

Metropolitan Water Reclamation District of Greater Chicago

RESEARCH AND DEVELOPMENT DEPARTMENT

REPORT NO. 06-72

MONTHLY REPORT OF THE FULTON COUNTY

ENVIRONMENTAL PROTECTION SYSTEM

SEPTEMBER 2006

DECEMBER 2006

BOARD OF COMMISSIONERS Terrence J. O'Brien President Kathleen Therese Meany Vice President Gloria Alitto Majewski Chairman of Finance Frank Avila James C. Harris Barbara J. McGowan Cynthia M. Santos Patricia Young Harry "Bus" Yourell

Metropolitan Water Reclamation District of Greater Chicago

CHICAGO, ILLINOIS 60611-3154

100 EAST ERIE STREET

Louis Kollias, P.E., BCEE Director of Research and Development

312.751.5190

December 7, 2006

312.751.5600

Mr. S. Alan Keller, P.E. Manager, Permit Section Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

Dear Mr. Keller:

Attached for your information and use is the September 2006 monthly report of the Fulton County Environmental Protection System.

Very truly yours,

Louis Kollias Director Research and Development

LK:GT:spy Attachment		
cc w/enc.:	Mr. Valdis	s Aistars, USEPA Region V
	Mr. Ash S	aijad, USEPA Region V
	Mr. Matth	ew Williams, USEPA Region V
	IEPA Perr	nit Section, Springfield
	IEPA Surv	veillance Section. Peoria
	Chairman	of the Fulton County Board
	Fulton Co	unty Board of Health
	Fulton Co	unty Zoning Office
	Drs.:	Granato
	2150	O'Connor
		Cox
	Messrs ·	Jamiun
	1100010	Sobanski
		Quintanilla
		Ryzak
	Library	ity Zur

Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, IL 60611-2803(312) 751-5600

ENVIRONMENTAL PROTECTION SYSTEM

REPORT FOR FULTON COUNTY, ILLINOIS

SEPTEMBER 2006

Research and Development Department G. Tian A. Cox

December 2006

TABLE OF CONTENTS

FOREWORD	ii
LIST OF TABLES	iii
LIST OF FIGURES	iv
ACKNOWLEDGMENT	v
DISCLAIMER	v
DEWATERED BIOSOLIDS REPORT	1
WATER ANALYSIS REPORT	2
CLIMATOLOGICAL OBSERVATIONS	8
RECLAMATION OF COAL REFUSE PILES WITH BIOSOLIDS	10

FOREWORD

The data and information in this report fulfill the frequency of monitoring and the reporting requirements for the Land Application of Biosolids at the Fulton County Land Reclamation Project as specified in the Illinois Environmental Protection Agency Permit No. 2005-SC-5073 for September 2006.

LIST OF TABLES

Table No.	-	Page
1	Fulton County Land Reclamation Project Field Runoff Basin Discharge Data September 2006	4
2	Field Runoff Basin Log at the Fulton County Land Reclamation Project for September 2006	5
3	Fulton County Land Reclamation Project Well Data September 2006	7
4	Record of Climatological Observations for September 2006, Fulton County, Illinois, Station SEQ, Sec. 10, R3E, T6N	9
5	Analysis of Water from Lysimeters on the Reclaimed St. David Coal Refuse Pile Site Sampled on September 20, 2006	12
6	Analysis of Water from Drainage Tiles on the Reclaimed St. David Coal Refuse Pile Site Sampled on September 20, 2006	17
7	Analysis of Water From Lysimeters on the Reclaimed Morgan Mine Coal Refuse Pile Site Sampled on September 20, 2006	18
8	Analysis of Water From Lysimeters on the Reclaimed United Electric Coal Refuse Pile Site Sampled on September 20, 2006	19

LIST OF FIGURES

Figure No.	-	Page
1	Farm Fields and Runoff Basins at the Land Reclamation Project at Ful- ton County, Illinois	3
2	Water Monitoring Locations at the Land Reclamation Project at Fulton County, Illinois	6
3	St. David Coal Refuse Pile Reclamation Site	11

ACKNOWLEDGMENT

Thanks are due to the staff of the Analytical Laboratories Division for assistance in conducting analyses and Ms. Sabina Yarn for typing this report.

