

Metropolitan Water Reclamation District of Greater Chicago

RESEARCH AND DEVELOPMENT DEPARTMENT

REPORT NO. 91-34 OPERATION LAKE WATCH - 1985 BACTERIA, ALGAE, AND BENTHOS IN THE WILMETTE, CHICAGO, AND CALUMET HARBOR AREAS OF SOUTHWESTERN LAKE MICHIGAN

W.G. Schmeelk I. Polls P. O'Brien

August 1991

Metropolitan Water Reclamation District of Greater Chicago-

OPERATION LAKE WATCH - 1985

BACTERIA, ALGAE, AND BENTHOS IN THE WILMETTE, CHICAGO, AND CALUMET HARBOR AREAS OF SOUTHWESTERN LAKE MICHIGAN

Ву

William G. Schmeelk Microbiologist III

> Irwin Polls Biologist III

Parnell O'Brien Microbiologist II

Research and Development Department

August 1991

TABLE OF CONTENTS

e

	Page
LIST OF TABLES	iv
LIST OF FIGURES	ix
ACKNOWLEDGEMENTS	x
Disclaimer	x
SUMMARY AND CONCLUSIONS	xi
INTRODUCTION	1
OBJECTIVES	3
Bacteria	5
Algae	5
Benthic Invertebrates	7
Sediment Quality	7
METHODS AND MATERIALS	8
Bacteria	8
Algae	9
Plankton	9
Periphyton	12
Water Chemistry	12
Benthic Invertebrates	13
Sediment Quality	14
RESULTS	15
Bacteria	15
Algae	15

TABLE OF CONTENTS (Continued)

	Page
Benthic Invertebrates	31
Station 2-C Near Wilmette Harbor	31
Station 4-C Near Chicago Harbor	39
Station 6-C Near Calumet Harbor	43
Sediment Quality	43
Station 2-C Near Wilmette Harbor	46
Station 4-C Near Chicago Harbor	46
Station 6-C Near Calumet Harbor	46
DISCUSSION	48
Bacteria	48
Algae	48
Populations	48
Community Structure	50
Benthic Invertebrates	58
Relative Abundance and Species Composition	58
Trophic Indices	59
Indicator Species	60
Sediment Quality	62
Comparison of Bacteria, Algae, and Benthos Data	62
REFERENCES	64

TABLE OF CONTENTS (Continued)

APPENDICES

- AI Bacterial Results of Lake Michigan Shore- AI-1 line Sampling - 1985
- AII Algal and Chemical Results from Samples AII-1 Collected from the Inshore Waters of Southwestern Lake Michigan During 1985
- AIII Population Densities of Benthic Inverte- AIII-1 brates Collected from the Inshore Areas of Southwestern Lake Michigan During 1985

LIST OF TABLES

Table No.		Page
1	Total Coliform (TC), Fecal Coliform (FC), Fecal Streptococcus (FS), Enterococcus (ME), Escherichia coli, and Pseudomonas aeruginosa (PA) Colony Confirmations from Samples Collected in Lake Michigan in 1985	10
2	Bacterial Counts for Lake Michigan Shoreline Stations	16
3	Summary of Algal Data Collected from the Inshore Areas of Southwestern Lake Michigan During 1985	17
4	Persistent Periphyton Organisms (Present in ≥ 90 Percent of Samples) Collected from the Inshore Areas of Southwestern Lake Michigan During 1985	21
5	Persistent Planktonic Organisms (Present in ≥ 90 Percent of Samples) Collected from the Inshore Areas of Southwestern Lake Michigan During 1985	22
6	Dominant Periphytic Organisms (≥ 1 Percent of the Total Periphyton Population) from Samples Collected from the Inshore Areas of Southwestern Lake Michigan During 1985	23
7	Dominant Planktonic Organisms (> 1 Percent of the Total Plankton Population) Collected from the Inshore Areas of Southwestern Lake Michigan During 1985	25
8	Summary of Water Quality Constituents Determined from the Inshore Waters of Southwestern Lake Michigan During 1985	27
9	Distribution of Benthic Invertebrates from the Inshore Area of Southwestern Lake Michigan, 1985	32
10	Summary of the Estimated Mean Abundance of Benthic Invertebrates in the Inshore Area of Southwestern Lake Michigan, 1985	36

LIST OF TABLES (Continued)

1- 1

.

No.		Page
11	Chemical Characteristics of Bottom Sedi- ments in the Inshore Area of Southwestern Lake Michigan, October 1985	44
12	Trace Metals in Bottom Sediments in the Inshore Area of Southwestern Lake Michigan, October 1985	45
AI-1	Bacterial Results from Samples Collected 1,000 Yards (915 Meters) Offshore at Lake- Cook County Line (Station 1-A, <u>Figure 1</u>), 1985	AI-2
AI-2	Bacterial Results from Samples Collected 1,000 Yards (915 Meters) Offshore at Wilmette Harbor (Station 2-A, <u>Figure 1</u>), 1985	AI-3
AI-3	Bacterial Results from Samples Collected 1,000 Yards (915 Meters) Offshore at Montrose Harbor (Station 3-A, <u>Figure 1</u>), 1985	AI-4
AI-4	Bacterial Results from Samples Collected 1,000 Yards (915 Meters) Offshore at Breakwater Gap for Chicago Harbor (Station 4, <u>Figure 1</u>), 1985	AI-5
AI-5	Bacterial Results from Samples Collected 1,000 Yards (915 Meters) Offshore at Jackson Park Harbor (Station 5-A, <u>Figure</u> <u>1</u>), 1985	AI-6
AI-6	Bacterial Results from Samples Collected 1,000 Yards (915 Meters) Offshore at Breakwater Gap for Calumet Harbor (Station 6-A, <u>Figure 1</u>), 1985	AI-7
AI-7	Bacterial Results from Samples Collected 300 Yards (275 Meters) Offshore at Lighthouse at Mouth of Indiana Harbor (Station 7-A, <u>Figure 1</u>), 1985	AI-8

LIST OF TABLES (Continued)

Table No.

- AII-1 Plankton Population Estimates for the AII-2 Inshore Waters of Southwestern Lake Michigan, Column Plankton Tow, Wilmette Harbor (Station 2-B, <u>Figure 1</u>), 1985
- AII-2 Plankton Population Estimates for the AII-6 Inshore Waters of Southwestern Lake Michigan, Columns Plankton Tow, Chicago Harbor (Station 4-B, <u>Figure 1</u>), January 22 to September 16, 1985
- AII-3 Plankton Population Estimates for the AII-12 Inshore Waters of Southwestern Lake Michigan, Column Plankton Tow, Chicago Harbor (Station 4-B, <u>Figure 1</u>), October 2 to December 9, 1985
- AII-4 Plankton Population Estimates for the AII-18 Inshore Waters of Southwestern Lake Michigan, Column Plankton Tow, Calumet Harbor (Station 6-B, <u>Figure 1</u>), 1985
- AII-5 Population Density of Periphytic Algal AII-23 Species Collected from the Inshore Waters of Southwestern Lake Michigan at Wilmette Harbor (Station 2-B, <u>Figure 1</u>), During 1985
- AII-6 Population Density of Periphytic Algal AII-24 Species Collected from the Inshore Waters of Southwestern Lake Michigan at Chicago Harbor (Station 4-B, Figure 1), March 4 to July 22, 1985
- AII-7 Population Density of Periphytic Algal AII-36 Species Collected from the Inshore Waters of Southwestern Lake Michigan at Chicago Harbor (Station 4-B, Figure 1), July 22 to October 28, 1985

Table No.

- AII-8 Population Density of Periphytic Algal AII-48 Species Collected from the Inshore Waters of Southwestern Lake Michigan at Calumet Harbor (Station 6-B, Figure 1), April 4 to November 26, 1985
- AII-9 Average Population Density of Planktonic AII-54 Algal Species Collected by Kemmerer Bottle from the Inshore Waters of Southwestern Lake Michigan at Wilmette Harbor (Station 2-B, Figure 1), During 1985
- AII-10 Average Population Density of Planktonic AII-65 Algal Species Collected by Kemmerer Bottle from the Inshore Waters of Southwestern Lake Michigan at Chicago Harbor (Station 4-B, Figure 1), January 9 to June 24, 1985
- AII-11 Average Population Density of Planktonic AII-73 Algal Species Collected by Kemmerer Bottle from the Inshore Waters of Southwestern Lake Michigan at Chicago Harbor (Station 4-B, Figure 1), July 9 to December 9, 1985
- AII-12 Average Population Density of Planktonic AII-81 Algal Species Collected by Kemmerer Bottle from the Inshore Waters of Southwestern Lake Michigan at Calumet Harbor (Station 6-B, Figure 1), March 19 to July 11, 1985
- AII-13 Average Population Density of Planktonic AII-88 Algal Species Collected by Kemmerer Bottle from the Inshore Waters of Southwestern Lake Michigan at Calumet Harbor (Station 6-B, Figure 1), July 23 to December 9, 1985
- AII-14 Chemical Analyses of Water Samples AII-95 Collected from the Inshore Waters of Southwestern Lake Michigan at Wilmette Harbor (Station 2-B, Figure 1), March 18 to July 9, 1985

Table No.

- AII-15 Chemical Analyses of Water Samples AII-98 Collected from the Inshore Waters of Southwestern Lake Michigan at Wilmette Harbor (Station 2-B, <u>Figure 1</u>), July 24 to December 10, 1985
- AII-16 Chemical Analyses of Water Samples AII-101 Collected from the Inshore Waters of Southwestern Lake Michigan at Chicago Harbor (Station 4-B, <u>Figure 1</u>), January 22 to June 24, 1985
- AII-17 Chemical Analyses of Water Samples AII-104 Collected from the Inshore Waters of Southwestern Lake Michigan at Chicago Harbor (Station 4-B, <u>Figure 1</u>), July 9 to December 9, 1985
- AII-18 Chemical Analyses of Water Samples AII-107 Collected from the Inshore Waters of Southwestern Lake Michigan at Calumet Harbor (Station 6-B, <u>Figure 1</u>), March 19 to July 11, 1985
- AII-19 Chemical Analyses of Water Samples AII-110 Collected from the Inshore Waters of Southwestern Lake Michigan at Calumet Harbor (Station 6-B, Figure 1), July 23 to December 9, 1985
- AIII-1 Mean Density* of Benthic Invertebrates at AIII-2 Wilmette Harbor (Station 2-C) in the Inshore Area of Southwestern Lake Michigan During 1985
- AIII-2 Mean Density* of Benthic Invertebrates at AIII-5 Chicago Harbor (Station 4-C) in the Inshore Area of Southwestern lake Michigan During 1985
- AIII-3 Mean Density* of Benthic Invertebrates at AIII-9 Calumet Harbor (Station 6-C) in the Inshore Area of Southwestern Lake Michigan During 1985

LIST OF FIGURES

Figure <u>No.</u>		Page
1	Inshore Area of Southwestern Lake Michigan Showing Bacterial, Algal, and Benthos, Sampling Locations During 1985	4
2	Percent Composition of Benthic Inverte- brates from the Inshore Area of Southwestern Lake Michigan, 1985	37
3	Mean Number of Benthic Invertebrate Taxa from the Inshore Area of Southwestern Lake Michigan, 1985	38
4	Mean Number of Benthic Invertebrates from the Inshore Area of Southwestern Lake Michigan, 1985	40
5	Ranked Relative Abundance (Percent Compo- sition) of Benthic Invertebrates from the Inshore Area of Lake Michigan, 1985	41
6	Seasonal Relative Abundance of Benthic Invertebrates from the Inshore Area of Southwestern Lake Michigan, 1985 (Sp = Spring, Su = Summer, Fa = Fall)	42

ACKNOWLEDGEMENTS

The authors wish to thank their laboratory technicians; Anne Copeland, John Dorkin, Joseph Salerno, and Michael Sopcak, for their aid in collection and identification of specimens, the organization and statistical treatment of data, and the preparation of selected portions of the text and appendices. Thanks are also due to the crews of pollution control boat PC I and pollution control boat PC II, without whose cooperation most of the samples could not have been collected.

Disclaimer

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

SUMMARY AND CONCLUSIONS

Bacteria

In 1985, of the seven open water Lake Michigan sampling stations only one, station 7-A, located about 300 yards (275 meters) offshore, from the Indiana Harbor Lighthouse, had fecal coliform (FC) levels greater than four per 100 mL. Station 7-A had counts of 128 per 100 mL as a geometric mean. In 1985 this was the only station which had FC counts higher than the Illinois Pollution Control Board Lake Michigan open water quality standard of 20 per 100 mL.

In 1985, all locations met the Illinois Department of Public Health Lake Michigan beach standard of 500 FC per 100 mL.

Algae

Comparing summer algal composition with studies conducted during the 1970's by the District and the Great Lakes Environmental Research Laboratory at Ann Arbor, Michigan, a clearly discernible improvement could be seen in Lake Michigan during 1985. The dominance of the green and blue-green algae in Lake Michigan's summer algal populations which were found during the 1970's did not occur in 1985. In the 1970's the diatom contribution had been as low as 5% of the total algal population. The diatom contribution in 1985 was never less than 69% of the total algal population. The appearance and increased dominance of the oligotrophic indicator species <u>Cyclotella kützingiana</u> and <u>C. ocellata</u> combined with the loss of dominance and reduced ap-

xi

pearance of the eutrophic indicator species Fragilaria capucina, Melosira granulata, Stephanodiscus tenuis, and the recently introduced eutrophic species Diatoma tenue var. elongatum, Nitzschia dissipata, Stephanodiscus binderanus, S. subtilis, and Cyclotella stelligera confirmed the improvement in water quality. The loss of Stephanodiscus hantzschii and S. minutus (mesotrophic to eutrophic indicators) from a position of dominance in the population also supports the conclusion of water quality improvement; even though Fragilaria crotonensis and Asterionella formosa, both mesotrophic to eutrophic indicators, remained as dominants through most of the year. The increased dominance of Tabellaria fenestrata (a mesotrophic indicator) throughout 1985 added weight to the conclusion of improved Lake Michigan water quality as compared to the 1970's.

Benthic Invertebrates

Bottom samples were collected from the inshore area of southwestern Lake Michigan at depths ranging from 13 to 35 feet during April, July through August, and November 1985. Based on the results from this study, the following conclusions can be made concerning the Lake Michigan benthic invertebrate communities:

xii

- Seventy-nine benthic taxa, most of which were identified to species, were collected from the study area, with an overall estimated mean density of 2,380 organisms/m².
- Of the total number of invertebrates, tubificids, chironomids, naidids, orthocladines, and amphipods accounted for 41.2, 32.2, 10.3, 4.6, and 1.6 percent, respectively.
- 3 The overall estimated mean abundance of the benthic invertebrates during the spring, summer, and fall was 1,921, 3,891, and 2,372 organisms/m², respectively.
- 4. The most common invertebrate taxa included the chironomid midges <u>Chironomus fluviatilis</u>-gr., <u>Cyphomella</u> sp., and <u>Polypedilium scalaenum</u>, the naidid worm <u>Piguetiella michiganensis</u>, and the tubificid worm <u>Potamothrix vejdovskyi</u>.
- 5. Using several numerical indices for oligochaete worms (total number and percent composition) and the indicator species approach, the benthic invertebrate community in Lake Michigan typified an area which has sustained a moderate degree of organic pollution or was characteristic of a mesotrophic habitat.

xiii

Sediment Ouality

Bottom sediments were collected from the same three stations as the benthic invertebrates in October and November 1985, and analyzed for 15 constituents. The following conclusions can be made regarding the quality of the Lake Michigan sediment in the study area:

- 1. The mean percent volatile solids and the mean concentration of chemical oxygen demand (COD), fats, oils, and greases (FOG), arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc in the sediments was 1.02 percent, 639, 19.0, 0, 0, 7.0, 12.6, 11,860, 6.6, 364, 0, 0, 0, 0, and 40.0 mg/kg, respectively.
- Using the USEPA's Region V guidelines for evaluating Great Lakes harbor sediments, the Lake Michigan bottom sediments in the study area can be classified as nonpolluted.

INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN

INTRODUCTION

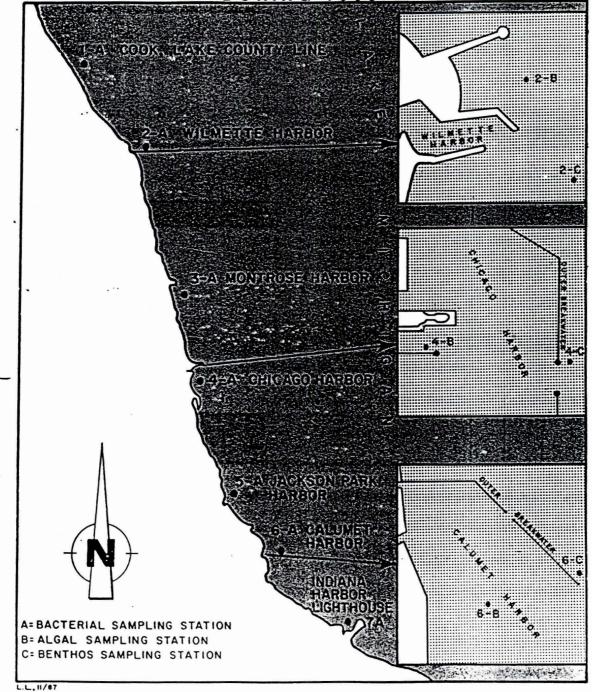
Lake Michigan is one of the Laurentian Great Lakes that form a natural boundary between Canada and the United States of America. The physical characteristics of these lakes were established 10,000 years ago with the retreat of the Wisconsinian glacier, and are stable and slow to change. Because these lakes contain 20 percent of the world's supply of surface fresh water the drainage basin is heavily populated. Eighty percent of the Canadian and 20 percent of the United States populations reside around these lakes.

Lake Michigan is the only Great Lake completely within the boundaries of the United States. It is 350 miles (560 kilometers) long, divided into basins by an underwater ridge, and in the southern basin has a maximum east-west width of 84 miles (134 kilometers). The average depth of Lake Michigan is 279 feet (85 meters) with maximum depths in the northern basin of 923 feet (282 meters) and in the southern basin of 548 feet (167 meters). Lake Michigan has a surface area of 22,300 square miles (5,775,674 hectares) and drainage basin (including the lake) of 67,900 square miles (17,586,012 hectares). Lake Michigan contains 1,180 cubic miles (4,920 cubic kilometers) of water with an average discharge rate (including the Chicago diversion) of 51,000 cubic feet per second (1,444 cubic

meters/sec). By combining this information an emptying or turnover time of 108 years can be calculated for Lake Michigan (1).

The Metropolitan Water Reclamation District of Greater Chicago (District) was created in 1889 to protect Lake Michigan, the source of the City of Chicago's drinking water supply (2, 3). The District has continued to safeguard this valuable water resource not only through capital improvements such as the Tunnel and Reservoir Plan (TARP) (4), but also through continuing and extensive water quality monitoring programs for this Great Lake.

OBJECTIVES


A two year survey of the inshore waters of southwestern Lake Michigan was begun in January 1984. This report describes the results of the second year (1985) of this survey. A study of fish was not conducted in Lake Michigan during 1985 (as in 1984) because a fish survey of the Chicago man-made waterways was conducted instead. The primary objective of this survey was to determine the present water quality of this region through the biota collected; e.g., algae as the primary producers, benthos as organisms that are primary and secondary consumers, and bacteria as indicators of human activities. Chemical constituents in the water or sediments, as appropriate, were sampled at the same time as the biota. Thus, a composite water quality determination was made.

Samples were collected at, near, or in three harbor areas. These harbor areas were Wilmette Harbor, Chicago Harbor, and Calumet Harbor. The location of each sampling point or area is shown in Figure 1.

Comparisons of the data collected were to be made with the Lake Michigan Water Quality Standards (5) (published by the Illinois Environmental Protection Agency), previous studies conducted by the District (6) and by Argonne National Laboratories (7).

FIGURE 1

INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN SHOWING <u>BACTERIAL</u>, <u>ALGAL</u>, AND <u>BENTHOS</u> SAMPLING LOCATIONS DURING 1985

Bacteria

Because there are large numbers of different kinds of bacteria to be found in natural waters the indicators of sanitary quality, total coliform (TC), fecal coliform (FC), and fecal streptococcus (FS) were the first choices for the determination of water quality in the inshore waters of southwestern Lake Michigan. The estimate of total heterotrophs or standard plate count (SPC), was added to provide an evaluation of bacterial biomass. To satisfy the public health aspect of a bacterial survey the <u>Salmonella</u> (enteric pathogens) group were identified and enumerated, as was <u>Pseudomonas</u> <u>aeruginosa</u>, an organism identified with water body contact infections, such as eye, ear, nose, and wound infections. Enterococci and <u>Escherichia coli</u>, indicative of human wastes, were also enumerated during 1985.

Algae

The algae are the primary producers in aquatic systems, analogous to the grasses of land systems. They convert inorganic substances to organic substances such as proteins, carbohydrates, and fats and are responsible for providing sustenance to the other organisms inhabiting the water. The kinds of algae present can indicate whether or not the system (in this case southwestern Lake Michigan) represents a disturbed or stable environment. To make this determination both planktonic and periphytic algae were collected. These algae

planktonic and periphytic algae were collected. These algae were identified to species and enumerated.

More than 2,000 species of algae have been previously identified from Lake Michigan (7). Sixty-five percent of these species were classified as diatoms (Bacillariophyceae). The remainder were divided among the green algae (Chlorophyta), bluegreen algae (Cyanophyta), golden-brown algae (Chrysophyceae), euglenoids (Euglenophyta), and dinoflagellates and cryptomonads (Pyrrhophyta).

The previous investigations of indicator algal species in Lake Michigan were primarily on diatoms since they had been dominant in both species and number (7). The underlying assumption for determining indicator species was that different taxa were either adapted to or tolerate water of dissimilar nutrient content.

The Shannon-Weaver species diversity index was used to describe the richness of species and the distribution of individuals among the species (8). The persistence of species through the year showed tolerance to changing climatic conditions and dominance of a species in the population (greater than one percent of the total population) showed that conditions were favorable for that species at that time.

Benthic Invertebrates

The benthic invertebrate community frequently has been used to assess the environmental quality of lakes and rivers. These organisms are sensitive to both physical and chemical changes in the environment. They also have sufficiently long life cycles and low motility, and thus reflect past and present environmental conditions. The community characteristics analyzed included the abundance, percent composition, and seasonal trends of invertebrates.

Sediment Ouality

Much of the suspended material that has been discharged from point and nonpoint sources of pollution eventually settles to the bottom of lakes. Some of these wastes can be toxic to aquatic organisms when present in high concentrations. Even though these materials are usually discharged to lakes at sublethal levels, many are capable of being concentrated in aquatic food chains. In this study, sediment samples were collected and analyzed for 15 chemical constituents.

METHODS AND MATERIALS

Bacteria

Water samples for bacterial analyses were collected at a depth of one meter using a Kemmerer bottle. These samples were placed in sterile four liter containers, with enough sodium thiosulfate to neutralize 15 mg/L chlorine, and transported on ice to the R & D Laboratory in Stickney, Illinois. Analyses were begun approximately six to twenty-four hours after sample collection began, and from two to twenty hours after the last sample was collected. Total coliform (TC), fecal coliform (FC), fecal streptococcus (FS), and standard plate count (SPC) were performed according to Standard Methods for the Examination of Water and Wastewater, 14th Edition (Standard Methods), (9). Salmonella were estimated using a modification of the MPN technique described by Kenner and Clark (10). Presumptive Salmonella were identified biochemically utilizing the API 20® system for identification of Enterobacteriaceae. Confirmation of <u>Salmonella</u> isolates was performed with polyvalent "O" antisera. <u>Pseudomonas</u> aeruginosa (PA) analyses were performed according to the tentative method in Standard Methods, 15th Edition, (11). Escherichia coli (EC) was enumerated by the membrane filter procedure of Dufour et al. (12) and enterococci (ME) were enumerated using the procedure of Dufour (13). Results were expressed as the geometric mean of samples collected four times during the year.

Colony confirmations for TC, FC, FS, PA, <u>Escherichia coli</u>, and Enterococci are presented in <u>Table 1</u>. The confirmation rates for typical TC, FC, FS, ME, EC, and PA colonies were 54%, 93%, 43%, 100%, 91% and 82%, respectively.

Algae

PLANKTON

"Plankton refers to microscopic aquatic forms having little or no resistance to currents and living free-floating and suspended in open or pelagic waters." (11)

Two types of plankton samples were collected. One type of sample was collected with a Kemmerer water sampler which collected discrete water samples at depths of one meter and the bottom meter. The other type of sample was collected with a plankton net (80 micrometer mesh) by lowering the net to the bottom of the water column and then raising it straight up. This is called a column or vertical plankton net tow and samples the entire water column. Both types of samples were kept in the dark and iced.

Upon return to the laboratory the discrete water samples were divided into four aliquots; one for diatom analysis, one for nondiatom or soft-bodied algae analysis, one for chlorophyll a analysis, and one for organic matter analysis. The vertical plankton net tow sample was divided into two aliquots; one for diatom analysis and one for nondiatom analysis.

TABLE 1

TOTAL COLIFORM (TC), FECAL STREPTOCOCCUS (FS), FECAL COLIFORM (FC), ENTEROCOCCUS (ME), <u>ESCHERICHIA COLI</u>, AND <u>PSEUDOMONAS AERUGINOSA</u> (PA) COLONY CONFIRMATIONS FROM SAMPLES COLLECTED IN LAKE MICHIGAN IN 1985

•	T	<u> </u>		<u>.</u>	F	s	-	ME		EC		PA
	Typ ¹	Atyp ²	Typ1	Atyp ²								
Number of Colonies Tested	101	27	81	4	28	6	8	03	35	2	22	2
Number Confirmed	54	2	35	2	26	4	8	0	32	1	18	0
Percent Confirmed	54	7	43	50	93	50	100	0	91	50	82	0

¹Typical Colonies.

²Atypical Colonies.

³No atypical colonies seen during the year.

<u>Diatoms</u>. The samples for diatom analysis were digested with 30 percent hydrogen peroxide and dichromate as a catalyst as described in <u>Standard Methods</u> (11). Serial concentrations were by sedimentation (11). After mounting in Hyrax[®] the counting protocol used was to identify and count 500 organisms or 300 fields, whichever came first.

Nondiatoms. The samples for nondiatom analysis were preserved with 0.5 percent glutaraldehyde, and three drops of concentrated detergent. Serial sedimentation as described in <u>Standard Methods</u> (11) was used to concentrate the organisms 200 times. Five hundred organisms or 300 fields were identified and counted. To determine the percentage of live diatoms the total number of diatoms was noted as well as those containing chloroplasts. Because the digestion process for diatom preparation destroys those diatoms which are only slightly silicified, such as <u>Rhizosolenia</u>, these organisms were counted in the nondiatom preparation and added to the diatom count.

<u>Chlorophyll a</u>. Samples were filtered through glass fiber (Reeve Angel[®]) filters (nominal pore size 0.45 μ m), extracted with 90 percent acetone, and ground in a tissue grinder as described in <u>Standard Methods</u> (11). Samples were clarified by centrifugation and absorbances determined in a spectrophotometer. Chlorophyll a concentrations were calculated using the UNESCO equations (11).

Organic Matter. The sample for organic matter analysis was dried at 103°C, weighed, fired in the muffle oven at 600°C, and reweighed. The difference in weight is the organic matter (11).

PERIPHYTON

Periphyton are, "A community of microscopic plants and animals associated with the surfaces of submerged objects. Some are attached, some move about." (11)

The periphytic algae were sampled by providing artificial substrates (microscope slides) for them to colonize. They were collected at two week intervals, protected from auto-oxidation by wrapping in aluminum foil, kept viable at 4°C, and transported to the laboratory. The slides were equally divided among the four analyses: diatoms, nondiatoms, chlorophyll a, and organic matter. Because of the variation among slides the distribution to each analysis was made on a rotating basis to minimize sampling bias. Once the samples had been scraped off the slides, the samples were handled as for plankton analyses.

WATER CHEMISTRY

Water samples for chemical analysis were collected at the same time as the algae samples. Temperature, Secchi disk, dissolved oxygen, and pH were determined on site. A total of 49 water quality constituents were measured at each site according to <u>Standard Methods</u> (11) and the results of these analyses are presented in the Appendix, <u>Tables AII-10</u> through <u>AII-12</u>.

Benthic Invertebrates

Three replicate bottom samples of 0.05 m² were collected with a Ponar grab sampler during April, July through August, and November 1985 from stations near Wilmette (2-C), Chicago (4-C), and Calumet (6-C) harbors (Figure 1). The sediment samples were placed in one gallon plastic containers and returned to the laboratory for analysis. All samples collected were stored at 4°C until processed.

Upon return to the laboratory, the samples were washed and screened through a number 60 U.S. Standard Sieve. The sieved material was examined under a stereomicroscope at 7 to 30 magnifications. All invertebrates were removed from the finer residual material, sorted into major taxonomic groups, and counted within three to four days of the time of sampling. Except for the worms and midges, each organism was examined and identified the lowest possible taxon with the to stereomicroscope. Oligochaete worms and chironomid midge larvae were mounted on slides using a temporary mounting medium (100 mL lactic acid, 100 mL glycerol, and 200 mL tap water), and identified under a compound microscope at 100 to 1,000 magnifications. At least 200 worms were identified from each of the replicate samples.

Identifications were made to the species level whenever possible using the following taxonomic references: Curry (14), Hiltunen and Klemen (15), Hosinger (16), Jackson (17), Klemm

(18), Mackie, et al. (19), Maschwitz (20), Pennak (21), Saether (22, 23, 24) and Stimson et al. (25) Hamilton and Saether were personally contacted by Irwin Polls.

Sediment Ouality

Sediment samples were collected with a Ponar grab sampler during November from the same three stations as benthic invertebrates. The samples were transferred to quart glass jars and analyzed for percent total and volatile solids, chemical oxygen demand (COD), fat, oils and greases (FOG), arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc. All 15 constituents were analyzed according to Methods for Chemical Analysis of Water and Wastes (26).

RESULTS

Bacteria

Geometric means of the bacterial indicators monitored during 1985 in Lake Michigan are shown in <u>Table 2</u>. The complete data from which <u>Table 2</u> was derived are contained in <u>Appendix</u> <u>AI</u>. Sampling locations are shown in <u>Figure 1</u>. Samples were analyzed for total coliform, fecal coliform, fecal streptococci, enterococci, standard plate count, <u>Escherichia coli</u>, <u>Pseudomonas</u> <u>aeruginosa</u> and <u>Salmonella</u> species. The sampling stations included six within Cook County (Stations 1-A through 6-A) and one south of Cook County (Station 7-A).

Algae

A summary of the algae analyses is presented in <u>Table 3</u>. The column or vertical plankton net tow plankton densities ranged from 107 to 157 organisms per mL with 40 to 48 species. The periphyton population densities ranged from 203 to 249,584 organisms per cm² with 13 to 112 species. By combining stations an average periphyton density of 215,275 organisms/cm² with 129 species was calculated. Results from Wilmette Harbor were not included since only one sample was collected. Kemmerer plankton (discrete water samples collected with a Kemmerer bottle) ranged at one meter depth from 4,099 to 11,378 organisms per mL with 121 to 136 species, and at the bottom meter from 4,851 to 7,082 organisms per mL with 127 to 129 species. Summarizing the

TABLE 2

Station Location ²	TC3	FC	EC	FS	Ent.	SPC	PA	<u>Salmonella</u>
-A								
ake-Cook Road	36	2	1	5	<1	402	<1	<0.15
ilmette Harbor	9	1	1	7	<1	190	<1	<0.15
Iontrose Harbor	9	1	1	5	<1	203	<1	<0.15
hicago Harbor -A	14	2	3	7	1	330	1	<0.15
ackson Park Harbor -A	15	2	2	3	<1	270	<1	<0.15
alumet Harbor -A	78	4	4	12	<1	750	<1	<0.15
-A Indiana Harbor Lighthouse	1,800	128	122	5	1_	78,000	10	<0.15

BACTERIAL COUNTS FOR LAKE MICHIGAN SHORELINE STATIONS¹

¹All counts per 100 mL except SPC which is in counts per mL.

