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Statistical Evaluation of Pathogen
Inactivation for a Conventional Low-Cost
Technology Class A Biosolids Process

Prakasam Tata, Cecil Lue-Hing, George J. Knafl

ABSTRACT: Suatistical methods were developed for analyzing the
results of a study of pathogen densities for sludge samples taken over
the four stages of the solids processing trains (SPTs) operating at the
Stickney and Calamet Water Keclamation Plants of the Metropolitan
Water Rectamation District of Greater Chicago, Ilinois (District). These
methods also apply ‘o pathogen density stadies for other biosolids
processes. Analysis of covariance models were used to estimate
expecied pathogen densities for individual solids processing stages.
Cross-validation was used to select appropriate analysis of covariance
models. Nonparametric: methods were used {o estimate distributions for
pathogen density reductions between solids processing stages and to
assess the effect of hypothetical surges and expansions in initial stage
pathogen densitics op final stage pathogen densities. These statistical
analyses demonstrate that the District’s SPTs achieve targel reductions
in enteric virus and viable helminth ova densities with high
probabilities. Furthermore, the District’s SPTs would still meet U.S.
Environmental Protection Agency Class A restrictions for these
pathogens with high -probabilities, even if the initial stage pathogen
densities observed in the study underge extreme hypothetical surges or
extreme hypothetical wniform expansions, thar is, exceptionally large
isolated bursts of patiogens or exceptionally large sustained increases in
pathogens in the feed 1o the SPTs. Water Environ. Res., 72, 423 (2000).

KEYWORDS: analysis of covariance, biosolids, Class A biosolids,
cross-validation, helminths, logy,, reductions, processes to further reduce
pathogens, viruses.

On February 19, 1993, U.S. Environmental Protection Agency
(U.S. EPA) publishad the 40 CFR Part 503 regulations (U.S. EPA,
1993), which included criteria for biosolids quality relative to
indicator organisms and pathogen content. The criteria define
biosolids to be of Class A designation when the final biosolids
product before use contains less than 1000 fecal coliforms (most
probable number [MPN]) per gram of dry solids, less than three
Salmonelila organisms (MPN) per 4 g of dry solids, less than one
enteric virus per 4 g of dry solids, and less than one viable
helminth ovum per 4 grams of dry solids.

U.S. EPA identified in the regulations five specific alternative
solids processing technologies as processes to further reduce
pathogens (PFRPs). ‘A sixth altérnative under which a petitioner is
required to demonstrate to the U.S. EPA with review by its
Pathogen Equivilency Committee (PEC) that a process or scheme
is equivalent to a PFRP was also inclided in the regulations. The
Metropolitan Water Reclamation District of Greater Chicago, II-
linois (District), has elected to petition U.S. EPA to have its solids
processing trains {SPTs)—that is, the complete process trains
consisting of mesophilic anaerobic digestion followed by lagoon
storage of anaerobically digested solids and centrifuge cake and
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then air drying—to be certified as PFRPs under thas sixth alterna-
tive.

The regulations are clear in their requirements for Class A
equivalency certification. The final biosolids product from the
proposed equivalent process must satisfy Class A requirements for
pathogen content levels before use. Although specific log reduc-
tions in indicator and pathogenic organisms are 1ot required by the
Part 503 regulations, U.S. EPA’s PEC requested that the District
demonstrate specific log reductions to establish that the District’s
SPTs are equivalent to PFRPs. The requested ievel for emteric
viruses is a reduction by an amount with a log,, of —3 or better
and for viable helminth ova by an amount with 2 jog,, of —2 or
better. The PEC suggests that they are concerned about sudden
surges in indigenous pathogen content of raw wastewater entering
the treatment facility. In addition, the PEC seerns 1o desire that the
above-indicated log,, reductions be demonstrated through seeding
of the solids treatment process with target pathogens, particularly
helminth ova, and tracking their decay through the process.

Because of the obvious problems of worker safety and public
health risk and, indeed, the impracticality of seeding viable hel-
minth ova into a full-scale system and because of the lack of
similitude between the results of bench-scale seeding experiments
and a full-scale system that produces 0.5 million kilograms (1
million pounds) of dry weight of biosolids per day, the District
proposed an alternative approach to the PEC. This approach con-
sists of operating the District’s full-scale conventinnal SPTs under
codified operating conditions, increasing the sensitivity of hel-
minth ova analysis by increasing the sample size of the final
air-dried biosolids product from approximateiy 4 to approximately
100 to 400 g, collecting numerous samples from different locations
of the SPTs for pathogen analysis, and subjecting the resulting
analytical data to rigid statistical analyses. Sec Tata ct al. (2000)
for further details.

Statistical methods are presented in this paper that may be used
to analyze pathogen densities for any biosolids process. These
methods are used to analyze the results of the District’s study of its
SPTs to address the following issues: (1) determination of the
log,, reduction capability of the SPTs and (2) prediction of the
effect of surges and expansions of viable helminth ova in the
digester feed on the final biosolids product.

Methodology

Statistical methods were developed for analyzing the results of
a study of pathogen densities for samples taken across the four
stages of the District’s SPTs. Analysis of covariance models were
used to estimate expected pathogen densities for individual solids
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processing stages. Cross-validation was used to select appropriate
analysis of covariance models for computing these estimates.
Nonparametric. methods were used to estimate distributions of
pathogen density reduction between solids processing stages and
to assess the effect of hypothetical surges (exceptionally large
isolated bursts) and expansions (exceptionally large sustained in-
creases) in initial stage pathogen densities on final stage pathogen
densities.