DISCLAIMER

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, IL 60611-2803(312) 751-5600

FULTON COUNTY

DEWATERED BIOSOLIDS REPORT

September 2006

DEWATERED BIOSOLIDS REPORT

No dewatered biosolids were applied to fields during the month of September 2006. In addition, no supernatant was available for application to fields during this month. The last supernatant application was made in 1995, and the last biosolids application was made in 2004.

Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, IL 60611-2803(312) 751-5600

FULTON COUNTY

WATER ANALYSIS REPORT

September 2006

WATER ANALYSIS REPORT

Water monitoring in September 2006 was conducted at the runoff basins. A site plan of farm field and runoff basin locations is attached in <u>Figure 1</u>. During the month, discharges from runoff basins totaled 3.10 million gallons. Analytical data of water samples are presented in <u>Table 1</u>. A log of runoff basin discharge information is presented in <u>Table 2</u>.

The surface water sites (streams, reservoirs, and SP sites) were not sampled during the month. A site plan of water monitoring locations is attached in <u>Figure 2</u>.

The wells were sampled during the month. Analytical data of water samples are presented in <u>Table 3</u>.

FIGURE 1

FARM FIELDS AND RUNOFF BASINS AT THE LAND RECLAMATION PROJECT AT FULTON COUNTY, ILLINOIS

TABLE 1

FULTON COUNTY LAND RECLAMATION PROJECT FIELD RUNOFF BASIN DISCHARGE DATA SEPTEMBER 2006

Basin No.	Sample Date	рН	TSS (mg/L)	BOD ₅ (mg/L)	F. coli. per 100 ml	Discharge Date	Discharge Amount (MG)
3-1	9/19	7.9	2.0	6	30	9/21	3.10

TABLE 2

FIELD RUNOFF BASIN LOG AT THE FULTON COUNTY LAND RELAMATION PROJECT FOR SEPTEMBER 2006

Basin No.	Date Opened	Time Opened	Date Closed	Time Closed	Opening Stage (feet)	Closing Stage (feet)	Time Open (Hours)	Volume Released (MG)	Release Type	Reason Closed	R & D Dept. OK	R & D Dept. Sample
3 - 1	09/21/06	13:20	09/29/06	10:55	4.00	0.00	189.58	3.10	Normal	Empty	Yes	Yes

FIGURE 2

WATER MONITORING LOCATIONS AT THE LAND RECLAMATION PROJECT AT FULTON COUNTY, ILLINOIS

TABLE 3

Well Number	Sample Date	NH ₃ -N	NO ₂ -N	NO ₃ -N	Cd	Cu	Hg
				mg/L			μg/L
W 6	9/19	0.54	0.000	0.097	0.0000	0.000	0.00
W 7	9/19	1.49	0.000	0.373	0.0000	0.041	0.00
W 8	9/19	1.05	0.000	0.258	0.0000	0.000	0.00
W 9	9/19	1.07	0.000	0.365	0.0000	0.000	0.00
W10	9/19	0.73	0.000	0.134	0.0000	0.000	0.00
W12	9/19	0.33	0.000	0.451	0.0000	0.000	0.00
W14	9/19	0.57	4.00	0.344	0.0000	0.000	0.00
W15	9/19	0.60	0.000	0.116	0.0000	0.005	0.00
W16	9/19	0.02	0.000	0.170	0.0000	0.000	0.00
W17	9/19	0.00	0.000	5.09	0.0000	0.000	0.00
W18	9/19	1.26	0.000	0.225	0.0000	0.003	0.00
W19	9/19	0.93	0.000	0.215	0.0000	0.000	0.00
W21	9/19	1.49	0.000	0.036	0.0000	0.000	0.00
W22	9/19	8.95	0.000	0.224	0.0000	0.000	0.00
W23	9/19	0.02	0.000	0.091	0.0000	0.000	0.00
W24	9/19	0.65	0.000	0.427	0.0000	0.023	0.00
W25	9/19	0.02	0.000	0.088	0.0000	0.000	0.00
W26	9/19	1.77	0.000	0.303	0.0000	0.000	0.00
W28	9/19	0.26	0.000	0.156	0.0000	0.000	0.00
W29	8/15	1.68	0.420	0.061	0.0000	0.000	0.00
MDL*		0.02	0.150	0.004	0.0004	0.003	0.05