²Figure 1.

³TC = total coliform, FC = fecal coliform, EC = <u>Escherichia coli</u>, FS = fecal streptococcus, Ent. = Enterococci, SPC = standard plate count, PA = <u>Pseudomonas aeruginosa</u>.

⁴Values shown are the geometric mean of results of analyses of four samples taken April, June, August, and October 1985. FS are the result of one sampling run in October 1985.

TABLE 3

SUMMARY OF ALGAL DATA COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Constituent	Wilmette Harbor Station 2-B*	Chicago Harbor Station 4-B*	Calumet Harbor Station 6-B*
Column Plankton-Net Tow			
Population Density (organisms/mL)	157	107	129
Numbers of Species	40	48	41
Periphyton (Average)			
Population Density (organisms/cm ²)	203	180,966	249,584
Species Diversity	0.86	1.05	0.84
Numbers of Species	13	112	80
Organic Matter (μ g/cm ²)	14.2	55.1	48.0
Chlorophyll a $(\mu g/cm^2)$	0.07	0.13	0.32
Kemmerer Plankton - 1 Meter			
Population Density (organisms/mL)	4,318	3,973	11,378
Species Diversity	1.22	1.19	0.77
Numbers of Species	133	136	121
Organic Matter (µg/mL)	46.5	46.0	44.9
Chlorophyll a $(\mu g/mL)$	3.02	2.83	2.56

Table continued on following page.

TABLE 3 (Continued)

SUMMARY OF ALGAL DATA COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Constituent	Wilmette Harbor Station 2-B	Chicago Harbor Station 4-B	Calumet Harbor Station 6-B
Kemmerer Plankton - Bottom		TRI.	
Population Density (organisms/mL)	5,036	4,850	7,082
Species Diversity	1.20	1.18	1.21
Numbers of Species	127	129	129
Organic Matter (µg/mL)	46.7	46.9	47.2
Chlorophyll a (µg/mL)	4.08	3.50	4.43
Site Average Kemmerer Plankton	,		
Population Density (organimsm/mL)	4,648	4,223	9,056
Species Diversity	1.22	1.19	1.01
Numbers of Species	167	167	161
Organic Matter (µg/mL)	45.6	46.4	46.1
Chlorophyll a (µg/mL)	3.55	3.15	3.50
	Southwestern I	ake Michigan 198	5 Average
Kemmerer Plankton - Overall			
Population Density (organisms/mL)		5,976	
Species Diversity		1.17	
Numbers of Species		278	
Organic Matter (µg/mL)		42.1	
Chlorophyll a (µg/mL)		3.93	

Table continued on following page.

TABLE 3 (Continued)

SUMMARY OF ALGAL DATA COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Constituent	Wilmette Harbor Station 2-B	Chicago Harbor Station 4-B	Calumet Harbor Station 6-B
	Southwestern L	ake Michigan 1985	Average
Periphyton - Overall Population Density (organisms/cm ²) Species Diversity Numbers of Species Organic Matter (µg/cm ²) Chlorophyll a (µg/cm ²)		215,275 1.06 129 50.3 0.21	

*Figure 1 shows location of sampling stations.

19

**Only those sample where both diatoms and nondiatoms were represented were included.

Kemmerer plankton through all depths at each site, the population densities ranged from 4,223 to 9,056 organisms per mL with 161 to 167 species. By combining stations an average Kemmerer plankton population density of 5,976 organisms per mL with 278 species was calculated.

Table 4 shows that seven periphytic organisms were present in more than 90 percent of the samples collected. Two of the seven persistent periphytic organisms (Fragilaria crotonensis and Nitzschia fonticola) were listed by Palmer (27, 28) as pollutant-tolerant species. Table 5 shows that among the 14 persistent plankton species which were found in the southwestern Lake Michigan harbor areas, four (Fragilaria crotonensis, Nitzschia fonticola, Synedra acus, and Synedra ulna) were listed by Palmer as pollutant-tolerant species. Table 6 shows 48 periphyton organisms considered to be dominant species in Lake Michigan harbor areas in 1985. Eleven of these organisms were listed by Palmer as pollutant-tolerant. Table 7 lists 50 plankton species considered to be dominant in Lake Michigan harbor areas during 1985. Nine of these organisms were listed by Palmer as being pollutant-tolerant.

A summary of the results of the water chemistry analyses is presented in <u>Table 8</u>. The number of observations, mean, and sample deviation are given for each of the constituents determined.

TABLE 4

PERSISTENT PERIPHYTON ORGANISMS (PRESENT IN ≥90 PERCENT OF SAMPLES) COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Persistent Organisms*	Wilmette Harbor Station 2-B	Chicago Harbor Station 4-B	Calumet Harbor Station 6-B
Diatoms			
<u>Achnanthes</u> affinis		х	
<u>Cyclotella</u> <u>kuetzingiana</u>		х	
Diatoma elongatum		х	
Fragilaria crotonensis**		Х	Х
Fragilaria intermedia		х	х
Nitzschia fonticola**		х	
<u>Tabellaria fenestrata</u>		х	

*Organisms present in \geq 90 percent of the samples collected. The one sample collected from Wilmette was not included, but there were 14 samples at Chicago, and 11 samples at Calumet, (Stations 4-B, and 6-B, respectively).

**Pollutant-tolerant (28).

TABLE 5

PERSISTENT PLANKTONIC ORGANISMS (PRESENT IN ≥90 PERCENT OF SAMPLES) COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Persistent Organisms	Wilmette Harbor Station 2-B*	Harbor	
Diatoms			
Achnanthes affinis		х	
Asterionella formosa	х		
<u>Cyclotella</u> <u>kuetzingiana</u>	х	х	х
Fragilaria bicapitata		х	х
Fragilaria crotonensis**	х	х	х
<u>Fragilaria pinnata</u>			х
Melosira islandica	х	х	х
Nitzschia fonticola**			х
<u>Stephanodiscus</u> <u>astraea</u>	х	х	х
<u>Synedra</u> <u>acus</u> **	х		
<u>Synedra ulna</u> var. chaseana**		х	х
<u>Tabellaria fenestrata</u>	х	х	x
<u>Tabellaria flocculosa</u>	х	х	
Blue-Green Algae			
<u>Oscillatoria</u> <u>limnetica</u>			х

*Station locations shown in Figure 1. **Pollutant-tolerant (28).

TABLE 6

DOMINANT PERIPHYTIC ORGANISMS (≥1 PERCENT OF THE TOTAL PERIPHYTON POPULATION) FROM SAMPLES COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Dominant Organisms	Wilmette Harbor Station 2-B*	Chicago Harbor Station 4-B*	Calumet Harbor Station 6-B*
Diatoms			
<u>Achnanthes</u> affinis		х	х
Achnanthes conspicua		х	10 Tes
Amphipleura pellucida			х
<u>Amphora delicatissima</u>		х	
<u>Asterionella formosa</u>	х	х	х
<u>Cyclotella glomerata</u>	х	х	х
<u>Cyclotella kuetzingiana</u>	х	x	x
<u>Cyclotella ocellata</u>		х	
<u>Cymbella microcephala</u>			х
<u>Cymbella prostrata</u>		х	
<u>Cymbella protracta</u>		х	
<u>Diatoma elongatum</u>		х	x
<u>Diatoma elongatum</u> var. minor	х	х	x
<u>Diatoma vulgare</u> **		х	х
<u>Fragilaria bicapitata</u>			х
<u>Fragilaria construens</u>		х	
var. subsalina			
<u>Fragilaria intermedia</u>	x	х	х
<u>Fragilaria pinnata</u>		х	х
Gomphonema abbreviatum		х	
<u>Gomphonema</u> <u>olivaceum</u>	х	х	х
<u>Gomphonema</u> <u>olivaceum</u>		х	
var. calcarea			
<u>Melosira granulata**</u>		х	х
<u>Melosira islandica</u>	х	х	
Navicula cryptocephala**		х	
<u>Navicula lanceolata</u>		х	
<u>Nitzschia acicularis</u> **	х		
<u>Nitzschia</u> <u>dissipata</u> **		х	
<u>Nitzschia fonticola</u> **		х	Х

TABLE 6 (Continued)

,

DOMINANT PERIPHYTIC ORGANISMS (≥1 PERCENT OF THE TOTAL PERIPHYTON POPULATION) FROM SAMPLES COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Dominant Organisms	Wilmette Harbor Station 2-B*	Harbor	Calumet Harbor Station 6-B*
Nitzschia frustulum		х	
<u>Nitzschia gracilis</u> **		х	Х
<u>Nitzschia linearis</u> **	х	х	Х
<u>Nitzschia recta</u>		х	
<u>Stephanodiscus</u> <u>astraea</u>			Х
<u>Stephanodiscus</u> minutus		х	
<u>Synedra acus</u> **	х	х	Х
<u>Synedra gaillonii</u>		х	
<u>Synedra ulna</u> *		х	Х
<u>Synedra ulna</u> var. chaseana**	х	х	х
<u>Tabellaria fenestrata</u>	х	х	Х
Green Algae Ankistrodesmus convolutus Cladophora sp. Mougeotia sp. Rhizoclonium hieroglyphium Stichococcus bacillaris Stigeoclonium polymorphum	x	X X X X X	x x
Ulothrix sp.		x	
- •			
Blue-Green Algae			
<u>Oscillatoria agardhii</u>		х	
Oscillatoria subbrevis		х	

*Station locations shown in Figure 1. **Pollutant-tolerant (28)

TABLE 7

DOMINANT PLANKTONIC ORGANISMS (≥1 PERCENT OF THE TOTAL PLANKTON POPULATION) COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Dominant Organisms	Wilmette Harbor Station 2-B*	Chicago Harbor Station 4-B*	Calumet Harbor Station 6-B*
Diatoms			
Achnanthes affinis	x	х	
Amphoira veneta			x
Asterionella formosa	X	х	х
Cyclotella glomerata	х		х
<u>Cyclotella iris</u>		X	х
<u>Cyclotella kuetzingiana</u>	х	х	х
Cyclotella pseudostelligera		X	
<u>Cymbella ventricosa</u>			х
<u>Diatoma elongatum</u>	х	х	x
<u>Diatoma tenue</u>			Х
<u>Fragilaria bicapitata</u>	х	х	Х
<u>Fragilaria construens</u>	х	х	Х
var. subsalina			
<u>Fragilaria</u> crotonensis**	х	х	X
<u>Fragilaria intermedia</u>		х	
<u>Fragilaria pinnata</u>	х	х	Х
<u>Melosira granulata**</u>	х	х	х
<u>Melosira islandica</u>	х	х	х
<u>Nitzschia acicularis</u> **	х		
<u>Nitzschia fonticola</u> **	х	X	х
<u>Nitzschia</u> <u>gracilis</u> **	х		х
<u>Nitzschia linearis</u> **	х		х
<u>Rhizosolenia longiseta</u>			Х
Stephanodiscus astraea	х	х	Х
Stephanodiscus minutus	х	X	X
Synedra acus*	Х	х	X
Synedra ulna var. chaseana**	х	х	х
Tabellaria fenestrata	х	х	х
Tabellaria flocculosa	х		х

TABLE 7 (Continued)

1

DOMINANT PLANKTONIC ORGANISMS (≥1 PERCENT OF THE TOTAL PLANKTON POPULATION) COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Dominant Organisms	Wilmette Harbor Station 2-B*	Chicago Harbor Station 4-B*	Calumet Harbor Station 6-B*
Green Algae <u>Ankistrodesmus convolutus</u>		х	
Chlamydomonas globosa		x	
<u>Cladophora</u> sp.		x	x
Mougeotia sp.	х	Λ	А
<u>Oocvstis parva</u>	А	x	
Selenastrum contorta		A	х
Stichococcus bacillaris	х	х	x
Chrysophyte Algae <u>Dinobryon divergens</u>	x	v	v
<u>Dinobryon</u> <u>sertularia</u>		X	X
DINODIVON SEICUIAITA	х	х	х
Blue-Green Algae			
Anabaena circinalis	х	x	
Anabaena scheremetievi	х		х
Anabaena spiroides		х	
Anabaena wisconsinense		х	
<u>Aphanocapsa</u> <u>delicatissima</u>		х	
Aphanothece nidulans		х	
Chroococcus limneticus			х
<u>Oscillatoria agardhii</u>	Х	х	х
<u>Oscillatoria limnetica</u>	х	х	х
<u>Oscillatoria lutea</u>	х	x	
<u>Oscillatoria</u> <u>subbrevis</u>		х	х
<u>Oscillatoria tenuis</u> **	х	х	х
Phormidium corium			Х
			A

*Station locations shown in Figure 1. **Pollutant-tolerant (43).

TABLE 8

SUMMARY OF WATER QUALITY CONSTITUENTS DETERMINED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

		Wilmette Harbor Station 2-B			Chicago Harbor Station 4-B			Calumet Harbor Station 6-B		
Constituents	Units	n*	Mean	SD**	n*	Mean	SD**	n*	Mean	SD**
Temperature	°c	17	12.8	5.8	22	10.5	6.9	18	12.8	6.1
Turbidity	NTU	17	6.2	8.5	21	6.5	14.3	18	1.9	1.3
Secchi Disk	meters	16	1.7	1.2	21	1.7	0.9	18	2.3	0.9
Alkalinity, Total	mg/L	17	118	9.3	22	116	6.7	18	115	7.6
Sulfate	mg/L	17	22.4	3.6	22	21.7	4.5	18	26.5	22.4
Sluoride	mg/L	17	0.16	0.04	22	0.17	0.04	18	0.16	0.02
Chloride	mg/L	17	12.8	3.9	22	12.1	4.5	18	12.4	3.9
Phosphorus, Total	mg/L	14	0.012	0.008	18	0.019	0.030	15	0.011	0.010
Phosphorus, Dissolved	mg/L	12	0.016	0.022	18	0.018	0.031	15	0.007	0.006
Silica, Total	mg/L	17	1.32	1.35	21	0.99	0.55	18	0.79	0.44
Calcium	mg/L	17	29.9	3.0	21	30.0	3.7	18	29.3	3.3
Magnesium	mg/L	17	11.5	1.2	21	11.1	0.6	18	11.1	0.9
Potassium	mg/L	17	1.0	0	21	1.1	0.3	18	1.0	0
Sodium	mg/L	17	5.1	1.0	21	5.6	1.2	18	5.4	0.9
Solids, Total	mg/L	17	190	25.9	22	185	16.0	18	193	19.1
Solids, Total Volatile	mg/L	17	51.3	15.8	22	52.2	20.7	18	63.2	29.9
Solids, Suspended	mg/L	17	13.6	15.6	22	7.2	6.8	18	4.2	2.7
Solids, Volatile Suspended	mg/L	6	3.0	1.3	5	2.8	3.0	3	1.3	0.6

TABLE 8 (Continued)

SUMMARY OF WATER QUALITY CONSTITUENTS DETERMINED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Constituents		Wilmette Harbor Station 2-B				Chicago Harbor Station 4-B			Calumet Harbor Station 6-B		
	Units	n*	Mean	SD**	n*	Mean	SD**	n*	Mean	SD**	
Oxygen, Dissolved	mg/L	16	10.5	1.7	20	10.6	1.9	18	10.5	1.6	
Oxygen Demand, Chemical	mg/L	17	11.2	8.3	22	9.4	5.4	18	8.4	5.6	
Oxygen Demand, 5-Day Biochemical	mg/L	17	2.0	0	22	2.1	0.4	18	2.2	0.7	
Total Organic Carbon	mg/L										
Nitrogen, Total Kjeldahl	mg/L	14	0.25	0.07	18	0.32	0.17	15	0.26	0.06	
Nitrogen, Dissolved Total Kjeldahl	mg/L	12	0.21	0.09	18	0.27	0.12	15	0.24	0.08	
Nitrogen, Ammonia	mg/L										
Nitrogen, Nitrate	mg/L	15	0.19	0.09	19	0.20	0.11	16	0.20	0.09	
Nitrogen, Nitrite	mg/L	15	0.01	0	19	0.01	0	16	0.01	0	
Fats, Oils, and Greases	mg/L	17	1.47	0.87	22	1.41	0.96	18	1.22	0.43	
Foaming Agents MBAS	mg/L	14	0.019	0.015	18	0.016	0.011	16	0.020	0.021	
Hardness, Titration as CaCO3	mg/L	17	149	19.4	21	145	14.7	17	145	11.4	
Hardness, Atomic Absorption as CaCO ₃	mg/L	17	122	10.4	21	121	10.0	18	119	9.8	
Aluminum	mg/L	17	1.0	0	21	1.0	0	18	1.0	0	
Arsenic	mg/L	17	1.0	0	21	1.0	0	18	1.0	0 0 0	
Barium	mg/L	17	0.2	0	21	0.2	0	18	0.2	0	

Table continued on following page.