These methods apply to general pathogen studies of biosolids
processes. that consist of multiple stages. Specifically, pathogen
densities, as determined from observed pathogen counts within
samples of varying solids content, can be modeled using analysis
of covariance models based on classification variables such as
solids processing stage and season or on covariates such as solids
content, time of the month, ammonia-nitrogen levels, solar radia-
tion levels during the drying season, and so forth. The selection of
appropriate models of this type may then be conducted using the
modeling framework presented in this section. Furthermore, anal-
ysis of pathogen reduction—inactivation for the actual process and
hypothetical surges and expansions in the inputs may be conducted
using the nonparametric methods of this section.

Analysis of Covariance Models. Under the analysis of covari-
ance model (Snedecor and Cochran, 1967), the expected value of
a response variable, Y, conditioned on the value x of a covariate, X
(or a vector of covariates), is modeled as a linear function-of x with
the same slope(s) for all classes, j, but with different intercepts,
that is, B(Y|X = x) = a; + Bx. The one-way analysis of variance
model with E(Y lx = ¥} = w; is a special case. For the purposes of
this paper, the response variable may be pathogen count, C, patho-
gen density, D, per 4 g of solids, or some transform of either of
these two quantities and is classified on the basis of the single
factor, the solids processing stage j, when 1 = j =< J. The trans-
forms to be considered for response variablesare Y = (Fand ¥ =
¥ for positive powers p > 0. Solids content, S, or any transform
- of it is the choice considered for the covariate. The transforms to
be considered for the covariate are X = $7 for g#0 and X = In(S).
Thus, there are quite a few choices for the form of the observed
data values (xg, y;), for 1 £i=n, 1 =j=J, to which to apply
the analysis of covariance model, and each choice may be applied
to the observed data for each type of pathogen.

General Modeling Framework. The analysis of covariance
model and the -associated one-way analysis of variance model
generate an extensive family of modeling procedures correspond-
ing to the various adjustments of experimental data that may be
used in computing initial parameter estimates. A selection proce-
dure is required: to discriminate between all these modeling pro-
cedures, M, on the basis of some appropriate measure of the
fidelity of generated predictions to actual values, for example, the
standard deleted prediction error [SDPE(M)] defined below. The
actual values, and hence their predictions, also need to be ex-
pressed in some standard form. The appropriate form for the
purposes of this paper is pathogen densities per 4 g solids content
so that the selection procedure reflects the definition of a Class A
biosolids. Whatever form for the data (x; y;) vsed in initial
parameter estimation, the associated initial predictions §,; may be
adjusted to obtain predictions d;; of associated pathogen densities.
Better modeling procedures produce predictions of this kind that
are closer to the actual pathogen densities, d;;, in an overall sense
as measured by a criterion like SDPE(M).

As a consequence of these considerations, a variant of the
procedure statisticians call cross-validation (Stone, 1974) was cho-
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sen as the selection procedure. Specifically, for the ijth observation
(x;, ¥;), whatever its form, parameter estimates were calculated
using a modeling procedure, M, applied to all the other observa-
tions, that is, with the ijth observation deleted. Then, these deleted
estimates were used to calculate the deleted predictions, 13,-]-, and
the associated deleted prediction errors, d; — (?,.j. These prediction
errors were then combined into a composite squared standard

deleted prediction error for pathogen densities at-all stages.

2 i (dij - aij)2

j=1i=1

J
2 n;
i=1

SDPE*(M) = (1)

Better modeling procedures, M, produce smaller SDPE(M)s, and
the appropriate modeling procedure to use from a set of modeling
procedures is one with minimal SDPE over that set or any other
modeling procedure with a close SPDE, one within a few percent-
age points of the best.

The cross-validation scheme used here is often referred to as
leave-one-out cross-validation. More general schemes are also
possible; in the under k-fold cross-validation (Efron and Tib-
shirani, 1993), data are sorted in a fixed random order and decom-
posed into k approximately equal subsets. Subsets are removed one
at a time, the model fit to the remaining data, and the correspond-
ing estimated parameters used to predict all observations in the
currently deleted subset. Leave-one-out cross-validation is a spe-
cial case with k equal to the sample size. Kohavi (1995) recom-
mends the use of 10-fold cross-validation in practice. However,
when 10-fold cross-validation was used, it produced almost ex-
actly the same results as leave-one-out cross-validation for the data
analyzed in this paper; so only leave-one-out cross-validation
results are reported.