FULTON COUNTY LAND RECLMATION PROJECT WELL DATA SEPTEMBER 2006

*MDL = Method detection limit of laboratory; values less than these are reported as zeros.

-	Metropolitan Water	Reclamation District of G	reater Chicago 🛛 🗕 🗕 🗕 🗕 🗕
	100 East Erie Street	Chicago, IL 60611-2803	(312) 751-5600
		FULTON COUNTY	
	CLIMA	TOLOCICAL ODSEDVAT	IONS
	CLIVIA	IULUGICAL UDSERVAI	
		September 2006	

CLIMATOLOGICAL OBSERVATIONS

The daily climatological observations for September 2006 are summarized in <u>Table 4</u>. The total precipitation recorded for the month was 2.73 inches.

TABLE 4

RECORD OF CLIMATOLOGICAL OBSERVATIONS FOR SEPTEMBER 2006, FULTON COUNTY, ILLINOIS, STATION SEQ, SEC.10, R3E, T6N

	7	Temperatur	e	Precip	oitation	Wind		
		°C		rain, melted snow	snow, sleet, hail	m/S	m/S m/S	
Date	Max	Min	Avg	(inches & hundredths)	(inches & tenths)	Avg	Max	Dir
1	26.4	17.3	21.3	0.00		1.9	7.2	NE
2	30.8	17.2	23.1	0.00		1.3	6.3	NE
3	29.0	18.6	22.3	0.22		0.8	5.4	Е
4	25.8	17.9	20.7	0.42		0.4	5.8	Ν
5	25.1	15.1	19.2	0.00		0.6	4.9	NE
6	30.3	15.7	22.3	0.00		0.3	4.5	NE
7	30.1	17.3	23.3	0.00		0.4	4.5	SW
8	31.6	17.5	23.8	0.00		0.8	4.9	SW
9	30.6	18.1	23.3	0.00		0.6	7.6	SW
10	28.2	18.9	22.4	0.22		2.7	7.6	NE
11	29.8	17.7	22.0	1.77		1.5	8.5	NE
12	18.8	13.6	16.3	0.00		2.9	10.3	W
13	23.0	13.4	16.4	0.01		2.0	7.2	NW
14	28.1	10.9	18.9	0.01		0.5	4.0	NE
15	27.3	12.6	19.8	0.00		2.2	8.0	Е
16	29.4	15.4	22.0	0.00		3.8	10.3	Е
17	26.6	15.2	20.4	0.04		3.1	11.6	SE
18	24.0	10.2	16.5	0.00		3.5	15.2	W
19	14.3	6.1	10.8	0.00		3.3	13.4	W
20	20.7	3.5	11.1	0.00		1.0	4.9	W
21	22.9	8.8	14.8	0.02		3.9	11.2	Е
22	28.9	14.2	19.4	0.00		4.0	13.4	SE
23	25.8	14.6	18.4	0.01		1.9	9.8	SE
24	21.8	9.8	14.9	0.00		2.6	9.4	W
25	25.2	7.4	15.4	0.00		2.5	14.3	SW
26	27.2	8.6	17.3	0.00		1.4	8.5	S
27	21.4	8.9	15.8	0.00		2.4	9.8	W
28	18.1	6.4	11.0	0.00		1.8	8.5	NW
29	16.6	5.4	11.0	0.01		2.4	11.2	NW
30	24.8	8.4	15.7	0.00		2.3	9.8	SW
Sum				2.73	0.0	Observer:	Josh DeWe	es
Avg	25.4	12.8	18.3			Station: Ro	&D Lab	
Extreme	31.6	3.5		1.77	0.0			