.

TABLE 8 (Continued)

SUMMARY OF WATER QUALITY CONSTITUENTS DETERMINED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

		Wilmette Harbor Station 2-B			Chicago Harbor Station 4-B			Calumet Harbor Station 6-B		
Constituents	Units	n*	Mean	SD**	n*	Mean	SD**	n*	Mean	SD**
Cadmium	mg/L	17	1.12	0.33	21	1.10	0.44	18	1.22	0.55
Chromium	mg/L	17	1.71	0.85	21	1.95	1.28	18	2.16	1.10
Copper	mg/L	17	10.7	6.2	21	26.4	65.7	18	11.8	10.1
Iron, Total	mg/L	17	220	256	20	155	144	18	100	92
Lead	mg/L	17	2.00	2.26	21	4.14	3.82	18	2.44	2.73
Manganese	mg/L	17	8.24	8.14	21	7.24	5.33	18	5.61	2.81
Mercury	µg/L	17	0.07	0.05	21	0.34	1.30	18	0.06	0.04
Nickel	mg/L	17	3.82	3.11	21	4.61	3.94	18	4.50	3.28
Selenium	mg/L	14	1.00	0	21	1.00	0	15	1.00	0
Zinc	mg/L	17	16.8	12.6	19	25.0	38.2	18	17.2	11.4
Phenol-Like Substances as Phenol	µg/L	17	1.06	0.24	22	1.18	0.50	18	1.44	1.04
Silver	mg/L	17	1.0	0	21	1.1	0.3	18	1.0	0
Cyanides, Total	µg/L	17	0.002	0.001	19	0.009	0.027	15	0.002	0.001
Conductivity	µmhos/cm	17	271	11.5	22	271	15.7	18	274	11.3
Plankton (surface)	147	1911 - 2012 - 1								07 510
Population Density	org/mL	17	4,118	2,423	22	4,099	1,792	18	11,378	27,512
Chlorophyll a	µg/mL	16	3.02	1.82	22	2.83	1.27	17	2.56	1.67
Organic Matter	µg/mL	17	46.5	5.0	21	46	8.0	16	44.9	7.1

Table continued on following page.

. .

TABLE 8 (Continued)

SUMMARY OF WATER QUALITY CONSTITUENTS DETERMINED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

			Vilmette Ha Station 2			Chicago Station		Calumet Harbor Station 6-B			
Constituents	Units	n*	Mean	SD**	n*	Mean	SD**	n*	Mean	SD**	
Number of Species Species Diversity		17 17	34.8 0.94	7.6 0.23	22 22	33.0 0.90	6.5 0.23	18 18	30.2 0.83	8.8 0.28	
Plankton (bottom) Population Density Chlorophyll a Organic Matter Number of Species Species Diversity	org/mL μg/mL μg/mL	17 16 17 17 17	5,036 4.08 46.7 33.8 0.93	2,718 1.55 6.3 10.3 0.27	21 20 21 21 21	4,851 3.540 46.9 35.1 0.96	2,531 1.22 7.2 6.9 0.20	18 17 18 18 18	7,082 4.43 47.2 35.2 0.96	3,822 2.58 7.7 6.1	
Periphyton Population Density Chlorophyll a Organic Matter Number of Species Species Diversity Index	org/cm ² μg/cm ² μg/cm ²	1 1 1 1	203 0.07 14.2 13 0.86	0 0 0 0	13 14 14 15 15	1.8x10 ⁵ 0.13 55.1 30.1 0.93	1.7x10 ⁵ 0.17 42.6 12.2 0.22	12 11 13 12 12	2.5x10 ⁵ 0.32 48.0 22.8 0.71	1.5x10 ⁵ 0.86 31.1 6.8 0.26	

*n = Number of Observations.

**SD = Standard Deviation.

Benthic Invertebrates

Seventy-nine benthic invertebrate taxa were identified from the inshore area of southwestern Lake Michigan (Table 9) with an overall estimated mean faunal density of 2,728 organisms/m² (Table 10). There were 21 species of chironomids, 12 naidids and 10 tubificids. The estimated mean abundance of the benthic invertebrates collected at Stations 2-C, 4-C, and 6-C (Figure 1) during the spring, summer, and fall are presented in Appendix AIII. Overall, tubificids, chironomids, naidids, orthocladines, and amphipods accounted for 41.2, 32.2, 10.3, 4.6 and 3.2%, respectively, of the total from all stations (Figure 2). Seventynine percent of the tubificids were unidentifiable immature worms. The dominant taxa shifted throughout the year, and seasonally dominant organisms included the chironomids (C. fluviatilis-gr., Cyphomella sp., and P. scalaenum), the naidid (P. michiganensis), and the tubificid (P. vejdovskyi).

STATION 2-C NEAR WILMETTE HARBOR

A total of 37 benthic taxa, most of which were identified to species, were collected from Station 2-C near Wilmette Harbor (<u>Table AIII-1</u>). There were 14 species of chironomids, 5 pelecypods, and 3 tubificids, naidids, orthocladines, and amphipods. The highest number of taxa (22) was collected during the fall (<u>Figure 3</u>). The estimated mean number of organisms/m² for the spring, summer, and fall sampling periods were 1,987, 2,254, and

TABLE 9

2

DISTRIBUTION OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985

Taxon	April	August	October
Coelenterata			
<u>Hydra</u> sp.	-	+	-
Annelida			
Enchytraeidae	+	+	+
Lumbriculidae			
<u>Stylodrilus</u> <u>heringianus</u>	-	+	-
Naididae			
<u>Amphicaeta</u> <u>leydigi</u>	-	+	+
<u>Chaetogaster</u> <u>diaphanus</u>	-	— 1	+
Nais communis		+	+
<u>Nais simplex</u>		+	-
<u>Nais</u> <u>variablis</u>	_	+	+
<u>Piguetiella</u> michiganensis	+	+	+
Pristina foreli	-	-	+
Pristina osborni	-	-	+
Slanina appendiculata	-	+	_
Stylaria lacustris	-	-	+
Uncinais uncinata	+	-	+
Vejdovskyella intermedia	+	+	+
Tubificidae			
Avlodrilus americanus	-	+	-
Avlodrilus pluriseta	-	+	+
Ilvodrilus tempretoni	_	+	_
Limnodrilus cervix	-	+	_
Limnodrilus hoffmesteri	+	+	+
Limnodrilus maumeensis	_	+	_
Limnodrilus udekemianus	+	_	-
Potamothrix moldaviensis	+	+	+
Potamothrix vejdovskyi	_	+	т Т
Tubifex superiorensis	_	т _	т
Undetermined immatures		т	-
with capilliforms	+	+	-
without capilliforms	+	+	+

TABLE 9 (Continued)

DISTRIBUTION OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985

Taxon A	April	August	October
Hirudinea			
<u>Helobdella</u> <u>stagnalis</u>	+	+	-
Arthropoda			
Crustacea			
Isopoda			
Asellus sp.	-	+	-
Amphipoda			
Gammarus pseudolimnaeus	+	+	+
<u>Hyalella</u> <u>azteca</u>	+	-	· _
<u>Pontoporeia hoyi</u>			
	+	+	+
Insecta			
Tricoptera			
Hydroptila sp.	+	-	-
Diptera			
Tanypodinae			
<u>Conchapelopia</u> sp.	+	-	-
Procladius sp.	-	+	+
Diamesinae			
<u>Potthastia</u> cf.	-	+	+
longimanus			
Prodiamesinae			
<u>Monodiamesa</u> <u>depectinata</u>	-	+	+
Monodiamesa cf.	+	+	+
tuberculata			
Orthocladinae			
Heterotrissocladius cf.	+	+	+
changi			
<u>Nanocladius</u> sp.	+	-	-
<u>Parakiefferiella</u> sp.	+	+	+
Chironominae			
Chironomini			
Chironomus	+	+	+
<u>anthracinus</u> -gr.			

TABLE 9 (Continued)

-

DISTRIBUTION OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985

Taxon	April	August	October	
Chironomus	+	+	+	
<u>fluviatilis</u> gr.				
Chironomus	-	+	+	
<u>plumosus</u> -gr.				
Chironomus sp.	+	+	+	
<u>Cladopelma</u> sp.	-	+	-	
Cryptochironomus	+	+	+	
<u>digitatus</u>				
Cryptochironomus cf.	+	+	+	
fulvus				
g. nr. <u>Cyphomella</u>	+	+	+	
Demicryptochironomus	-	+	+	
sp.				
Dicrotendipes sp.	-	+	-	
<u>Glyptotendipes</u> sp.	+	-	_	
Microtendipes cf.	+	-	-	
pedellus				
Pargacladopelma	+	+	+	
<u>camptolabis</u> -gr.				
<u>Paracladopelma</u> <u>nereis</u>	+	-	-	
Paracladopelma undine	+	-	+	
Paracladopelma cf.	-	+	-	
winnelli				
Polypedilium cf.	+	+	+	
scalaenum				
Polypedilium cf.	-	+	+	
tuberculum				
Pseudochironomus sp.	+	+	+	
Tanytarsini				
<u>Microspecta</u> sp.	-	-	+	
<u>Tanytarsus</u> sp.	+	-	+	
ollusca				
Gastropoda				

TABLE 9 (Continued)

DISTRIBUTION OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985

Taxon	April	August	October	
Amnicola limosa	+	+	+	
Bithynia tentaculata	_	+	-	
Physella gyrinasayi	-	+	-	
Physella vinosa	-	+	-	
Physella sp.	-	+	-	
Valvata perdepressa	-	+	-	
Valvata sincera	-	+	-	
<u>Valvata</u> tricarinata	-	+	-	
Pelecypoda				
Musculium transversum	-	+	-	
<u>Pisidium casertanum</u>	+	+	+	
Pisidium compressum	-	+	-	
Pisidium fallax	+	+	+	
<u>Pisidium henslowanum</u>	_	+	-	
<u>Pisidium nitidium</u>	-	+	-	
cf. <u>pauperculatum</u>				
Pisidium subtruncatum	-	+	-	
Pisidium variabile	-	+	-	
Sphaerium corneum	+	-	-	
Sphaerium rhomboideum	+	-	-	
Sphaerium striatinum	+	+	-	
Total Number of Taxa	37	61	42	

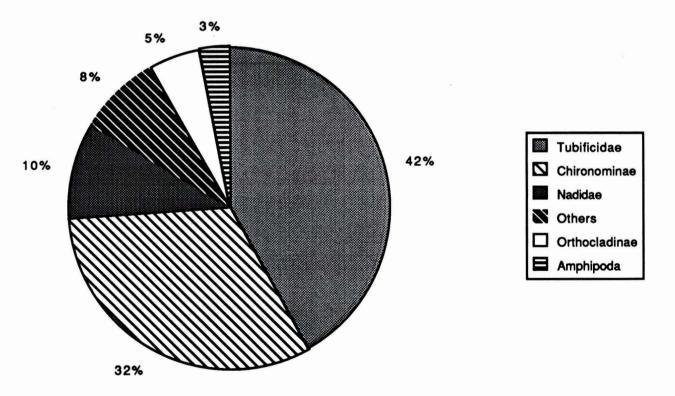
+ = present.

- = absent.

. .

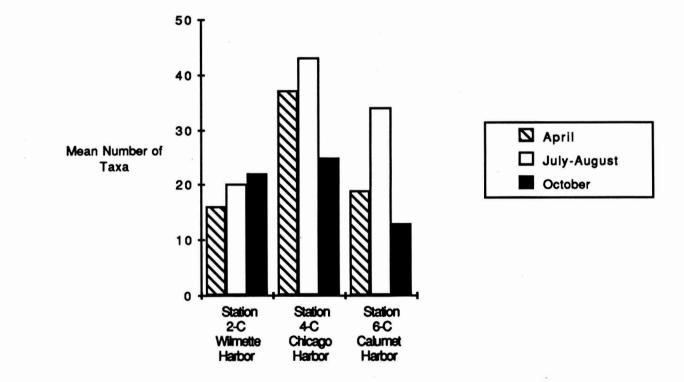
:

TABLE 10


Mean Abundance* (numbers/m²) Station Summer Fall Number Spring 2-C 2,779 1,987 2,254 4-C 2,669 7,637 3,793 6-C 1,107 1,782 544

SUMMARY OF THE ESTIMATED MEAN ABUNDANCE OF BENTHIC INVERTEBRATES IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985

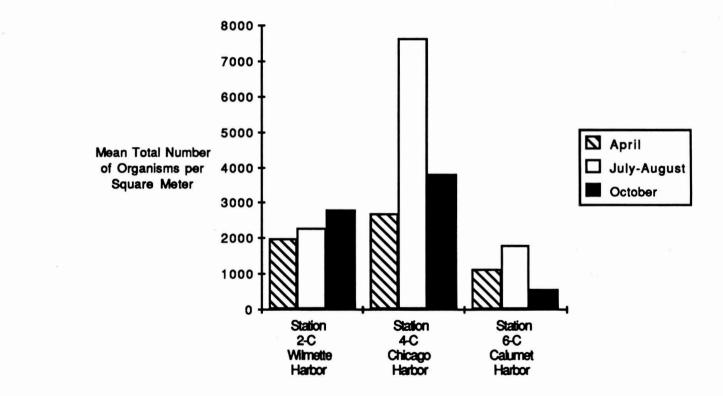
*Three replicate bottom samples were collected at each station during the spring, summer, and fall.


FIGURE 2

PERCENT COMPOSITION OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985

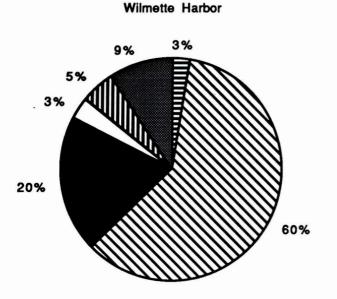
FIGURE 3

MEAN NUMBER OF BENTHIC INVERTEBRATE TAXA FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985


2,779, organisms/m², respectively, (Figure 4). Overall, chironomids, naidids, tubificids, orthocladines, and amphipods accounted for 60, 20, 9, 3, and 3%, respectively, of the total number of invertebrates (Figure 5). Numerically, the chironomids were the predominant benthic group during the spring and fall (Figure 6). Especially noteworthy was the large number of naidids (1,324/m²) collected during the summer which accounted for 58.7% of the total benthic fauna (Figure 6). The most common invertebrates (total number collected during 1985) at station 2-C included the chironomid Cyphomella sp. (1,894/m²), the naidid worm P. michiganensis (1,115/m²), and the midges P. scalaenum (629/m²) and C. fluviatilis-gr. (437/m²).

STATION 4-C NEAR CHICAGO HARBOR

Sixty-one taxa, most of which were identified to species, were collected from station 4-C near Chicago Harbor (Table AIII-2). This included 25 species of chironomids, 7 naidids, and 9 tubificids. The greatest number of taxa (43) were found during the summer (Figure 3). Estimated mean densities for the spring, summer, and fall were 2,669, 7,637, and 3,793 organisms/m², respectively, (Figure 4). The high number of undetermined immature tubificids (4,661/m²) collected during July and August accounted for the increased abundance of invertebrates during the summer. Overall, the benthos was dominated numerically by the tubificids (65%), and the chironomids (15%) (Figure 5). Tubificids predominated at all times during the year (Figure 6).