For all of these models, with possibly transformed pathogen
counts or densities expressed as functions of possibly transformed

solids content, the estimated conditional expected values EY Y‘ S =
s; may be adjusted to estimates of conditional expected pathogen

densities ED| S = 5, per 4 g solids. In particular, for models with
Y=("

(max(EY|S = 5, O)"”

EDIS=s,=4x — 2)
i
and, for models with ¥ = D”,
ED|S = 5; = (max(EY|S = s, O))'* 3

The expected pathogen density ED; for each stage j adjusted o
reflect the varying level of solids content at that stage may then be
estimated by averaging the estimated conditional expected densi-

ties over solids content values, 5;;, observed at that stage, that is

i E\DJ"S = 8y
i=1

EDj=" e “

i

Estimating Pathogen Reduction Distributions. A desirable
property of solids processing is the reduction of pathogen densities
from stage 1 to a subsequent stage j by at least a specified target
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amount. Such target reductions are typically expressed as log,,
reductions. More specifically, denote by D, the pathogen density
per 4 g for the same random sample at each solids processing stage
J, 1 = j = J, and define the reduction R,_,; from stage 1 to stage
j = 1 for that sample as

0 D, =0
~{ b,
By —  otherwise ()
D)

and its associated log;, reduction LR,__; as

( —oifD =0 orD,=0
= b,
LR, log, D( l_)i) otherwise

1

(6)

The PEC-suggested target log,, reduction level by the final stage
J for viable helminth ova and, hence, also for viable ascaris ova is
LR,_,; = —2 and for enteric viruses is LR, ,, = —3.

Solids processing can reduce the pathogen density per 4 g solids
content for a fixed sample or even leave it unchanged, but it does
not increase the pathogen density, that is, D, < D, with probability
1; so the reduction R,_,; is at most 1. The set of pairs of observed
pathogen densities consistent with this constraint is

E={{d;d)ldy=sdy, 1=isn, 1=k=n} (1)

where d;; denotes the ith of the n; pathogen densities observed for
the first stage and d,, is the kth of the n, pathogen densities
observed at a stage j > 1. This set has cardinality IE,_,) and
associated consiant empirical weights 1/E;_ | for pairs in the set.
The empirical reduction variable R, -»; OVer E}_,; is defined by

0 ifd =0
ﬁl—y(db y=1{ 4

d; a; for (d;, d) mE,; (8
4,

otherwise

with the probability density function given by

#(Rl—f»j = ’")

— = (9)
|E]

ﬁx»j(f ) =

where #(*) denotes the pumber of observations satisfying the

condition enclosed in parentheses. Let r,.,;, denote the distinct

reduction values, indexed by h, from stage 1 to stage j > |

determined from equation 8. The associated empirical estimate of

the probability - distribution function for the reduction variable
R,_,; is given by

N 5] N o
PR, =79 =PR_,SN= 2 pylriom (10)

Ty hEr

The expected reduction, ER, _,,
weighted average of the r,_;

may then be estimated as the

EAlej = E s X p‘l—)j('rl—)j,h) (11

h

Because the log,, reduction LR,_,; equals - with nonzero prob-
ability in practical situations, its expected value is not usually
finite. However, a typical value for the log,, reduction can be
estimated by taking the logarithm of the estimated expected re-
duction
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ﬁi—»j = lOglO(ERl—ej) (12

This is finite except in the special case when the reduction equals
Zero.

The distribution for the log,, reduction LR, ,, for a random
sample moving through solids processing from stage 1 to stage j
satisfies

P(LR, ., <u)=P(D,=0orD;=0)
+ P(D,= 10" x D,, D, > 0, D, > 0)
=P(D,=0)+ P(D, >0, D, = 0)
+PD; =10 X 3y, 1 >0, D; > 0)
=P(D,=0) + P(D,=< 10" X D,, D, > 0)
= P(R,.y=10%)
= P{10%) (13)

for —oc < u < 0. This distribution may be estimated from the
estimate of the distribution for R,_,; from equation 1.

Relationship Between Distributions of Imitial and Final
Pathogen Densities. Suppose that solids processing produces con-
sistent proportional reductions regardless of the initial stage patho-
gen densities. More precisely, assume that the conditional distri-
butions P(R,_,, =< riD, = d,) for reductions by the final SPT stage
given nonzero initial densities, d;, > 0, are all the same with a
common value P(R,_,, = rlD, > 0) and that this conditional
distribution is the same no matter what the initial distribution is for
D,. As a consequence, the distribution P {4} of the pathogen
density D, at the final stage J can be related to the distribution P,
for D,. '

Pd)=PD,;=d)= I PR,y X Dy < diD, = u)dP,(u)

u=0

=P(D,=0) + f PRy, < d,ulD, > 0)dP (v} (14)

u>0

for d, = 0. An estimate of the integrand of equation 14 may be
computed as in equation 10. Specifically, define E,_,, . to be the
subset of £, ,; consisting of observed pairs with positive initial
pathogen density values (d;; > 0). There are IE, _, | pairs in this
set with constant empirical weights 1/IE, ., ! The associated
conditional reduction variable, R,_,, ., is the unconditional reduc-
tion variable, R,_,,, restricted to the set E, _; . with probability
density function

#(Rl._,J’+ =7}

Proi+(r) = m' (15)

and with the distribution function providing the desired empirical
estimate

PR, =7D, >0)=PR_,, =1r)= z Bims i)
Tioadhd = (16)
determined by the distinet reduction values ¢, ;.. indexed by
h+, from positive initial stage pathogen densities to final stage
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values. Equations 14 and 16 are vsed below in the estimation of the
effect of surges and expansions in initial pathogen densities, D,, on
final pathogen densiuies, D,