_	Metropolitan Water	Reclamation	District of	Greater Chicago
	100 East Erie Street	Chicago, IL 6	60611-2803	(312) 751-5600

FULTON COUNTY

RECLAMATION OF COAL REFUSE PILES WITH BIOSOLIDS

September 2006

RECLAMATION OF COAL REFUSE PILES WITH BIOSOLIDS

Lysimeters and drainage tiles at the St. David coal refuse pile reclamation site were sampled during the month. Locations for all lysimeters and drainage tile sampling sites are shown in Figure 3. The analytical data for lysimeter samples are presented in Table 5. There was no flow in the tile drains D1 and D2 at the time of sampling in September. The analytical results for drainage tile samples are reported in Table 6.

Lysimeters at the Big Ten (Morgan Mine) and the United Electric coal refuse pile sites were also sampled during the month. The analytical data for the Morgan Mine and United Electric coal refuse pile sites are listed in <u>Tables 7</u> and <u>8</u>, respectively.

FIGURE 3

ST. DAVID COAL REFUSE PILE RECLAMATION SITE

TABLE 5

			Lysimeter	Designation		
Constituent	Units	1	2	3	4	
		7.0	0.1	7.0	1	
рн	C /	7.8	8.1	7.9		
E.C.	mS/m	330	310	270	1	
Acidity*	mg/L	9	4	8	I I	
Alkalinity*		198	204	212	I	
Total P		0.06	0.06	0.06	_	
					L	
					Y	
Cl ⁻	"	17.7	1.1	0.9	S	
$SO_4^{=}$	"	1,888	1,994	1,605	Ι	
NH ₃ -N	"	0.02	< 0.02	< 0.02	Μ	
NO ₂ +NO ₃ -N	"	41.15	1.68	1.37	E	
Al	"	< 0.07	< 0.07	< 0.07	Т	
					E	
					R	
Cd	"	0.0073	0.0105	< 0.0004		
Cr	"	< 0.004	< 0.004	< 0.004	D	
Cu	"	0.009	0.011	0.007	R	
Fe	"	0.097	0.137	0.122	Y	
Mn	"	0.056	0.004	0.002		
					1	
Ni	"	0.062	0.050	0.007		
Pb	"	< 0.002	< 0.002	< 0.002		
Zn	"	0.664	0.306	0.070		

TABLE 5 (Continued)

		Lysimeter Designation					
Constituent	Units	5	6	7	8		
pH	<i>a</i> /	1.1	I	l			
E.C.	mS/m	250					
Acidity*	mg/L	8					
Alkalinity*	"	169					
Total P	"	0.06					
			L	L	L		
			Y	Y	Y		
Cl	"	1.1	S	S	S		
$SO_4^{=}$	"	1,441	Ι	Ι	Ι		
NH ₃ -N	"	< 0.02	М	Μ	Μ		
NO ₂ +NO ₃ -N	"	3.73	Е	Е	Е		
Al	"	< 0.07	Т	Т	Т		
			Е	Е	Е		
			R	R	R		
Cd	"	0.0220					
Cr	"	< 0.004	D	D	D		
Cu	"	0.009	R	R	R		
Fe	"	0.107	Y	Y	Y		
Mn	"	0.004					
				1			
Ni	"	0.021					
Pb	"	< 0.002					
Zn	"	1.15					

TABLE 5 (Continued)