FIGURE 4

MEAN NUMBER OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985

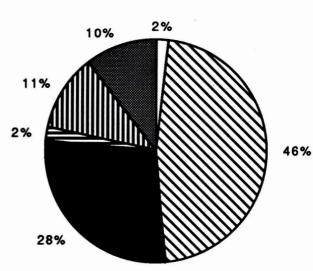
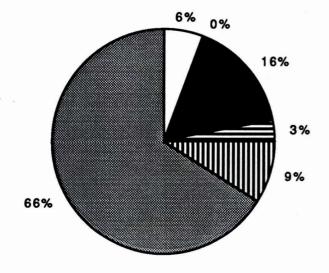
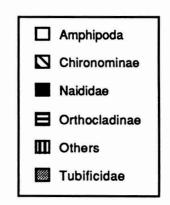


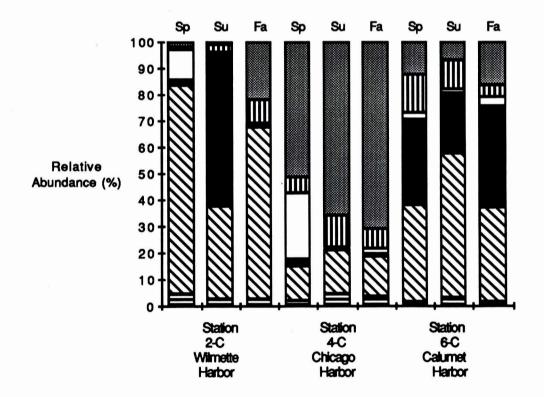
FIGURE 5

RANKED, RELATIVE ABUNDANCE (PERCENT COMPOSITION) OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985




, '

Calumet Harbor


Chicago Harbor

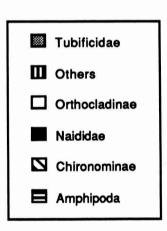


FIGURE 6

SEASONAL RELATIVE ABUNDANCE OF BENTHIC INVERTEBRATES FROM THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, 1985 (Sp = SPRING, Su = SUMMER, Fa = FALL)

The most abundant invertebrate taxa (total number collected during 1985) at Station 4-C were the undetermined immature tubificids $(7,131/m^2)$, followed by the tubificid <u>P</u>. <u>vejdovskyi</u> $(1,314/m^2)$, the orthoclandine <u>Parakiefferiella</u> sp., and the chironomids <u>P</u>. <u>scalaenum</u> (666/m2) and <u>C</u>. <u>fluviatilis</u>-gr (602/m2).

A total of 42 taxa, most of which were identified to species, were collected from Station 6-C near Calumet Harbor (Table AIII-3). There were 15 species of chironomids, 10 naidids, and 4 tubificids. The number of taxa ranged from a low of 13 during the fall to a maximum of 34 in the summer (Figure 3). The estimated mean abundance of invertebrates collected during the spring, summer, and fall were 1,107, 1,782, and 544 organisms/m², respectively, (Figure 4). Overall, the most abundant major invertebrate groups which contributed over 85% of the fauna during 1985 were the chironomids (46%), naidids (29%), and tubificids (10%) (Figure 5). The predominant benthic organisms (total number collected during 1985 at Station 6-C) were the midge <u>C</u>. fluviatilis (786/m²), and the naidid worm <u>P</u>. michiganensis (418/m²).

Sediment Ouality

The chemical characteristics and 11 trace metal concentrations in the sediments for Stations 2-C, 4-C, and 6-C are summarized in <u>Tables 11</u> and <u>12</u>, respectively.

TABLE 11

.

CHEMICAL CHARACTERISTICS OF BOTTOM SEDIMENTS IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN OCTOBER 1985

	Constituent						
Station	Total Solids (१)	Volatile Solids (१)	Chemical Oxygen Demand (mg/kg)	Fats, Oils, and Greases (mg/kg)			
Wilmette Harbor 2-C	82.1	0.57	740	6			
Chicago Harbor 4-C	90.7	1.44	776	16			
Calumet Harbor 6-C	83.7	1.05	401	36			

TABLE 12

TRACE METALS IN BOTTOM SEDIMENTS IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN, OCTOBER 1985

	Metal*										
Station	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Silver	Zinc
Wilmette Harbor 2-C	<1.0	<0.02	6.0	12.0	6,680	6.0	212	<0.01	<0.2	<0.02	40
Chicago Harbor 4-C	<1.0	<0.02	10.0	12.0	18,000	7.0	590	<0.01	<0.2	<0.02	40
Calumet Harbor 6-C	<1.0	<0.02	5.0	14.0	10,900	7.0	290	<0.01	<0.2	<0.02	40

*Expressed in mg/kg of dry sediment.

STATION 2-C NEAR WILMETTE HARBOR

The percent total and volatile solids measured in the sediment at Station 2-C near Wilmette Harbor were 82.1 and 0.57%, respectively, the concentration of COD was 740 mg/kg, and the FOG measured 6 mg/kg (Table 11). Arsenic, cadmium, mercury, nickel, and silver were all below the detection limit (Table 12). The concentration of chromium, copper, iron, lead, manganese, and zinc in sediments at Station 2-C was 6.0, 12.0, 6,680, 6.0, 212, and 40.0 mg/kg, respectively.

STATION 4-C NEAR CHICAGO HARBOR

At Station 4-C near Chicago Harbor, the percent total and volatile solids in the sediments were 90.7 and 1.44%, respectively, the COD was 776 mg/kg and the concentration of FOG was 16 mg/kg (<u>Table 11</u>). Arsenic, cadmium, mercury, nickel, and silver were all below the detection limit (<u>Table 12</u>). The concentration of chromium, copper, iron, lead, manganese, and zinc in sediment at Station 4-C was 10.0, 12.0, 18,000, 7.0, 590, and 40.0 mg/kg, respectively.

STATION 6-C NEAR CALUMET HARBOR

The percent total and volatile solids in sediment of Station 6-C near Calumet Harbor were 83.7 and 1.05%, respectively, the COD concentration was 401 mg/kg.and the FOG measured was 36 mg/kg (Table 11). Arsenic, cadmium, mercury, nickel, and silver were all below the detection limit of 1.0, 0.02, 0.01, 0.2, and 0.02

mg/kg, respectively (<u>Table 12</u>). The concentration of chromium, copper, iron, lead, manganese, and zinc in the sediment was 5.0, 14.0, 10,900, 7.0, 290, and 40 mg/kg, respectively.

 \mathbf{p}^{\prime}

DISCUSSION

Bacteria

The southernmost station sampled in Lake Michigan, Station 7-A (Figure 1) is located within 275 meters of the mouth of Indiana Harbor. This station had the highest concentration of total coliform, fecal coliform, standard plate count, Escherichia coli, and Pseudomonas aeruginosa. As in 1984, this was the only station which did not meet the Illinois Pollution Control Board Lake Michigan open water quality standard of 20 fecal coliform per 100 mL. All stations (Table 2) met the Illinois beach standard of 500 fecal coliform per 100 mL. Salmonella was not recovered from any station. The bacterial results do not indicate any serious bacterial contamination of this area of Lake Michigan during the April through November sampling period.

Algae

POPULATIONS

Algal population densities determined for a body of water describe how many primary producers (algae) are supported by that water. Oligotrophic conditions are characterized by low population densities, eutrophic conditions are characterized by large populations, and mesotrophic conditions are characterized by populations intermediate to these extremes.

Three methods were used in 1985 to collect and estimate the total population densities of algae: (a) the column plankton-

net tow, (b) periphyton sampling, and (c) Kemmerer water bottle sampling.

The column plankton-net tow included all those organisms retained by the plankton-net mesh when hauled from the bottom to the surface at each station in Lake Michigan. Column planktonnet tow population densities (<u>Table 3</u>) ranged from 107 to 157 organisms per mL.

Periphyton are those algae growing or captured on microscope slides immersed for two weeks at the surface of the water column at each station in Lake Michigan. The total periphyton populations ranged from 203 organisms/cm² to 249,584 organisms/cm² (Table 3).

Kemmerer plankton were those planktonic algae captured in a Kemmerer water bottle at discrete depths. Two depths (one meter below the surface, and one meter above the bottom) were sampled in each area (Wilmette, Chicago, and Calumet harbors - Figure 1) of Lake Michigan. The average total Kemmerer plankton population at the three harbors ranged from 4,223 organisms/mL to 9,056 organisms/mL (Table 3).

Each of the methods used to estimate population densities produced different results, but the results were consistent within each method. For each method the conclusion was that the three areas sampled could be considered as one large sampling area.

Comparing the plankton-net tow population densities in this study (Table 3) with those determined for the vicinity of Zion during 1970 through 1975 (6) we find that the populations were higher in this study than they were in 1975 at Zion. For the Zion study (6) plankton-net tow densities of 25 to 61 organisms/mL were found during 1975 compared to the plankton-net tow densities of 107 to 157 organisms/mL for this study at Chicago, Wilmette, and Calumet harbors during 1985. Kemmerer water bottle samples were collected at Zion at the one meter depth from 1972 through 1975 (6), and the range of plankton organisms found was 519 to 4,079 organisms/mL. The range of plankton organisms found at the one meter depth in 1985 (3,973 to 11,378/mL) in the three harbor areas (Table 3) showed that the populations were higher in the harbor areas in 1985 than in the Zion area in 1975.

The conclusion based on these data regarding population densities is that the water quality of the area of Lake Michigan from Wilmette Harbor to Calumet Harbor has declined when compared with the Zion area during 1970 through 1975 (6).

COMMUNITY STRUCTURE

Community structure refers to the organisms making up the community and the number of species found. The numbers of plankton species found in the column plankton-net tow was 40, 48, and 41 for the Wilmette, Chicago, and Calumet harbor areas, respectively (<u>Table 3</u>). These data indicated similarity among

the stations. Among the total species identified 13 species were unique to Wilmette Harbor, Chicago Harbor had 20 unique species, and Calumet Harbor had 16 unique species, (<u>Tables AII-1</u> to <u>AII-3</u>). Of the 75 species found in the column plankton-net tow samples only 23 species or 31 percent were common to all three harbor areas sampled (<u>Tables AII-1</u> to <u>AII-3</u>).

The numbers of periphyton species (<u>Table 3</u>) were 13, 112, and 80 for the Wilmette (Station 2-B), Chicago (Station 4-B), and Calumet (Station 6-B) harbor areas, respectively. The total number of periphyton species found was 129.

The numbers of plankton species collected at each of the three harbor areas with the Kemmerer bottle water sampler (Table 3) were 167, 167, and 161, respectively, at Station 2-B, Station 4-B, and Station 6-B (Figure 1). The close correspondence of the number of plankton species suggested a similarity of environment for the Wilmette, Chicago, and Calumet harbor areas. The total number of plankton species found in all three harbor areas in southwestern Lake Michigan was 278, using the Kemmerer sampler. Ninety-eight of these plankton species (42 percent) were common to all stations, 37 species (16 percent) were unique to the Wilmette Harbor area (Station 2-B), 27 species (11 percent) were unique to the Chicago Harbor area (Station 4-B), and 29 species (12 percent) were unique to the Calumet Harbor area (Station 6-B), Tables AII-7 to AII-9. These data indicated the individuality of each area sampled.

Species diversities; i.e., the Shannon-Weaver Index, were reported by Tarapchak and Stoermer (7) to indicate trophic status as follows: >3.5 = oligotrophic (water deficient in nutrients), 3.5 to 2.5 = mesotrophic (water contains some nutrients), <2.5 = eutrophic (water is enriched with nutrients).

The mean species diversity (d) (7, 11) at Wilmette Harbor (Station 2-B), Chicago Harbor (Station 4-B), and Calumet Harbor (Station 6-B) (Figure 1) for the average Kemmerer plankton ranged from 1.01 to 1.22. Tarapchak and Stoermer (7) reported that Schelske found in the inshore waters of Lake Michigan at Grand Haven, Michigan, in 1971, species diversities of 1.79 to 2.93. Tarapchak and Stoermer also reported on the work by Piala and Lamble for 1971. Piala and Lamble found for the inshore waters of Lake Michigan at Zion that species diversities varied from 1.75 in late July to 3.0 in mid-January. It is clear that the species diversities found in this study (1985) were less than those found in 1971 in inshore areas not as heavily populated as the shoreline from the Wilmette Harbor to the Calumet Harbor areas (Stations 2-B to 6-B, Figure 1). The results of the Grand Haven and Zion studies established the range for species diversities for the southeastern and southwestern inshore waters of Lake Michigan during 1971. The species diversity results of this study were somewhat less in value (d = 0.77 to 1.22) and would indicate water of poorer quality than that found at Grand Haven and Zion in 1971.

Examination of Tables 4 and 5, which lists those organisms found in $\geq 90\%$ of the samples collected and analyzed, shows that two of the seven periphyton and four of the 14 planktonic organisms were considered pollutant indicators by Palmer (27, Tarapchak and Stoermer (7) called these same organisms 28). eutrophic and mesotrophic to eutrophic indicators, (organisms that tolerated moderate enrichment), but added three oligotrophic organisms Cyclotella compacta, Cyclotella kuetzingiana and Cyclotella ocellata. One of these species, Cyclotella kuetzingiana, was found among the plankton at all three sampling sites (Tables 5 and 7), and was also found among the periphyton at Station 4-B at Chicago Harbor (Tables 4 and Tarapchak and Stoermer (7) also listed three mesotrophic 6). indicators (organisms found in oligotrophic waters that decreased in abundance with enrichment), Cyclotella michiganiana, Melosira islandica, and Tabellaria fenestrata. Tabellaria fenestrata was found persistent at all stations sampled in this study (Table 4 and Table 5). Of the four mesotrophic to eutrophic indicator organisms listed by Tarapchak and Stoermer (7), Asterionella formosa, Fragilaria crotonensis, Stephanodiscus hantzschii, and Stephanodiscus minutus, only one, Fragilaria crotonensis, was found to be persistent in this study (1985) among the periphyton at Chicago and Calumet harbors (Table 4). Two plankton, Asterionella formosa and Fragilaria crotonensis were found (Table 5) at Station 2-B at Wilmette

Harbor and at all three sampling stations, respectively. One category of indicator organisms listed by Tarapchak and Stoermer (7) was referred to as introduced eutrophic forms. This category was defined as those organisms either previously present in small percentages, and which have now become dominant in nutrient enriched water, or species that did not exist in Lake Michigan prior to cultural eutrophication. These organisms were: Diatoma tenue var. elongatum, Nitzschia dissipata (an indicator of advanced eutrophication), <u>Stephanodiscus</u> binderanus, and <u>Stephanodiscus subtilis</u>. None of these organisms was persistent during 1985.

Among the dominant organisms listed in Tables 6 and 7, 11 of 47 periphytic organisms (23 percent) and 9 of 50 plankton organisms (18 percent) were listed by Palmer (27, 28) as being pollutant-tolerant. According to the classification by Tarapchak and Stoermer (7) the oligotrophic indicator Cyclotella <u>kuetzingiana</u> was dominant (≥ 1 % of the total population) at all stations among both plankton and periphyton. Cvclotella ocellata, an oligotrophic indicator, was found dominant among the plankton in Chicago Harbor (Station 4-B). Among the mesotrophic indicators, Tabellaria fenestrata was dominant at all stations among both periphyton and plankton. Melosira islandica, another mesotrophic indicator, was found dominant at all stations among the plankton, and at Wilmette and Chicago harbors among the periphyton. Of the four organisms

characterized as mesotrophic to eutrophic by Tarapchak and Stoermer (7), Asterionella formosa, Fragilaria crotonensis, Stephanodiscus minutus were found as dominants among the plankton and Asterionella formosa and Stephanodiscus minutus among the periphyton. Melosira granulata, a eutrophic indicator, was found dominant at every station among the plankton (Table 7) and at Chicago and Calumet harbors among the periphyton (Tables 6). Of the five organisms listed by Tarapcak and Stoermer (7) as being introduced eutrophic forms none were dominants among the plankton, but Nitzschia dissipata, an indicator of advanced eutrophication, was found among the periphyton at Chicago Harbor, (Station 2-B).

As with the persistent organisms, those organisms characterized as dominants were indicators of oligotrophy, mesotrophy, and eutrophy; i.e., the organisms found were indicative of a wide range of conditions, perhaps a reflection of a period of instability or transition.