Effect of large Surges in Initial Pathogen Densities. Let
D\ denote the random initial pathogen density in effect for solids
processing during sampling with probability density p{®” and
distribution P{"”. These may be estimated by the associated em-
pirical density function 57 and empirical distribution function
PO, Suppose that a surge occurs in the random initial pathogen
density in the sense that this random pathogen density D™ is a
large positive value A with small probability & and is otherwisc
unchanged with probability 1 -- £. This means that the distribution
for the random initial pathogen density is given by

P(IEA) =(] —g) X P(]0.~} +eX laap (a7

where 1,...,, indicates whether the initial pathogen density is no
smaller than the value A. The associated probability density is
given by piF® = (1-&) X p{® + & X 1._,, where l._y,
indicates whether the initial pathogen density equals the value A,
This may be estimated by

PEY = (1 — g) X PO + £ X Liny, 18)

with associated probability density function
PEY = (1 — g} X pi" + £ X Looy (19)

where

povay = M =4 (20)
g

and where d,, are the n, pathogen densities observed at stage 1. In
other words, the estimated distribution P& is concentrated on the
observed initial pathogen densities d;;, 1 =< i = n, and on the value
A of the surge in the initial pathogen densities. The distribution
P& induced by a surge of size A > 0 with probability £ at stage
1 may then be estimated, using equations 14 and 17 and then the
estimates of equations 16 and 20, by

PEM(d) = PR, x DI = d))
=(1~¢g)
x (#(dz|=£l+ 2 P(R]—d dJ/dxllDl >O))

n n
! >0 !

+eX P(R_,=d/AlD, > 0)

d,/AlD, > 0)
@n

The quantity P& (RL) estimates the probability that a random
sample at the final stage J of solids processing is at or below the
Class A required level RL of 1 pathogen per 4 g for viable helminth
ova, for viable ascaris ova, or for enteric viruses under a surge of
size A with probability € at the initial stage of solids processing.
For enteric virnses, P(R,_,, = 0) = 1, and so P&*(RL) = 1 for
all € and A. However, for viable helminth ova and for viable
ascaris ova, P(R,_, = 0) <1, and so, for large enough A and for
positive g, PEAARL) <1; in other words, there will be a nunzero
estimated probability of .a sample that does not meet Class A
requirements for the associated type of pathogen.

=(1—-g)Xx ﬁgu")(dj) +EX p(RI—US
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Effect of Expansions of Initial Pathogen Densities. Let D"
denote the random initial pathogen density at stage 1 in effect for
solids processing during sampling with probability density pi!’ and
distribution . These may be estimated by the associated empirical
density function p¢" and empirical distribution function 2. Suppose
that the random pathogen density at stage 1 is expanded by a factor 5y
> () in the sense that the random pathogen density is changed to D{"?
= 5 X DIV and so has distribution function

PP = PO = di) = P{"(dVIm) 22)
This may be estimated by

B(@™y = P"(aVm) (23)

with associated estimated probability density function

(0. = gm)

13‘111)((1(;“)) M 24

. n
where &'} is the n, pathogen density observed at stage 1. In other
words, the estimated distribution P™ is concentrated on the unique
values determined by v X d%}’, | = i = n,. The distribution P{V
induced hy the expansion factor m at stage ! may then be esti-
mated, using equations 14 and 22 and then the estimates of
equations 16 and 24, by

. . #dD =0
PPN = P(R, .y X DIV = d) = ~(—n——)
I
PR, =dM(qxdMD, >0
+ E ( 1sd ("ﬂ )l 1 ) 25)
mn,

(13
4,70

The quantity P{V(RL) estimates the probability that a random
sample at the final stage J of solids processing is at or below the
Class A required level RL of 1 pathogen per 4 g for viable helminth
ova, for viable ascaris ova, or for enteric viruses under an expan-
sion factor of 1 at the initial stage of solids processing. For enteric
virases, P(R,_, = 0) = 1; so P{"(RL) = 1 for all 1. However, for
viable helminth ova and for viable ascaris ova, P(R,_,, = 0) <1;
so for large enough 1, PSVY(RL) < 1. In other words, there will be
a nonzero estimated probability of a sample that does not meet
Class A requirements for the associated type of pathogen.

Results

The District’s SPTs were operated under codified conditions for
a period of approximately 3 years. Numerous samples were col-
lected for pathogen analyses at the four SPT stages of digester
feed, digester draw, lagoon draw, and air-dried product. Counts of
viable helminth ova, viable ascaris ova, and enteric viruses were
recorded for samples of varying sizes, and densities per 4 g dry
solids were computed for each of these samples. See the compan-
ion paper by Tata et al. (2000) for a more detailed discussion of the
results of that study.

Summary statistics are presented in Table 1. Observed densities
for viable helminth ova, viable ascaris ova, and enteric viruses for
all SPT stages combined are plotted in Figure 1 versus log,,-
transformed solids content. These plots indicate a nonlinear rela-
tionship between pathogen density and sohds content and suggest
the consideration of analysis of covariance models with trans-
formed solids content as the covariate.

The analysis of covariance model and its associated one-way
analysis of variance model generate an extensive family of mod-
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Table 1—Summary statistics.

Viable helminth ova

Enteric viruses

Total dry Total Ascaris Total dry Total
Stage Samples solids, g* ova® ova® Samples solids; g~ PFUs®
Digester feed 57 1032.25 177 77 46 537.01 197
Digester draw 52 804.33 53 34 49 823.2C 15
Lagoon draw 56 2 069.83 35 19 36 3 84425 0
Dried product 165 22 5620.61 26 22 119 22 80016 0
Total 320 26 427.02 29N 152 280 27 804.632 212

2 Total mass of solids from all samples for a given stage or for all stages combined.

© Number of viabie ova found in the associated total mass of solids.