		Lysimeter Designation					
Constituent	Units	9	10	A	В		
TT.			1	4.1			
рн	G /	I		4.1			
E.C.	mS/m			200			
Acidity*	mg/L			28			
Alkalinity*	"			<1			
Total P	"			0.12			
		L	L		L		
		Y	Y		Y		
Cl	"	S	S	10.3	S		
$\mathbf{SO}_4^{=}$	"	Ι	Ι	1,107	Ι		
NH ₃ -N	"	Μ	Μ	0.28	Μ		
NO ₂ +NO ₃ -N	"	Е	Е	3.83	E		
Al	"	Т	Т	0.40	Т		
		Е	Е		E		
		R	R		R		
Cd	"			0.0020			
Cr	"	D	D	0.007	D		
Cu	"	R	R	0.009	R		
Fe	"	Y	Y	7.87	Y		
Mn	"			1.50			
					I		
Ni	"	·		0.021	·		
Pb	"	·		< 0.002			
Zn	"	i		0.613			

TABLE 5 (Continued)

		Lysimeter Designation					
Constituent	Units	С	D	E	F		
		1	2.1	1	l		
рн	res C /res		2.1				
E.C.	ms/m		1,000				
Acidity*	mg/L		20,000				
Alkalinity*			<1		I		
Total P		т	0.07	Ŧ	T		
		L		L	L		
		Y		Y	Ŷ		
Cl	"	S	< 0.3	S	S		
$SO_4^{=}$	"	Ι	19,297	Ι	Ι		
NH ₃ -N	"	Μ	1.42	М	Μ		
NO ₂ +NO ₃ -N	"	Е	0.248	E	Е		
Al	"	Т	332	Т	Т		
		E		Е	Е		
		R		R	R		
Cd	"		2.34				
Cr	"	D	2.43	D	D		
Cu	"	R	1.99	R	R		
Fe	"	Y	3,715	Y	Y		
Mn	"		28.6				
Ni	"		2.49				
Pb	"		< 0.002				
Zn	"		156				

TABLE 5 (Continued)

ANALYSIS OF WATER FROM LYSIMETERS ON THE RECLAIMED ST. DAVID COAL REFUSE PILE SITE SAMPLED ON SEPTEMBER 20, 2006

		Lysimeter Designation			
Constituent	Units	G	Н	Ι	
pН				7.1	
E.C.	mS/m			320	
Acidity*	mg/L			26	
Alkalinity*	"			193	
Total P	"			23.2	
		L	L		
		Y	Y		
Cl	"	S	S	11.7	
$SO_4^{=}$	"	Ι	Ι	2,027	
NH ₃ -N	"	Μ	Μ	0.28	
NO ₂ +NO ₃ -N	"	E	Е	2.80	
Al	"	Т	Т	0.20	
		E	Е		
		R	R		
Cd	"			0.0042	
Cr	"	D	D	0.007	
Cu	"	R	R	0.008	
Fe	"	Y	Y	5.48	
Mn	"			7.31	
Ni	"			0.101	
Pb	"			< 0.002	
Zn	"			1.38	

*As calcium carbonate.

TABLE 6

		Tile Drain			
Constituent	Units	D1	D2	D3	
pH		Ν	Ν	6.9	
		0	0		
Total Suspended	mg/L	F	F	56.0	
Solids		L	L		
		Ο	Ο		
Total Fe	mg/L	W	W	36.4	

TABLE 7

ANALYSIS OF WATER FROM LYSIMETERS ON THE RECLAIMED MORGAN MINE COAL REFUSE PILE SITE SAMPLED ON SEPTEMBER 20, 2006

	T T •	L	ysimeter Designation	2	
Constituent	Units	1	2	3	
рН		7.0	7.3		
E.C.	mS/m	320	340		
Acidity*	mg/L	54	40		
Alkalinity*	"	272	343		
Total P	"	0.08	0.10		
				L	
				Y	
Cl	"	26	31	S	
$SO_4^{=}$	"	2,052	2,075	Ι	
NH ₃ -N	"	1.09	0.76	Μ	
NO ₂ +NO ₃ -N	"	0.709	4.55	Е	
Al	"	0.08	< 0.07	Т	
				Е	
				R	
Cd	"	0.0015	< 0.0004		
Cr	"	0.005	< 0.004	D	
Cu	"	0.005	0.005	R	
Fe	"	3.04	0.98	Y	
Mn	"	5.12	1.25		
Ni	"	0.149	0.028		
Pb	"	< 0.002	< 0.002		
Zn	"	0.369	0.085		

*As calcium carbonate.