Besides the organisms that are present it is sometimes helpful to examine those organisms that no longer inhabit an area. Historically Lake Michigan phytoplankton were still numerically dominated by diatoms (>70% diatoms) in 1962 through 1963 (29). By 1969 shifts in phytoplankton composition were noted by Schelske and Stoermer (30), to dominance by greens, blue-greens, and golden brown algae. By August 1969, Schelske and Stoermer found that up to 80% of the population density was

reported to be blue-green algae. The blue-greens remained dominant through October after the fall overturn resupplied the euphotic zone with nutrients.

During the monitoring conducted in this study (1985) diatoms maintained a numerical dominance of the population in the three harbors for all dates sampled. The diatom contribution to the population was 77 to 97 percent at Wilmette Harbor, 69 to 99.9 percent at Chicago Harbor, and 80 to 99.9 percent at Calumet Harbor.

The blue-green algal blooms reported in 1969 (30) and in 1970 to 1975 (6) no longer occur. Apparently a change in water quality, has restored Lake Michigan to a state in which diatoms dominate the algae population. This indicates improved water quality.

Comparing summer algal composition with studies conducted during the 1970's by the District (6) and Argonne National Laboratories (7), a clearly discernible improvement was found in Lake Michigan during 1985. The dominance of the green and bluegreen algae in Lake Michgan summer algal populations found during the 1970's did not occur in 1985. Whereas the diatom contribution in the 1970's had been as low as 5% of the algal population, the lowest diatom contribution in 1985 was 69% of the algal population. The increased dominance and appearance of the oligotrophic indicator species <u>Cyclotella kützingiana</u> and <u>C</u>. <u>ocellata</u> along with the loss of dominance and reduced appearance

of the eutrophic indicator species <u>Fragilaria capucina</u>, <u>Melosira granulata</u>, and <u>Stephanodiscus tenuis</u> and the recently introduced eutrophic species <u>Diatoma tenue</u> var. <u>elongatum</u>, <u>Nitzschia dissipata</u>, <u>Stephanodiscus binderanus</u>, <u>S. subtilis</u>, and <u>Cyclotella stelligera</u> also confirms an improvement in water quality. The loss of <u>Stephanodiscus hantzschii</u> and <u>S. minutus</u> (mesotrophic to eutrophic indicators) from a position of dominance in the population also supports the hypothesis of water quality improvement, even though <u>Fragilaria crotonensis</u> and <u>Asterionella formosa</u> remained as dominants through most of the year. The increased dominance of <u>Tabellaria fenestrata</u> (mesotrophic indicator) throughout 1985 added weight to the conclusion of improved Lake Michigan water quality as compared to the 1970's.

Thus, the conclusion from population numbers alone was that the present water quality of Lake Michigan from Wilmette Harbor to Calumet Harbor had declined when compared with the area of the Zion Nuclear Power Plant during 1970 to 1975, as shown by increases in the population. The species diversity index, also showed that water quality in 1985 was less than during 1970 through 1975. Examination of the kinds of organisms now present indicated that the water quality was undergoing change; all trophic status indicators were represented. The shifts in populations of organisms from pollution-tolerant to more pollution-sensitive organisms, however, demonstrated an

improvement in water quality. Overall, the conclusion is that the waters of southwestern Lake Michigan have improved because the increase in algal populations has been to more pollutionsensitive organisms with a concomitant elimination or decrease in the pollution-tolerant organisms.

Benthic Invertebrates

RELATIVE ABUNDANCE AND SPECIES COMPOSITION

Benthic surveys similar to the present study have been conducted in the inshore area of Lake Michigan. These studies were done by Mozley and Garcia (31), and by the Great Lakes Research Division (32, 33, 34). The published data from these studies were used to recalculate mean abundances, and percentage composition results for total benthos at depths in the approximate range of 15 to 35 feet, to provide for easier comparisons with the results of the present study.

The present study (1985) showed that the invertebrate fauna of the inshore area of southwestern Lake Michigan at depths of 15 to 31 feet was dominated, numerically, by oligochaetes (58%) and chironomids (36%). In 1972, Mozley and Garcia (31) found that the most abundant major invertebrate groups in the coastal zone of southwestern Lake Michigan at depths ranging from 12 to 35 feet were the oligochaetes (50%) and chironomids (26%). However, the relative abundance of amphipods (17%) and sphaeriids (8%) was much greater in the 1972 survey than was found in the present study (2 and <1%, respectively).

Findings similar to that of the present study have also been reported by Ladronka (32), and Winnell (33, 34) in the near shore area of southwestern Lake Michigan at depths from 24 to 36 feet. In these three studies the benthos was dominated, numerically, by the oligochaetes (53%) and chironomids (21%). As was shown by Mozley and Garcia (31), amphipods accounted for a greater percentage of the benthic invertebrates (13%) compared to the present (1985) study (2%).

Even though the percent composition of the predominant benthic groups was similar in the above mentioned studies, the species composition differed. The 1972 survey by Mozley and Garcia (31) was composed primarily of <u>Pontoporeia affinis</u>, <u>L</u>. hoffmeisteri, <u>P. nereis</u>, <u>Cryptochironomus</u> sp., <u>C. fluviatilis</u>gr., and <u>S. striatinum</u>. In the present study, the dominant invertebrates were <u>P. vejdovskyi</u>, <u>A. pluriseta</u>, <u>P. hoyi</u>, <u>C. fluviatilis-gr.</u>, <u>P. michiganensis</u>, <u>P. moldaviensis</u>, <u>Cladotanytarsus</u> sp., <u>Cryptochironomus</u> sp. and <u>S. lacustris</u>. The most common benthic taxa in the present study included <u>Cyphomella</u> sp., <u>C.</u> fluviatilis-gr., <u>P. scalaenum</u>, <u>P. michiganensis</u>, <u>V. intermedia</u>, <u>P. vejdovskyi</u>, and <u>G. pseudolimnaeus</u> (<u>Appendix AIII</u>).

TROPHIC INDICES

Oligochaetes, because they comprise a major faunal group consisting of various species assemblages in habitats with all ranges of organic enrichment, have provided the basis for several indices of pollution which have been applied to the

Great Lakes. Two of these indices, total and percent composition, were applied to the present (1985) data.

The total number of oligochaetes was first proposed by Wright and Tidd (35) as a pollution index. They classified those benthic habitats possessing oligochaetes at less than $1,000/m^2$ as having "negligible pollution." The presence of 1,000-5,000 oligochaetes/m² indicated "mild pollution," and more than $5,000/m^2$ as evidence of "severe pollution." Based upon this classification, Station 2-C at Wilmette Harbor (mean = $686/m^2$) and Station 6-C at Calumet Harbor (mean = $441/m^2$) would be considered nonpolluted, and Station 4-C at Chicago Harbor (mean = $3,088/m^2$) would be considered moderately polluted.

Goodnight and Whitley (36), working in a midwestern stream, used the relative abundance or percent composition of oligochaetes as a measure of the extent of organic enrichment. Fewer than 60% oligochaetes indicated "good conditions," between 60 and 80% "doubtful conditions," and more than 80% indicating "...a high degree of either organic enrichment or industrial pollution" (37). Using this index, Stations 2-C at Wilmette Harbor (29%) and 6-C at Calumet Harbor (39%) would be classified as good, and Station 4-C at Chicago Harbor (66%) as doubtful.

INDICATOR SPECIES

Another method frequently used to assess environmental quality is the indicator species approach. Benthic invertebrates are assigned to three classifications depending

upon the tolerance of each species to different concentrations of inorganic and/or organic wastes:

- <u>Intolerant</u> organisms which live in a narrow range of environmental conditions and are associated with "clean water."
- 2 <u>Tolerant</u> organisms which can survive adverse environmental conditions.
- 3. <u>Facultative</u> organisms capable of living under a wide range of environmental conditions, and which are associated with moderate amounts of pollution.

In other words, certain benthic invertebrate species have well-defined ecological requirements, and their presence or absence can be used as an indication of water quality.

In the present study, the benthic invertebrate community was dominated, numerically, by the naidid worm <u>P. michiganensis</u>, the tubificid worm, <u>P. vejdovskyi</u>, and the chironomids <u>Cyphomella</u> sp., <u>P. scalaenum</u>, and <u>C. fluviatilis</u>. Except for the midge <u>Cyphomella</u> sp., whose pollution tolerance is unknown, the other four benthic invertebrates are classified as facultative organisms (38, 39, 40, 34 and J. K. Hiltunen personal communication with Irwin Polls, 1985), and are characteristic of mesotrophic or slightly enriched areas. Therefore, the high number of these facultative organisms at

each of the three sampling stations (2-C, 4-C, and 6-C) suggests that these areas are mesotrophic; i.e., moderately polluted.

Sediment Ouality

Guidelines for the evaluation of Great Lakes harbor sediments, based on bulk sediment analysis, have been developed by the USEPA, Region V (41). Sediments are classified as heavily polluted, moderately polluted, or nonpolluted depending on the concentrations of 19 constituents. The overall classification of a sample is based on the most predominant classification of the individual constituents.

Using the USEPA's guidelines for volatile solids, COD, FOG, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc, the bottom sediments of the inshore area of southwestern Lake Michigan can be classified as nonpolluted. However, the concentration of iron (18,000 mg/kg), and manganese (590 mg/kg) at Station 4-C at Chicago Harbor, would classify these sediments as moderately and heavily polluted, respectively, for these two constituents.

Comparison of Bacteria, Algal, and Benthos Data

The four sets of bacterial data collected during 1985 from Lake Michigan showed no recovery of <u>Salmonella</u> and minimal counts for SPC, TC, FC, and PA. These indicated good water

quality in Lake Michigan at the Wilmette, Chicago and Calumet harbors.

The algal population densities found in 1985 were higher than those of ten years ago. The number of species have decreased resulting in lowered species diversity indices, but the dominant kinds of organisms present have changed back from blue-green algae to diatoms. The persistently dominant organisms were consistently indicative of mesotrophic to oligotrophic conditions, and so the algae generally indicated a good water quality for Lake Michigan.

The dominant benthic invertebrates were classified as facultative; i.e., organisms tolerating the wide range of conditions associated with moderate amounts of pollution. This is characteristic of the mesotrophic condition, and, thus, determined the water quality.

The sediments sampled were all classified as nonpolluted except for the sediments at Station 4-C at Chicago Harbor where the concentrations of iron and manganese, would classify the sediments as moderately, and heavily polluted, respectively.

In summary, it was the consensus of the data for the three ecological levels of biota that the water quality of southwestern Lake Michigan was mesotrophic to oligotrophic or moderately polluted to clean.

REFERENCES

- Mortimer, Clifford H., Part 1. "Physical Characteristics of Lake Michigan and its Responses to Applied Forces, Physical Limnology of Lake Michigan, Volume 2." In: <u>Environmental Status of the Lake Michigan Region</u>, Argonne National Laboratory, 121 pages, 1975.
- <u>The Metropolitan Sanitary District of Greater Chicago</u>, Bart T. Lynam, General Superintendent, 13 pages, 1972.
- <u>The Metropolitan Sanitary District of Greater Chicago</u>, Hugh
 H. McMillan, General Superintendent, 9 pages, Undated
 Brochure.
- "TARP: Mainstream Pumping Station Tunnel and Reservoir Plan", The Metropolitan Sanitary District of Greater Chicago, Raymond R. Rimkus, General Superintendent.
- 5. State of Illinois, Rules and Regulations, Title 35: Environmental Protection, Subtitle C: Water Pollution, Chapter 1: Illinois Pollution Control Board. Part 302 Water Quality Standards, April 1, 1984.
- Schmeelk, W.G., "Effect of the Zion Nuclear Power Plant on the Water Quality of Adjacent Lake Michigan," Metropolitan Sanitary District of Greater Chicago, report in progress.
- 7. Tarapchak, Stephen J. and Eugene F. Stoermer, "Phyto plankton of Lake Michigan, Volume 4," <u>In: Environmental</u> <u>Status of the Lake Michigan Region</u>, Argonne National Laboratory, 211 pages, 1976.
- Weber, Cornelius I. (ed.), <u>Biological Field and Laboratory</u> <u>Methods for Measuring the Quality of Surface Waters and</u> <u>Effluents</u>, EPA-670/4-73-001, 1973.
- Standard Methods for the Examination of Water and Waste water, 14th Ed., American Public Health Association, Inc., New York, New York, 1193 pages, 1975.
- Kenner, B.A. and H.F. Clark, "Detection and Enumeration of <u>Salmonella</u> and <u>Pseudomonas</u> <u>aeruginosa</u>," <u>Journal of Water</u> <u>Pollution Control Federation</u>, Vol. 46, No. 9, pages 2163-2174, 1974.

REFERENCES (continued)

- 11. <u>Standard Methods for the Examination of Water and Waste</u> <u>water</u>, 15th Ed., American Public Health Association, Inc., New York, New York, 1134 pages, 1980.
- 12. Dufour, A. P., E. R. Strickland, and V. J. Cabelli, "Membrane Filter Method for Enumerating Escherichia coli," <u>Applied and Environmental Microbiology</u>, Vol. 41, No. 5, pages 1152-1158, 1981.
- Dufour, A. P., "A 24-Hour Membrane Filter Procedure for Enumerating Enterococci," Abstract Presented at American Society for Microbiology Annual Meeting, Miami Beach, Florida, May, 1980.
- Curry, L.L., "Larvae and Pupae of the Species <u>Chironomus</u> (Diptera) in Michigan," <u>Limnology and Oceanography</u>, Vol. 3, pages 77-95, 1958.
- 15. Hiltunen, J.K., and D.J. Klemm, <u>A Guide to the Naididae</u> (<u>Annelida:Clitellata:Oligochaeta</u>) of North America, USEPA, 600/4-80-031, 48 pages, 1980.
- 16. Holsinger, J.R., <u>The Freshwater Amphipod Crustaceans</u> (Gammeridae) of North America, USEPA, ELD 04/72, 89 pages, 1976.
- 17. Jackson, G.A., "Nearctic and Palaearctic <u>Paracladopelina</u>, <u>Harnisch</u>, and <u>Saetheria</u> (Diptera, Chironomidae)," <u>Journal</u> <u>Fisheries Research Board Canada</u>, Vol.34, pages 1321-1359, 1977.
- Klemm, D.J., <u>Leaches (Annelida:Hirudinae) of North America</u>, USEPA, 600/3-82-025, 177 pages, 1982.
- 19. Mackie, G.L., D.S. White, and T.W. Zdeba, <u>A Guide to the Freshwater Mollusks of the Laurentian Great Lakes with Special Emphasis on the Genus Pisidium</u>, USEPA, 600/3-80-069, 144 pages, 1980.
- 20. Maschwitz, D.E., <u>Revision of the Nearctic Species of the</u> <u>Subgenus Polypedilium (Chironomidae:Diptera)</u>, Ph.D. Thesis, University of Minnesota, Minneapolis, Minnesota, 325 pages, 1975.
- 21. Pennak, R.W., <u>Freshwater Invertebrates of the United</u> <u>States</u>, Wiley and Sons, New York, 803 pages, 1978.

REFERENCES (Continued)

- 22. Saether, O.A., "Taxonomy and Ecology of Three New Species of <u>Monodiamesa</u> Kieffer with Keys to Nearctic and Palearctic Species of the Genus," <u>Journal Fisheries Research Board</u> <u>Canada</u>, Vol. 30, pp. 665-679, 1973.
- 23. Saether, O.A., "Nearctic and Palaearctic <u>Heterotrisso</u> <u>cladius</u>," <u>Bulletin Fisheries Research Board Canada</u>, Vol.193, 67 pages, 1977.
- 24. Saether, O.A., "Taxonomic Studies on Chironomidae: <u>Nano</u> <u>cladius</u>, <u>Pseudochironomus</u>, and the <u>Harnischia</u> Complex," <u>Bulletin Fisheries Research Board Canada</u>, Vol. 193, 67 pages, 1975.
- 25. Stimpson, K.S., D.J. Klemm, and J.K. Hiltunen, <u>A Guide to</u> the Freshwater Tubificida: (Annelidae: Clitellata: Oligochaeta) of North America, USEPA, 600/3-82-033, 61 pages, 1982.
- 26. United States Environmental Protection Agency, <u>Methods for</u> <u>Chemical Analysis of Water and Wastes</u>, USEPA, 600/4-79-020, 460 pages, 1979.
- Palmer, C. Mervin, "The Effect of Pollution on River Algae," <u>Bulletin New York Academy of Sciences</u>, Vol. 108: 389, 1963.
- Palmer C. Mervin, "A Composite Rating of Algae Tolerating Organic Pollution," <u>Journal Phycology</u>, Vol. 5, pp. 78-82, 1969.
- 29. Stoermer, E.F. and E. Kopczynska, "Phytoplankton Population in the Extreme Southern End of Lake Michigan, 1962-1963," <u>Proceedings 10th Conference Great Lakes Research</u>, International Association of Great Lakes Research, pp. 88-106, 1967.
- 30. Schelske, C.L. and E.F. Stoermer, "Phosphorus, Silica, and Eutrophication in Lake Michigan," <u>In</u>: G.E. Likens (ed.) <u>Nutrients and Eutrophication: The Limiting Nutrient Con</u> -<u>troversy</u>. Special Symposium, American Society of Limnology and Oceanography, Vol. 1, pp. 157-171, 1972.