¢ Number of plaque-forming units found in the associated total mass of solids.

eling procedures ¢orresponding to the various adjustments that
may be used to compute initial parameter estimates from patho-
gen-count data collected during solids processing. In particular, the
response variablée ¥ may be pathogen counts -C as originally
recorded, pathogen densities £ per 4 g solids content, or some
transform of either of these. Also, the covariate(s) X may be any
transform of solids content § or of any other available supplemen-
tary variables.
" A cross-validation procedure is used to select an appropriate
model from this family for each of the three types of pathogens,
minimizing SDPEs for predicting pathogen densities per 4 g solids
content. This criterion is based on the prediction of pathogen
densities per 4 g o conform with the requirements for Class A
biosolids. The predictions used in coraputing this criterion are
deleted predictions in the sense that each observed pathogen den-
sity is predicted using all of the remaining data, not including the
density value being predicted; so the selection procedure s a
leave-one-out cross-validation.
The possible response variables Y that were considered included
power transforms of pathogen counts, C*, and power transforms of
.pathogen densities, [, over multiples of 0.25 for the power p. The
possible covariates X that were considered included the natural log
transform, In{S}. and power transforms of solids content, §7, over
multiples of (.5 for the power ¢ and the analysis of variance model
constant in 5. The:selected transforms of solids content for ali of
the three types of pathogen were hyperbolic in form, that is, S%
with ¢ < 0. However, for viable helminth ova and for viable
ascaris ova, simpler analysis of variance models that do not depend
on solids content may be used in place of the chosen hyperbolic
models. For enteric viruses, on the other hand, the chosen hyper-
bolic model provides tangibly better predictions than the associ-
ated analysis of variance model indicating a more complex depen-
dence on solids content than for the otheér two pathogen types.
Table 2 reports SDPEs for a variety of models applied to data
from the District’s study of its SPTs. The nine models designated
in Table 2 as M, through M, either minimize SDPE within indi-
cated classes of models or provide suboptimal choices with sim-
plified structure. Models are chosen, one for each pathogen type,
from among thése nine models to generate the estimates reported
in Table 3 of the expected pathogen density at each solids pro-
cessing stage. Fstimated expected pathogen densities at the fourth
and final stage are less than the Class A required level of I perd g
viable helminth ova, viable ascaris ova, and enteric viruses and are
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also below the required level for enteric virnses at the second and
third stages as well. These estimates adjust for varying levels of
solids content in cases in which the chosen made! indicates this is
warranted.

For viable helminth ova and viable ascaris ova, pathogen den-
sities may be reasonably predicted using amalysis of variance
models (models M, and Mg, respectively) that are independent of
solids content values. For enteric viruses, however, there is a
tangible benefit to using an analysis of covariance model (model
M) with a nontrivial dependence on solids content. Pathogen
densities for viable helminth ova and ascaris ova are reasonably
predicted indirectly by first modeling possibly transformed patho-
gen counits using an analysis of variance model with expected
pathogen counts that depend onty on the stage of solids processing
and then by adjusting predicted pathogen counis into predicted
pathogen densities. Pathogen densities for enteri¢ viruscs are also
reasonably predicted indirectly by first medeling transformed
pathogen counts but using an analysis of covariance model with
expected pathogen counts that depend on both the stage of solids
processing and the associated levels of solids content. Details are
provided in later subsections.

It is also desirable that solids processing reduce pathogen den-
sities from the initial to the final solids processing stage by at least
specified target amounts. In particular, the PEC-suggested target
log, o reduction level is —2 for viable helminth ova and, hence,
also for viable ascaris ova and —3 for enteric viruses. Estimated
distributions are given in Table 4 for the percent pathogen inacti-
vation (i.e., 100% minus the percent pathogen reduction). These
distributions are highly asymmetric and so are distributions for
pathogen reductions. Typical values for pathogen reduction thus
need 1o be reported with nonparametric measures of their variabil-
ity rather than with standard symmetric confidence intervals. For
this reason, Table 5 reports not only estimates for the District’s
SPTs of typical values for reductions and for associated log,,
reductions but also estimates of probabilities of }og,, reductions at

~ or below PEC-suggested (arget levels. The estimated typical log,,

reductions from stage 1 to 4 for viable belniinth ova, viable ascaris
ova, and enteric viruses are less than the associated target levels.
Moreover, there is approximately a 0.91 probabitity of meeting the
PEC-suggested target log,, reduction Jevel for viable helminth
ova, approximately a 0.94 probability for viable ascaris ova, and
approximately a 1.00 probability for enteric viruses. See the Pre-
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Figure 1—Pathogen densities versus solids content.

diction of Pathogen Reduction-Inactivation Capability subsection
for further details.

Suppose solids processing produces consistent proportional re-
ductions, that is, the distributions for reductions, conditioned on
positive initial pathogen density values, are the same with the same
common value whatever the distribution is for initial pathogen
densities. This assumption means that the chance that pathogen
densities are reduced by at least some percentage, for example, by
10, 25, 50, or 1009, is assumed to be the same no matter what the
initial pathogen density is. It is the basis for the assessment of the
effect of changes in initial stage pathogen densities on final stage
pathogen densities.