TABLE 8

		Lysimeter Designation				
Constituent	Units	1	2	3	4	5
pН		1	7.0	7.4	7.4	7.4
E.C.	mS/m		350	300	380	320
Acidity*	mg/L		58	23	25	22
Alkalinity*	"		316	269	275	261
Total P	"		0.24	0.09	0.08	0.09
		L				
		Y				
Cl	"	S	11.5	23.0	32.1	23.8
$\mathbf{SO}_4^{=}$	"	Ι	1,560	1,827	2,180	1,966
NH ₃ -N	"	М	0.07	0.03	< 0.02	0.08
NO ₂ +NO ₃ -N	"	Е	53.4	2.40	44.9	1.38
Al	"	Т	< 0.07	< 0.07	< 0.07	< 0.07
		Е				
		R				
Cd	"		0.0134	0.0365	0.0062	0.0045
Cr	"	D	< 0.004	0.005	< 0.004	0.004
Cu	"	R	0.043	0.085	0.049	0.023
Fe	"	Y	0.132	0.041	0.170	0.151
Mn	"		0.078	1.14	0.142	1.08
Ni	"		0.033	0.149	0.047	0.069
Pb	"		< 0.002	< 0.002	< 0.002	< 0.002
Zn	"		0.412	1.92	0.581	1.11

TABLE 8 (Continued)

ANALYSIS OF WATER FROM LYSIMETERS ON THE RECLAIMED UNITED ELECTRIC COAL REFUSE PILE SITE SAMPLED ON SEPTEMBER 20, 2006

	Lysimeter Designation				
Units	6	7	8	9	10
		7.2	7.3	7.4	1
mS/m	ĺ	290	560	470	Ì
mg/L		36	80	47	
"		322	712	470	
"		0.31	0.08	0.08	
	L				L
	Y				Y
"	S	11.5	93.7	86.9	S
"	Ι	1,611	3,709	3,180	Ι
"	М	0.06	11.2	< 0.02	Μ
"	Е	9.22	5.51	2.15	E
"	Т	0.15	< 0.07	< 0.07	Т
	E				E
	R				R
"		< 0.0004	< 0.0004	< 0.0004	
"	D	0.005	0.005	< 0.004	D
"	R	0.033	0.004	0.010	R
"	Y	0.203	0.298	0.088	Y
"		1.019	6.90	1.40	
"		0.030	0.041	0.029	
"		< 0.002	< 0.002	< 0.002	
"		0.060	0.028	0.167	
	Units mS/m mg/L " " " " " " " " " " " " " " " " " "	Units 6 mS/m mg/L " " L Y " S " I Y " S " I M " S " I N N " S " I N N N N N N N N N N N N N	Units 6 7 mS/m 290 mg/L 36 " 322 "0.31LY"S 11.5 "I $1,611$ "M 0.06 "E 9.22 "T 0.15 ER" 0.0004 "D 0.005 "R 0.033 "Y 0.203 "1.019 " 0.030 " " 0.002 " 0.060	Units 6 7 8 mS/m 7.2 7.3 mS/m 290 560 mg/L 36 80 " 322 712 " 0.31 0.08 1 " S 11.5 93.7 " I 1,611 3,709 " S 11.5 93.7 " I 1,611 3,709 " M 0.06 11.2 " S 9.22 5.51 " T 0.15 <0.07	Lysimeter DesignationUnits6789 MS/m 290560470 MS/m 290560470 mg/L 368047" 322712470"0.310.080.08LY

*As calcium carbonate.