REFERENCES (Continued)

- 31. Mozley, S.C. and L.C. Garcia, "Benthic Macrofauna in the Coastal Zone of Southeastern Lake Michigan," <u>Proceedings</u> <u>15th Conference Great Lakes Research</u>, pp. 102-116, 1972.
- 32. Ladronka, R.M., Ecology of the Zoobenthos of Southeastern Lake Michigan Near the D.C. Cook Nuclear Power Plant, Part <u>3: Oligochaeta</u>, Special Report Number 103, Great Lakes Reasearch Division, Ann Arbor, Michigan, 290 pages, 1984.
- 33. Winnell, M.H., Ecology of the Zoobenthos of Southeastern Lake Michigan Near D.C. Cook Nuclear Power Plant, Part 5: Malacostraca (Amphipoda, Mysidacea, Isopoda, and Decapoda), Special Report Number 99, Great Lakes Research Division, Ann Arbor, Michigan, 94 pages, 1984.
- 34. Winnell, M.H., Ecology of the Zoobenthos of Southeastern Lake Michigan Near D.C. Cook Nuclear Power Plant, Part 6: Chironimidae (and Other Diptera), Special Report Number 100, Great Lakes Research Division, Ann Arbor, Michigan, 177 pages, 1984.
- 35. Wright, S. and W.M. Tidd, "Summary of Limnological Investigations in Western and Lake Erie in 1929 and 1930," <u>Transactions American Fisheries Society</u>, Vol. 63, pages 271-285, 1933.
- 36. Goodnight, C.J. and L.S. Whitley, "Oligochaetes as Indicators of Pollution," <u>Proceedings 15th Annual</u> <u>Industrial Waste Conference</u>, Purdue University, pp. 139-142, 1960.
- 37. Goodnight, C.J., "The Use of Aquatic Macroinvertebrates as Indicators of Stream Pollution," <u>Transactions American</u> <u>Microscopic Society</u>, Vol. 92, pp. 1-13, 1971.
- 38. Howmiller, R.P., and M.A. Scott, "An Environmental Index Based on Relative Abundance of Oligochaete Species," <u>Journal Water Pollution Control Federation</u>, Vol. 49, pp.809-815, 1977.
- 39. Mozley, S.C., and R.P. Howmiller, "Zoobenthos of Lake Michigan, Volume 6," <u>In: Environmental States of the Lake</u> <u>Michigan Region</u>, Argonne National Laboratory, 148 pages, 1977.

REFERENCES (Continued)

- 40. Beck, W.M., <u>Environmental Requirements and Pollution</u> <u>Tolerance of Common Freshwater Chironomidae</u>, USEPA, 600/4-77-024, 261 pages, 1977.
- United States Environmental Protection Agency, Region V, <u>Guidelines for the Pollutional Classification of Great</u> <u>Lakes Harbor Sediments</u>, Chicago, Illinois, 6 pages, 1977.

APPENDIX AI

,

BACTERIAL RESULTS OF LAKE MICHIGAN SHORELINE SAMPLING - 1985

TABLE AI-1

BACTERIAL RESULTS FROM SAMPLES COLLECTED 1,000 YARDS (915 METERS) OFFSHORE AT LAKE-COOK COUNTY LINE (STATION 1-A, FIGURE 1), 1985

Date	TC*	FC	FS	ME	SPC	E. Coli	PA	Salmonella
4-11-85	6	<1	150	<1	76	<1	<1	<0.15
6-17-85	59	<1	<1	<1	230	<1	<1	<0.15
8-26-85	12	<1	1	1	1,700	<1	<1	<0.15
10-22-85	390	6	6	<1	880	5	<1	<0.15
Geometric Mean	36	2	5	<1	402	1	<1	<0.15

*TC = Total Coliform, FC = Fecal Coliform, FS = Fecal Streptococcus, ME = Enterococci, SPC = Standard Plate Count, E. Coli = Escherichia coli, PA = Pseudomonas aeruginosa.

TABLE AI-2

Date	TC*	FC	FS	ME	SPC	E. <u>Coli</u>	PA	<u>Salmonella</u>
4-23-85	1	<1	140	<1	45	<1	<1	<0.15
6-17-85	7	<1	<1	<1	400	2	<1	<0.15
8-26-85	24	<1	18	1	250	2	<1	<0.15
10-22-85	38	2	1	<1	290	<1	<1	<0.15
Geometric Mean	9	1	7	<1	190	1	<1	<0.15

BACTERIAL RESULTS FROM SAMPLES COLLECTED 1,000 YARDS (915 METERS) OFFSHORE AT WILMETTE HARBOR (STATION 2-A, FIGURE 1), 1985

*TC = Total Coliform, FC = Fecal Coliform, FS = Fecal Streptococcus, ME = Enterococci, SPC = Standard Plate Count, E. Coli = Escherichia coli, PA = Pseudomonas aeruginosa.

TABLE AI-3

BACTERI	IAL RESULTS	5 FROM SAMPI	ES COLLECTE	0 1,000) YARDS	(915	METERS)	OFFSHORE	AT
	1	IONTROSE HAI	BOR (STATIO	№ З-А,	FIGURE	1), 1	1985		

Date	TC*	FC	FS	ME	SPC	E. <u>Coli</u>	PA	Salmonella
4-11-85	1	<1	76	<1	27	<1	<1	<0.15
6-17-85	5	<1	<1	<1	270	<1	<1	<0.15
8-26-85	36	2	9	<1	250	4	<1	<0.15
10-22-85	30	<1	1	<1	940	<1	<1	<0.15
Geometric Mean	9	1	5	<1	203	1	<1	<0.15

*TC = Total Coliform, FC = Fecal Coliform, FS = Fecal Streptococcus, ME = Enterococci, SPC = Standard Plate Count, E. Coli = Escherichia coli, PA = Pseudomonas aeruginosa.

TABLE AI-4

BACTERIAL RESULTS FROM SAMPLES COLLECTED 1,000 YARDS (915 METERS) OFFSHORE AT BREAKWATER GAP FOR CHICAGO HARBOR (STATION 4-A, FIGURE 1), 1985

Date	TC*	FC	FS	ME	SPC	E. Coli	PA	Salmonella
4-11-85	1	<1	130	<1	84	<1	<1	<0.15
6-17-85	10	<1	1	<1	260	<1	<1	<0.15
8-26-85	190	8	3	5	250	27	1	<0.15
10-22-85	22	4	5	<1	2,100	3	4	<0.15
Geometric Mean	14	2	7	1	327	3	1	<0.15

*TC = Total Coliform, FC = Fecal Coliform, FS = Fecal Streptococcus, ME = Enterococci, SPC = Standard Plate Count, <u>E. Coli</u> = <u>Escherichia coli</u>, PA = <u>Pseudomonas aeruginosa</u>.

TABLE AI-5

BACTERIAL RESULTS FROM SAMPLES COLLECTED 1,000 YARDS (915 METERS) OFFSHORE AT JACKSON PARK HARBOR (STATION 5-A, FIGURE 1), 1985

4-27-85 <1									
6-18-85 5 <1	Date	TC*	FC	FS	ME	SPC	E. Coli	PA	<u>Salmonella</u>
8-27-85 170 2 <1	4-27-85	<1	<1	1	<1	60	<1	<1	<0.15
11-12-85 67 3 11 <1 530 10 2 <0.1	6-18-85	5	<1	7	<1	130	<1	<1	<0.15
	8-27-85	170	2	<1	<1	1,200	<1	<1	<0.15
Geometric Mean 15 2 3 <1 270 2 1 <0.1	11-12-85	67	3	11	<1	530	10	2	<0.15
	Geometric Mean	15	2	3	<1	270	2	1	<0.15

*TC = Total Coliform, FC = Fecal Coliform, FS = Fecal Streptococcus, ME = Enterococci, SPC = Standard Plate Count, E. Coli = Escherichia coli, PA = Pseudomonas aeruginosa.

TABLE AI-6

BACTERIAL RESULTS FROM SAMPLES COLLECTED 1,000 YARDS (915 METERS) OFFSHORE AT BREAKWATER GAP FOR CALUMET HARBOR (STATION 6-A, FIGURE 1), 1985

Date	TC*	FC	FS	ME	SPC	E. <u>Coli</u>	PA	Salmonella
4-29-85	6	<1	70	<1	120	<1	<1	<0.15
6-18-85	8	1	1	<1	600	<1	<1	<0.15
8-27-85	1,600	3	8	1	2,500	5	<1	<0.15
10-30-84	490	110	36	<1	1,800	70	<1	<0.15
Geometric Mean	78	4	12	<1	754	4	<1	<0.15

*TC = Total Coliform, FC = Fecal Coliform, FS = Fecal Streptococcus, ME = Enterococci, SPC = Standard Plate Count, <u>E. Coli</u> = <u>Escherichia coli</u>, PA = <u>Pseudomonas aeruginosa</u>.

TABLE AI-7

BACTERIAL RESULTS FROM SAMPLES COLLECTED 300 YARDS (275 METERS) OFFSHORE AT LIGHTHOUSE AT MOUTH OF INDIANA HARBOR (STATION 7-A, FIGURE 1), 1985

Date	TC*	FC	FS	ME	SPC	E. Coli	PA	Salmonella
4-29-85	500	19	<1	4	57,000	30	2	<0.15
6-18-85	600	33	1	4	48,000	19	4	<0.15
8-27-85	4,600	180	5	2	280,000	160	36	<0.15
11-12-85	>8,000	2,400	5	<1	48,000	1,100	34	<0.15
Geometric Mean	1,823	128	5	1	77,872	122	10	<0.15

*TC = Total Coliform, FC = Fecal Coliform, FS = Fecal Streptococcus, ME = Enterococci, SPC = Standard Plate Count, E. Coli = Escherichia coli, PA = Pseudomonas aeruginosa.

APPENDIX AII

ALGAL AND CHEMICAL RESULTS FROM SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

TABLE AII-1

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, WILMETTE HARBOR (STATION 2-B, FIGURE 1), 1985

							Number	of Organ	isms/N	dillili	ter						
Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Asterionella	<1	22	60	59	8	63	27	44	12	<1	<1	2	5	14	13	38	11
formosa																	
Δ.	<1	8															
gracillima																	
Coscinodiscus																	<1
lacustris																	
Cyclotella		<1	<1														
bodanica																	
C .			<1														
striata																	
Diatoma		<1	<1				2										
elongatum															<1		
Dictyosphaerium										<1					<1		
pulchellum																	
Dinobryon				<1					<1								
sertularia								23									
Fragilaria	<1				4			23									
construens		-															
Fragilaria.	1	7	19	14													
construens																	
var. subsalina	a																

TABLE AII-1 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), 1985

									f Organis									2
	Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
E	Tragilaria	1	7	6	52	11	44	41	225	113	207	47	22	64	11	125	293	166
	crotonensis													<1				
1	1. <u>inflata</u>													< <u>1</u>				
	Fragilaria		2	2	16		16	18	20	4								
	5																	
	intermedia																	
1	2.															<1		
AII	<u>pinnata</u> Gleocystis																<1	
Ξ,	gigas																	
	Melosira	<1	3	<1			<1											
	ambigua																	
1	4. 2	9	27	20	41	5	20	6	3	1							<1	
	2 islandica																	
1	Navicula							<1										
	radiosa																	
1	Nephrocytium													<1				
	obesum																<1	
	<u>obtusa</u>																	
J.	N.			<1														
	sigmoidea																	
								1.7										

TABLE AII-1 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, WILMETTE HARBOR (STATION 2-B, FIGURE 1), 1985

								- 100									
Organisms	3/18	4/3	4/17	4/30	5/13	5/30	Number 6/13	of Organ 6/24	nisms/N 7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
organisms	3/10	4/3	4/1/	4/30	5/15	57 50	0/15	0/24	175	1/21	0/0	0/15	5/10	10/2	10/10	11/15	12/10
Pediastrum											<1		<1				
sculptatum																	
Rhizosolenia			<1	2		<1	<1						<1				<1
eriensis																	
B .					<1												
sp.																	<1
Staurastrum																	
<u>johnsonii</u> var. tetraca	distum																
Staurastrum													<1				
tetracerum																	
var. evolutu	m																
S.			<1														
sp. 1																	
s.			<1		<1	<1											
sp. 2																	<1
Stephanodiscus	L			<1	<1	<1											17
astraea																	
<u>s</u> .			<1														
niagarae			3	1	<1	<1	<1										
Synedra	<1	3	3	1		1	1										
<u>affinis</u> var. obtusa																	
var. obtusa																	

TABLE AII-1 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, WILMETTE HARBOR (STATION 2-B, FIGURE 1), 1985

										liliter							
Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Synedra	<1																
acus																	
var. angustis	sima																
S.		<1															
acus																	
var. radians			<1	2	<1	2	1	2	<1		<1	<1	<1	2	3	2	
delicatissima			~1	-	~1	-	-	-						~	5	-	
derreat ssina	<1	1	1	5	<1	1	<1	<1							<1		<1
delicatissima		•	-	Ũ		-											
var. angustis																	
Synedra	<1	3	4	2	<1	2	2	<1									
ulna																	
var. chaseana		<1															
<u>s</u> .																	
ulna																	
var. danica	2	8	7	30	6	36	36	51	15	25	9	8	11	19	4	15	13
Tabellaria																	
fenestrata																	
Tabellaria	<1	2	1	13	4	24	10	20	9	21	7	4	9	14	4	7	
<u>flocculosa</u> Unknown diatom		2	1	15		21	10	20	,		,					,	
Total	22	97	133	239	45	243	147	390	156	255	66	37	95	60	151	364	20

TABLE AII-2

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JANUARY 22 TO SEPTEMBER 16, 1985

							f Organ								
Organisms	1/22	3/4	3/18	4/1	4/15	4/30	5/13	5/28	6/13	6/24	7/9	7/22	8/7	8/19	9/16
Asterionella	<1	<1	3	16	93	60	7	23	19	23	8	6	<1	1	2
formosa															
Δ.			4	9											
gracillima															
Amphora						<1									
ovalis															
Chroococcus								<1							
dispersus															
Coscinodiscus						<1									
lacustris															
Cyclotella					<1	<1									
bodanica															
<u>c</u> .			<1									<1			
kuetzingiana															
<u>c</u> .						<1	<1								
striata															
Cymatopleura			<1												
solea															
var. apiculata															

TABLE AII-2 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JANUARY 22 TO SEPTEMBER 16, 1985

	-	×				N	umber of	Organi	sms/Mi	lliliter						
Organisms	1/22	3/4	3/18	4/1	4/15	4/30	5/13	5/28	6/13	6/24	7/9	7/22	8/7	8/19	9/16	
Cymbella							<1							•		_
sp.																
Diatoma		<1			<1	<1				<1						
elongatum																
<u>D</u> .		<1				<1										
vulgare				100.00												
Dictyosphaerium				<1											<1	
pulchellum																
Dimorphococcus																
lunatus																
Dinobryon											<1					
sertularia					-											
Fragilaria		<1			7											
brevistriata						-	-1									
E .		4	<1	<1		7	<1									
construens					•		•			<1						
E .			6	1	2		2			<1						
construens																
var. subsalina	L															

TABLE AII-2 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JANUARY 22 TO SEPTEMBER 16, 1985

										lliliter		- 100			0100
Organisms	1/22	3/4	3/18	4/1	4/15	4/30	5/13	5/28	6/13	6/24	7/9	7/22	8/7	8/19	9/16
Fragilaria crotonensis	<1	4	13	12	15	40	2	80	87	149	48	89	16	17	9
E. intermedia		4	13	4	13	7	<1	25	35	7	2				3
E. pinnata	121								2						
Trustula vulgari	<u>s</u>														<1
Comphosphaeria lacustris						÷		<1							
Gyrosigma															
sp. Melosira ambigua		<1	<1		<1										
islandica	1	3	12	14	24	14	3	2	<1	1					
licrospora					<1										
<u>loefgrensii</u> 1. pachyderma			2												

Table continued on following page.