Suppose further that a surge (a large isolated burst) occurs in the
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random pathogen density at stage 1 in the sense that the random
initial pathogen density is a large positive value A with small
probability € and is otherwise unchanged with probability 1 — &.
Table 6 of Tata et al. (2000) contains estimates of the probability,
for selected values of A and g, that pathogen densities at stage 4
will satisfy Class A requirements for viable helminth ova and
ascaris ova. Results presented in that table indicate that, even if
surges as great as 10 000 pathogens per 4 g occur with probability
as great as 0.05, the estimated probabilities of meeting Class A
requirements for viable helminth and viable ascaris ova are still
greater than 0.99. Estimated probabilities of meeting Class A
requirements for enteric viruses are not reported in that table
because all such values are 1.00 because all observed enteric virus
densities at stage 4 are 0.00.

Alternatively, suppose that the random initial pathogen density
is expanded by a large factor m > 0 (a large sustained increase).
Table 6 of Tata et al. (2000) also contains estimates for selected
values of m of the probability that pathogen densities at stage 4 will
satisfy Class A requirements for viable helminth ova and ascaris
ova. The results of that table indicate that, even if the initial
pathogen densities are expanded by a factor of 100, the estimated
probability of meeting Class A requirements for viable helminth
ova is greater than 0.92 and for viable ascaris ova it is greater than
0.96. Thus, even under such exceptionally large expansions, Class
A requirements for viable helminth ova and viable ascaris ova stili
hold with guite high estimated probabilities. As noted previously,
estimated probabilities of meeting Class A requirements for enteric
viruses are not reported in Table 6 of Tata et al. (2000) because all
such values are 1.00 because all observed enteric virus densities at
stage 4 are 0.00. See the Effect of Hypothetical Surges—-Expan-
sions in Initial Densities on Final Pathogen Densities subsection
for further details.

Modeling Viable Helminth Ova Counts and Densities. When
the response variable Y is a transform of pathogen counts C for
viable helminth ova, the best model M, [in the sense of lowest
SDPE(M) for associated pathogen densities D] uses the untrans-
formed counts ¥ = C and the transform X = §7 85 of solids
content. On the other hand, when the response variable Y is a
transform of pathogen densities D for viable helminth ova per 4 g
solids content, the best model M, [also in the sense of lowest
SDPE(M) for pathogen densities D] uses the transforms ¥ = D73
and X = §'° Standard deleted prediction errors for related
models are presented in Table 2.

The score SDPE(M,) = 0.6600 for the first. of these models,
with estimates based on pathogen counts, is somewhat smaller,
approximately 4.8% smaller, than the score SDPE(M,) = 0.693 3
for the other model, with estimates based on pathogen densities.
Thus, the first model is more appropriate to use to estimate
expected pathogen densities for viable helminth ova. However, the
analysis of variance model M, corresponding to model M, using
untransformed ¥ = C and independent of solids content S has a
score of 0.663 5, only 0.5% greater than the score for model M,;
it provides essentially the same predictions as the best model and
is preferable because of its simpler level of dependence on solids
content. For this reason, model M, is used in computing the values
reported in Table 3.

Modeling Viable Ascaris Ova Counts and Densities. When
the response variable Y is a transform of pathogen counts C for
viable ascaris ova, the best model M, [in the sense of lowest
SDPE(M) for associated pathogen densities D] uses the transforms
Y = C*" and X = S5, On the other hand, when the response
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Table 2—Standard deleted prediction errors.

Densities P oS Best SDPE SDPE g(S) = 0
Viable heiminth ova densities®
Model-transformed helminth ova
counts, Y = CP, versus transformed
solids content, X = g(S) 0.75 g0 0.662 1 —
1.00 §—8s 0.6600 (M,) 0.6635 (M3)
1.25 s-7o 0.667 4 —
Model-transformed helminth ova
densities, Y = [}°, versus transformed
soligs content, X = g(S) 0.50 ST 0.704 2 —
0.75 g 10 0.693 3 (M,) 0.7258
1.00 g-10 0.697 5 —
Viable ascaris ova densities®
Model-trangformed ascaris ova
counts, Y = C?, versus transformed
solids content, X = (&) 0.50 §-178 0.303 8 —
0.75 S8 0.292 1 (M.} (3.293 4 (M)
1.00 g5 02936 —
Model-transformed ascaris ova
densities, ¥ = DF, versus transformed
solids content, X = g(S) 0.75 g0 0.2997 —
1.00 §-0s 0.297 8 (M) 03050
1.25 g-o 0.304 3 —
Enteric virus densities®
Model-transformed virus counts, ¥ =
CP, versus transformed salids content,
X = g(S) 0.50 g 12s 16409 —
0.75 g-®o 1.6188 (M,) 1.7152 (My)
1.00 0 1.706 1 —
Model-transformed virus densities, Y
= DP, versus transformed solids
content, X = g(3) 0.76 —-89o 1.7618 —
1.00 g e 1.7536 (Mg) 20762
1.25 g 120 1.7720 —_—

2 Models M;, M,. and M, are discussed in the Modeling Viable Helminth Ova Counts and Densities subsection.
b Models M,, M;. and M, are discussed in the Modeling Viable Ascaris Ova Counts and Densities subsection.
° Models M., M, and M, are discussed in the Modeling Enteric Virus Counts and Densities subsection.

variable Y is a transform of pathogen densities D for viable ascaris
ova per 4 g solids content, the best model M, [also in the sense of
lowest SDPE(M) for pathogen densities D] vses untransformed
densities ¥ = D and transformed solids content X = §~%°. Stan-

Table 3—Expected pathogen density per 4 g adjusted for
varying solids content.

