDS FROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO LAND IN 2007

| Sample<br>Date     | TKN    | NH <sub>3</sub> -N | TVS* | TVS <sup>*</sup><br>Reduction | As | Cd | Cu    | Hg   | Mo       | Ni  | Pb  | Se  | Zn    |
|--------------------|--------|--------------------|------|-------------------------------|----|----|-------|------|----------|-----|-----|-----|-------|
|                    | mg/c   | lry kg             |      | %                             |    |    |       | n    | ng/dry k | g   |     |     |       |
| 10/10-11/07        | 10,566 | 140                | 31.7 | 66.9                          | <5 | 5  | 391   | 0.89 | 13       | 48  | 131 | <4  | 868   |
| 10/24/07           | 17,039 | 603                | 36.1 | 59.7                          | <5 | 5  | 395   | 0.99 | 15       | 50  | 139 | 4   | 905   |
| 10/25/07           | 17,140 | 2,772              | 36.8 | 58.4                          | <5 | 5  | 433   | 1.02 | 15       | 54  | 133 | <4  | 951   |
| 11/07-08/07        | 22,055 | 3,957              | 35.9 | 69.5                          | <5 | 6  | 432   | 0.85 | 15       | 53  | 139 | <4  | 965   |
| Minimum            | 10,566 | 140                | 31.7 | 58.4                          | <5 | 5  | 391   | 0.89 | 13       | 48  | 131 | <4  | 868   |
| Mean <sup>**</sup> | 16,700 | 1,868              | 35.1 | 63.6                          | 5  | 5  | 413   | 0.85 | 14       | 51  | 136 | 4   | 922   |
| Maximum            | 22,055 | 3,957              | 36.8 | 69.5                          | <5 | 6  | 433   | 0.94 | 15       | 54  | 139 | 4   | 965   |
| 503 Limit          | NL     | NL                 | NL   | 38                            | 41 | 39 | 1,500 | 17   | 75       | 420 | 300 | 100 | 2,800 |

<sup>\*</sup>TVS = Total Volatile Solids. <sup>\*\*</sup>In calculating the mean, values less than the detection limit were considered as the detection limit.

NL = No limit.

## TABLE 16: DATA FOR MONITORING PART 503 CLASS A PATHOGEN COMPLIANCE AT THE STICKNEY WATER RECLAMATION PLANT IN 2007

|   | Sample Date | Lagoon Source | Total Solids | Helminth Ova        | Enteric Virus        | Fecal Coliform |
|---|-------------|---------------|--------------|---------------------|----------------------|----------------|
| _ |             |               | %            | MPN <sup>1</sup> /g | PFU <sup>2</sup> /4g | No./g          |
|   | 06/05/2007  | 27            | 22.2         | 0.2400              | < 0.800              |                |
|   | 07/10/2007  | 27            | 75.4         |                     |                      | 130            |
|   | 07/10/2007  | 27            | 28.8         | < 0.0800            | < 0.800              |                |
|   | 08/07/2007  | 27            | 69.1         |                     |                      | 5              |
|   |             |               |              |                     |                      |                |

 ${}^{1}$ MPN = Most Probable Number.  ${}^{2}$ PFU = Plaque-forming Unit.

These air-dried biosolids that were land applied met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 15</u>), the Class B pathogen anaerobic digester time and temperature requirements of limits of Section 503.32b3 (<u>Table 14</u>), and the vector attraction reduction requirements of Section 503.33b1. (<u>Table 15</u>). Management practices complied with Section 503.14 as previously described in a letter to Mr. Michael J. Mikulka dated January 28, 1994 (<u>Appendix I</u>

#### **Centrifuge Cake Biosolids to Pelletizing Facility**

In 2007, the Stickney WRP sent 553 dry tons of centrifuge cake biosolids to the pelletizing facility owned and operated by Metropolitan Biosolids Management, LLC, Stickney, Illinois under Contract No. 98-RFP-10. Metropolitan Biosolids Management is responsible for final utilization of these biosolids.

### DISTRICT BIOSOLIDS DISTRIBUTED TO LANDFILLS UNDER 40 CFR PARTS 258 AND 261

Biosolids from two of the District's WRPs (Stickney and Calumet) were sent to landfills in 2007 for co-disposal with municipal solid waste, use as daily cover, and use as final cover. Biosolids going to these landfills are either processed to meet the requirements of AS 95-4, AS 98-5, and AS 03-02 (Adjusted Standards) approved by the Illinois Pollution Control Board for biosolids used as a final vegetative cover, or they are centrifuged and air-dried to various end points, and analyzed as specified in 40 CFR Part 261 to establish the nonhazardous nature of this material for biosolids used as daily cover and co-disposed. Analytical results, including TCLP constituents, PCB, cyanide, sulfide, and paint filter test, are submitted to the landfill company to satisfy the requirements of their IEPA permit. District biosolids have always met the requirements of 40 CFR Parts 258 and 261, and the Illinois nonhazardous waste landfill regulations (Title 35, Subtitle G, Chapter I, Subchapter h, Part 810).

### Stickney WRP

In 2007, a total of 31,874 dry tons of biosolids from the Stickney WRP were co-disposed, used as daily cover with municipal solid waste, or used as a final vegetative cover at nonhazardous waste landfills in 2007.

A total of 7,509 dry tons were co-disposed at Land and Lakes River Bend Prairie Landfill, Dolton, Illinois.

Biosolids used as landfill daily cover were 3,512 dry tons at Onyx Landfill, Rockford, Illinois, and 10,866 dry tons at Veola ES Orchard Hills Landfill, Davis Junction, Illinois.

Biosolids used as landfill final cover were 9,405 dry tons at Heartland Landfill, Forest View, Illinois, and 582 dry tons at Paxton 1 Landfill, Chicago, Illinois.

#### **Calumet WRP**

In 2007, a total of 12,997 dry tons of biosolids from the Calumet WRP were co-disposed, or used as final cover. A total of 1,908 dry tons of biosolids from the Calumet WRP were co-disposed with municipal solid waste at Land and Lakes River Bend Prairie Landfill, Dolton, Illinois.

A total of 11,089 dry tons were used as final cover at CDT Landfill, Rockdale, Illinois.

## APPPENDIX I

## BIOSOLIDS MANAGEMENT PROGRAMS OF THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO UNDER 40 CFR PART 503

## APPENDIX II

# REDUCTION IN FREQUENCY OF MONITORING FOR PATHOGENS IN BIOSOLIDS

## APPPENDIX III

## DESIGNATION OF SITE-SPECIFIC EQUIVALENCY TO PFRP FOR DISTRICT BIOSOLIDS PROCESSING TRAINS