Helminth ova
Total ova per  Ascaris ova  Enteric viruses

Stage 4¢° per 4 g° per 4 g°
Digester feed  1.014 % 10° 3519 % 107" 3.641 x 10°
Digester

draw 3705% 10" 1521 %1077 1.168 x 10~
Lagoon draw 1.690 x 10~ 5.381 x 1072 4.084 x 10722
Dried

product 1.041 % 1072 3991 x 1073 7.104 X 10722

a Estimated using model My of Table 2.
b Estimated using model M,, of Table 2.
¢ Estimated using modet M, of Table 2.
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dard deleted prediction errors for related models are presented in
Table 2. ‘

The score SDPE(M,) = 0.292 1 for the first of these models,
with estimates based on pathogen counts, is only 1.9% smaller
than the score SDPE(M,) = 0.297 8 for the other model, with
estimates based on pathogen densities. Thus, cither model may be
reasonably used to estimate expected pathogen deusities for viable
ascaris ova. Moreover, the analysis of variance model My corre-
sponding to the better of these two models wsing transformed
pathogen counts ¥ = C®7° and independent of salids content $ has
a score of 0.293 4, only 0.4% greater than the best model M,; it
provides essentially the same predictions as the best model while
depending on a simpler level of dependence on solids content. For
this reason, model M is used in place of the best model M, in
computing resulis reported in Table 3.

Modeling Enteric Virus Counts and Densities. When the
response variable Y is a transform of pathogen counts C for enteric
viruses, the best model M, [in the sense of lowest SDPE(M) for
associated pathogen densities D} uses the transforms ¥ = C°7° and
X = 5359 On the other hand, when the response variable ¥ is a
transform of pathogen densities D for enteric viruses per 4 g solids
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Table 4—Estimated distributions® of the percent pathogen inactivation.

Viable helminth ova

Viable ascaris ova

Inactivation, % Frequency Cumulative frequency Frequency Cumulative frequency
0-5 230 x 107* 230 x 107° 0.00 0.00

5-10 0.00 230 x 1074 0.00 0.00

10-15 2,30 x 107* 460 x 1074 235 x 107* 235 % 107
15-20 2.30 x 107 6.90 x 1074 0.00 235 x 107°
20-25 2.30 X 107* 8.20 x 1074 2.35 x 107* 470 x 107*
25-30 230 X 1074 1.15 X 1072 0.00 470 % 1074
30-35 1.15 x 10™* 1.27 x 1073 1.18 x 1074 5.88 x 107°
35-40 1.15 x 1074 1.38 x 1073 1.18 X 1074 7.06 x 107*
40-45 575 x 107* 1.96 x 1073 2.35 x 10~% 9.41 x 1074
45-50 6.90 X 107* 265 % 1073 0.00 941 x 107*
50-55 4.60 x 107* 311 x 1073 2.35 x 1074 148 x 1073
55-60 3.45 x 1074 345 x 1073 353 x 107 1.53 x 1072
60-65 6.90 x 1074 414 x 1072 1.18 x 10™* 1.65 x 1072
65-70 1650 x 1078 5.64 X 10739 153 x 1072 3.18 x 1073
70-75 1.73 x 1673 7.37 x 1073 1.65x 1073 483 x 1078
75-80 391 x107° 1.13 x 1072 294 x 1073 777 x 1073
80-85 5.06 x 1073 1.64 x 102 459 x 1073 1.24 x 1072
85-90 966 X 1072 261 X 1072 9.18 x 1073 216 x 1072
90-95 1.87 x 1072 4.48 x 1072 1.59 x 1072 3.75 x 1072
95-100 9.55 x 107! 1.00 0.63 x 1071 1.00

2 The estimated distribution for enteric viruses is concentrated on 100% inactivation.

content, the best model My [also in the sense of lowest SDPE(M)
for pathogen densities D] uses untransformed densities ¥ = D and
transformed solids content X = ™ '%°. Standard deleted prediction
errors for related models are presented in Table 2.

The score SDPE(M,) = 1.618 8 for the first of these models,
with estimates based on pathogen counts, is 7.7% smaller than the
" score SDPE(Mg) = 1.753 6 for the other model, with estimates
based on pathogen densities, and is more appropriate to use to
estimate expected pathogen densities for enteric viruses. More-
over, the analysis of variance model M, corresponding to model
M., using transformed pathogen counts ¥ = C°7° and independent
of solids content S has a score of 1.715 2, 6.0% greater than the
best model M,. Thus, it is preferable to model enteric virus

densities using an analysis of covariance model with a nontrivial
dependence on solids content. For this reason, the best model M,
is used in computing results reported in Table 3.

Prediction of Pathogen Reduction-Inactivation Capability.
To assess the pathogen reduction-inactivation capability of the
District’s solids treatment process, observed data for each of the
three pathogen types are used to compute empirical estimates of
probability density functions and cumulative distribution functions
for the pathogen reductions. Specifically, distributions are esti-
mated for reductions R,_,;, for j > 1 (i.e., for the second, third, and
fourth SPT stages) in pathogen density resulting for a random
sample with first stage pathogen density D, and subsequent patho-
gen density D,. Distributions are also estimated for the associated

Table 5—Estimated reduction capability features.

Log,e Probability of log,,
expected reduction at or
Expectei reduction, Target below the target
Pathogen type Stage j reduction ER,_,, 10g,, (ER,_.4) level level
Viable S
hetminth ova 2 152 x 10~ -0.82 0.622
3 5.48 x 1072 —-1.26 0.844
4 8.83 x 102 -2.05 -2 0.913
Viable
ascaris ova 2 6.65 x 1072 -1.18 0.856
3 3.39x 1072 —1.46 0.911
4 6.46 x 1073 -2.19 -2 0.935
Enteric viruses
2 3.66 x 102 —1.44 0.863
3 0.00 — 1.000
4 0.00 -0 -3 1.000
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quantity: the percent pathogen inactivation {1 — R, ) X 100% by
the final stage J = 4. These quantities are estimated by assuming
that the conditional distributions of the subsequent pathogen den-
sities DD, = d;, conditioned on the initial density value, d,, are
the same for ail ¢, > 0 and so are the same as the distribution for
subsequent pathogen densities D)D), > 0 conditioned on D, being
positive. Estimated distributions for the percent pathogen inacti-
vation by the end of solids processing are provided in Table 4.

Estimates of associated expected reductions and probabilities of
meeting target reduction levels are provided in Table 5. An esti-
mated log,, reduction of —2.05 by the end of solids processing
with an estimated probability of 0.913 of being less than the target
level of —2 is achieved for viable helminth ova, while an estimated
log,, reduction of —2.19 by the end of solids processing with
estimated probability of 0.935 of being less than the target ievel of
—2 is achieved for viable ascaris ova. Because all observed enteric
virus densities at stage 4 are zero, the estimated log,, reduction is
—oo with an estimated probability of 1.000 of being less than the
target level of —3.

Note that the distributions of Table 4 and, as a consequence, also
the distributions for-reductions and log), reductions are quite
asymmetric; so the probabilities of Table 5 provide nonparametric
measures of the variability about associated estimates of log,,
expected reductions relative o target levels and are more appro-
priate in this case than typicaily used symmetric confidence inter-
vals.

Effect of Hypothetical Surges-Expansions in Initial Densi-
ties on Final Pathogen Densities. Table 6 of Tata et al. (2000)
contains estimates of the probability of a random sample meeting
Class A requirements, first under various probabilities and sizes of
surges and then under various expansion factors. These estimates
are based on the assumption that solids processing produces con-
sistent proportional reductions in the sense that the conditional
distributions for R, D, = d, are all the same for any positive
initial pathogen density d, > 0. Surges of size A pathogens per 4 g
with probability £ are modeled by the family of random initial
pathogen densities D,® equal to A with probability € and oth-
erwise equal to the random density D% in effect during sampling.
Expansions of size v} > 0 are modeled by the family of random
initial pathogen densities D{™ = w - D{ obtained by rescaling the
random initial pathogen density (" in effect during sampling by
the multiple v. Results of Tablz 6 of Tata et al. (2000) indicate that
even for very large surges of A = [0 000 viable helminth—ascaris
ova per 4 g and under the relatively large probability of occurrence
of 0.05, Class A biosolids requirements will be met with an
estimated probability greater than 0.99. Furthermore, even under
the exceptionally large expansion factor of 100 times the level of
observed viable helminth—ascaris densities, Class A biosolids re-
quirements will be met with an estimated probability greater than
0.92.

Conclusions and Engineering Significance

Statistical methods are presented for assessing the pathogen
reduction capabitity of a biogolids process. These methods are used
to assess the District’s SPTs by analyzing the data of a full-scale
study of those SPTs. Data are analyzed for three pathogen types:
viable helminth ova, viable ascaris ova, and enteric viruses. How-
ever, these methods are also applicabie to the study of inactivation
of any microorganisms or pathogens in other solids processing
operations consisting of unit processes that may or may not be
similar to the District’s SPTs.
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Parametric analysis of covariance models are used to analyze
pathogen density levels at the four stages of solids processing from
digester feed to air-dried product of the District’s SPTs. Models
are selected through a cross-validation scheme that minimizes the
SDPE for predicting pathogen density levels per 4 g because the
U.S. EPA standards for Class A biosolids are stated in terms of
such densities.

Nonparametric methods are developed for determining patho-
gen reduction and inactivation distributions and selected summary
measures for these distributions. Estimates of gxpected pathogen
reduction from the initial to the final solids processing stage are
computed, as are estimates of the probability of meeting target
pathogen reduction levels.

Nonparametric methods are developed for conducting sensitiv-
ity analyses to assess the effect of changes in initial stage pathogen
densities on final stage pathogen densities. Two kinds of changes
are supported: (1) surges representing excepticnaily large isolated
bursts of pathogens in the digester feed and (2) uniform expansions
representing exceptionally large and sustained increases in patho-
gens in the digester feed. Results for these sensitivity analyses are
presented in the companion paper by Tata et al. {2000).
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