AII-8

TABLE AII-2 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 22 TO SEPTEMBER 16, 1985

							N	umber of	Organi	sms/Mi	lliliter						
	Organisms	1/22	3/4	3/18	4/1	4/15	4/30	5/13	5/28	6/13	6/24	7/9	7/22	8/7	8/19	9/16	
	Pediastrum sculptatum Pinnularia alpina						2								<1		-
	Rhizosolenia eriensis				<1	<1	1		<1	<1							
A	Staurastrum									<1							
AII-9	sp. <u>Stephanodiscus</u> astraea		<1		<1		<1	<1		<1							
	<u>S.</u> <u>dubius</u>							<1									
	<u>S</u> . <u>niagarae</u>		<1														
	Stephanodiscus sp.			<1													
	<u>Synedra</u> <u>affinis</u> var. obtusa <u>delicatissima</u>		<1	<1	15	3	<1	<1	<1	<1			<1				

TABLE AII-2 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 22 TO SEPTEMBER 16, 1985

							N	umber of	Organi	sms/Mi	liliter	c.				
	Organisms	1/22	3/4	3/18	4/1	4/15	4/30	5/13	5/28	6/13	6/24	7/9	7/22	8/7	8/19	9/16
1	Synedra delicatissima var. angustiss	ima	<1	<1	<1	1	1	<1	<1	<1			<1	<1		
1	<u>S.</u> <u>capitata</u> var. capitata		<1													
	<u>S.</u> S. <u>fulgens</u>	<1	<1	<1		<1	2		<1	<1	1	<1	<1		<1	
0	S.		<1													
	<u>rumpens</u> S. <u>tabulata</u> S.	<1														
1	<u>ulna</u> S. <u>ulna</u> var. chaseana		<1	2	2	3	1	1	2	1	<1	<1	<1			

TABLE AII-2 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JANUARY 22 TO SEPTEMBER 16, 1985

						N	umber of	Organi	sms/Mi	lliliter	c				
Organisms	1/22	3/4	3/18	4/1	4/15	4/30	5/13	5/28	6/13	6/24	7/9	7/22	8/7	8/19	9/16
Synedra ulna		<1			-										
var. longissima <u>Tabellaria</u> <u>fenestrata</u>	a <1	3	11	13	10	19	19	29	27	11	18	14	9	8	7
Tabellaria flocculosa	<1	1	2	2	3	8	4	21	8	7	8	5	6	3	9
Total	7.	33	76	103	180	168	46	188	186	202	87	119	33	31	32

AII-11

TABLE AII-3

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), OCTOBER 2 TO DECEMBER 9, 1985

			Number of Organ	isms/Milliliter			
	10/2	10/17	10/28	11/12	11/26	12/9	
Asterionella formosa A. gracillima Amphora ovalis Chroococcus dispersus Coscinodiscus lacustris Cyclotella bodanica C. kuetzingiana C.	12	30	16	16	17	22 <1	
<u>striata</u> <u>Cymatopleura</u> <u>solea</u> var. apiculata		<1					

Table continued on following page.

AII-12

TABLE AII-3 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, FIGURE 1), OCTOBER 2 TO DECEMBER 9, 1985

			Number of Organ	isms/Milliliter			
	10/2	10/17	10/28	11/12	11/26	12/9	
Cymbella							
sp.							
Diatoma							
elongatum							
D.							
vulgare							
Dictyosphaerium							
Durcherrun					<1		
<u>Dimorphococcus</u> <u>lunatus</u>					N 1		
Dinobryon							
sertularia							
Fragilaria							
brevistriata							
E.							
construens							
E.					7	6	
construens							
var. subsalina							

TABLE AII-3 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, FIGURE 1), OCTOBER 2 TO DECEMBER 9, 1985

			Number of Organ	isms/Milliliter			
	10/2	10/17	10/28	11/12	11/26	12/9	
Fragilaria	52	104	34	86	62	36	
crotonensis							
E.							
intermedia							
E. pinnata							
Frustula vulgaris					3 ×		
Gomphosphaeria							
lacustris							
Gyrosigma		<1					
sp.							
Melosira							
<u>ambigua</u> M.				3	1	<1	
n. islandica				5			
Microspora							
loefgrensii						1	
м.							
pachyderma							

Table continued on following page.

.

TABLE AII-3 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, FIGURE 1), OCTOBER 2 TO DECEMBER 9, 1985

12/9
<1
<1

TABLE AII-3 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, FIGURE 1), OCTOBER 2 TO DECEMBER 9, 1985

delicatissima <1 delicatissima <1 var. angustissima S. fulgens S. rumpens S. tabulata <1							
Synedra capitata var. capitata S. <1 2 1 delicatissima var. angustissima S. fulgens S. rumpens S. tabulata S.				Number of Organ	isms/Milliliter		
capitata var. capitata S. <1 delicatissima S. fulgens S. rumpens S. tabulata S.		10/2	10/17	10/28	11/12	11/26	12/9
Synedra <1 <1 <1	capitata var. capitata S. delicatissima S. delicatissima var. angustissima S. fulgens S. rumpens S. tabulata S. ulna Synedra				<1 <1	<1	

TABLE AII-3 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CHICAGO HARBOR (STATION 4-B, FIGURE 1), OCTOBER 2 TO DECEMBER 9, 1985

			Number of Organ	isms/Milliliter	1		
	10/2	10/17	10/28	11/12	11/26	12/9	
Tabellaria fenestrata Tabellaria flocculosa	6	4	15	68	17	15	
Total	81	153	85	193	137	108	

TABLE AII-4

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CALUMET HARBOR (STATION 6-B, FIGURE 1), 1985

¥.							Number o	f Organ	isms/Mi	111111	er							
Organisms	3/19	4/4	4/18	4/29	5/14	5/31		6/25	7/11		8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Asterionella formosa	<1	81	90	55	49	37	17	10	1	7	<1	<1	<1	16	24	11	25	21
Δ. <u>formosa</u> var. acaroides		<1																
A. gracillima	1	13																
Botrydium granulatum								<1										
Coscinodiscus lacustris			·															<1
Cyclotella bodanica		<1	<1			<1			<1	<1	<1				<1			4
<u>C</u> . <u>striata</u>		<1																
<u>Cymatopleura</u> <u>solea</u>									<1									
Diatoma elongatum			9	3			<1											
<u>Dinobryon</u> <u>sertularia</u>		3	<1					<1										

TABLE AII-4 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CALUMET HARBOR (STATION 6-B, FIGURE 1), 1985

							N	umber o	f Organi	sms/Mil	lilite	r							
	Organisms	3/19	4/4	4/18	4/29	5/14	5/31		6/25		7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
	Euglena sanguinea				<1	e.													
	<u>Fragilaria</u> <u>construens</u>		1	2			5	8											
P	E. <u>construens</u> var. subsalina	1	1	12	2	<1	15												
AII-	E. crotonensis	3	46	27	20	35	92	80	169	9	64	24	16	5	56	117	95	113	97
19	E. intermedia	2	24	7	3	5	9	20	52										
	E. pinnata			<1															
	Frustulia vulgaris var. capitata									<1									
	Gomphonema olivaceum					<1													
	<u>Gyrosigma</u> <u>kützingii</u>				<1														

TABLE AII-4 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CALUMET HARBOR (STATION 6-B, FIGURE 1), 1985

								of Organ:										
Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/13	6/25	7/11	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Melosira ambigua	<1		2	1														
M. islandica	4	15	44	9	9	2	<1						<1					<1
Melosira italica		<1																
Micractinium																		<1
<u>quadrisetum</u> Microspora	<1																	7
pachyderma Mougeotia																		1
<u>elegantula</u> M.											<1							
punctata M.																		<
tumidula					1													
M. sp.					1				<1									
Navicula sp.									1									
<u>Pediastrum</u> <u>sculptatum</u>					<1													

TABLE AII-4 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CALUMET HARBOR (STATION 6-B, FIGURE 1), 1985

								Number	of Organi	sms/Mi	11i1it	er							
	Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/13	6/25	7/11	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
	Rhizosolenia eriensi	9	<1	<1	4	1	3										<1	<1	2
	Stephanodiscus		<1	<1	<1	<1	<1										<1	<1	
	<u>astraea</u> <u>Stephanodiscus</u>	<1																	
A	niagara Synedra	<1	6	3	2	<1	<1	<1									<1		
AII-21	<u>affinis</u> var. obtusa					-													
1	<u>S</u> . <u>delicatissima</u>				1	3	1		<1	<1	<1	<1	<1	<1	1	3	<1	<1	
	<u>S.</u> <u>delicatissima</u>	<1	2	2	1	1	<1	<1			<1								<1
	var. angustissim <u>S</u> .	a		<1															
	fasciculata S.	<1	3	6	3	2	3	<1	<1									<1	<1
	<u>ulna</u> var. chaseana																		
	S. ulna	<1																	
	var. danica				*1														

TABLE AII-4 (Continued)

PLANKTON POPULATION ESTIMATES FOR THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN, COLUMN PLANKTON TOW, CALUMET HARBOR (STATION 6-B, FIGURE 1), 1985

							Number	of Organi	sms/Mi	11i1it	er							
Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/13	6/25	7/11	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Tabellaria fenestrata	6	16	13	14	25	37	14	10	21	13	17	2	4	19	10	22	54	38
I. flocculosa	<1	6	5	5	25	29	6	5	1	9	11	<1	1	9	5	12	27	15
Total	26	223	127	126	161	237	150	250	18	96	56	21	13	101	.160	149	224	178

TABLE AII-5

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), DURING 1985

Organisms Bacillariophyceae <u>Asterionella formosa</u>	Number of Organisms per Square Centimeter
<u>Asterionella formosa</u>	
<u>Asterionella formosa</u>	
	6
<u>Cyclotella glomerata</u>	3
<u>C. kuetzingiana</u>	3
<u>Diatoma elongatum</u> var. minor	58
<u>Fragilaria intermedia</u>	.9
<u>Gomphonema</u> <u>olivaceum</u>	21
<u>Melosira islandica</u>	3
<u>Nitzschia acicularis</u>	3
<u>N. linearis</u>	6
<u>Synedra acus</u>	37
<u>S. ulna</u> var. chaseana	3
<u>Tabellaria fenestrata</u>	3
Chlorophyceae	
Ankistrodesmus convolutus	48
fotal	203

TABLE AII-6

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

.

Organisms	3/4-3/18	3/18-4/1	4/1-4/15	4/15-4/29 Number per	4/29-5/13 square centi	5/28-6/11 meter)	6/11-6/24	6/24-7/9	7/9-7/22
Bacillariophycea		4,263	23, 594	194	30,971	69,462	47,450	318,275	401,426
Achnanthes affinis	25	49	674	2	999	2,917	6,398	147,685	152,396
Δ.							191		
<u>conspicua</u> A.						139			
exigua									
A. haukiana									
Δ.		99							
<u>linearis</u> Amphipleura	2		45	1	59	139	286	1,019	382
pellucida	2		45	-	176	139	200	1,015	
Amphora delicatissin	na								
Δ.		8							
ovalis A.	8			1	59		95		
<u>veneta</u> <u>Asterionella</u> <u>formosa</u>	5	33	180	5	881	3,472	2,483	2,546	

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

	Organisms	3/4-3/18	3/18-4/1	4/1-4/15		4/29-5/13 square centi	5/28-6/11 meter)	6/11-6/24	6/24-7/9	7/9-7/22
3	<u>Cocconeis</u> <u>diminuta</u> <u>C</u> . <u>pediculus</u>							95		£
7	<u>C</u> . <u>placentula</u> <u>Cvclotella</u>	40	197	45 449	6	59 353	1,250	95		
+ 35	<u>glomerata</u> <u>C</u> .	40	19,	112	<1	59	1,200	95		
	<u>iris</u> <u>C</u> . <u>keutzingia</u> n	7	66	315	3	646	417	382	3,056	187,153
	<u>C</u> . <u>ocellata</u> <u>C</u> . <u>pseudostell</u>	igera		45			278			
	<u>Cymatopleura</u> <u>solea</u> <u>Cymbella</u> <u>affinis</u>			270 180						

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

Organisms	3/4-3/18	3/18-4/1	4/1-4/15		4/29-5/13 square centin		6/11-6/24	6/24-7/9	7/9-7/22
Cymbella cistula C.			180 45						
<u>helvetica</u> <u>C</u> . <u>prostrata</u>	20		225	2	235				2,292
Ξ <u></u> .		49				1,111	1,719	9,167	
<u>protracta</u> <u>C.</u> <u>tumida</u>							95		
<u>C</u> . <u>ventricosa</u> <u>Diatoma</u>	186	1,914	9,841	100		1,111	17,092	56,019	35,139
<u>elongatum</u> D. <u>elongatum</u> var. minor				22	13,045	42,222			
D. <u>vulgare</u> Diploneis <u>ovalis</u>	2	99	854		59				

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

Organisms	3/4-3/18	3/18-4/1	4/1-4/15		4/29-5/13 square centin	5/28-6/11	6/11-6/24	6/24-7/9	7/9-7/22
organitsms				(Number per	Square centri	meter)			
Fragilaria	7	25			59	139	573	509	
bicapitata									
Ε.	5		315	1	588	2,083	1,719	1,019	
construens									
var. subsali									
Ε.	15	197	539	5	646	3,333	4,392	4,583	3,056
crotonensis									
E .					59				
harrissonii									
E.	20	197	809	3	294	972	1,050	5,093	10,694
intermedia	-		100		176	6.7			
E .	7	90	180	1	176	417	382	1,528	764
pinnata									
Gomphonema		8							
abbreviatum	303	485	3,056	2	118		382	2 0 2 7	
G.	303	405	3,050	2	110		362	2,037	
<u>olivaceum</u> G.			494						
olivaceum			424						
var. calcare	a								
G.	24								
parvulum									
State Line and									

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

Or	ganisms	3/4-3/18	3/18-4/1			4/29-5/13 square centin			6/24-7/9	7/9-7/22
	Hantzschia elongatum	7	33			59			2	
	Melosira granulata		33		3	176	278			
	M. islandica	2	41	90	3	470	833	382	1,528	764
	Navicula bacillum									
	N.	7					278	95	509	
	<u>cryptocepha</u> N.				1	118			509	
	cryptocepha var. veneta					59			509	
	N. <u>exigua</u>	2							505	
	N. grimmei					59				
	N. lanceolata									
	N. placentula					59				
	VIACENCUIA									

••

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

	Organisms	3/4-3/18	3/18-4/1	4/1-4/15	4/15-4/29 (Number per	4/29-5/13 square centim	5/28-6/11 neter)	6/11-6/24	6/24-7/9	7/9-7/22
	Navicula tripunctata Nitzschia	235					139			
	acicularis N.	2			<1					
111	<u>clausii</u> N.	10	8	45	<1	118	417	191		1,146
30	<u>dissipata</u> N.	12	33	180	<1	235	1,528	1,432	2,546	2,674
	fonticola N.		8	45	<1	176	278	382		
	<u>frustulum</u> N.	7	24	90	1	118	139	668	1,528	
	gracilis N.									382
	<u>hungarica</u> N.				2	177	139	191		
	<u>linearis</u> N.	2					278	286		382
	recta									

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

Organisms	3/4-3/18	3/18-4/1	4/1-4/15	4/15-4/29 (Number per	4/29-5/13 square centin	5/28-6/11 meter)		6/24-7/9	7/9-7/22
Nitzschia							95		
<u>sigmoidea</u> <u>Pinnularia</u> <u>viridis</u>	2								
var. sudetic Rhizosolenia	us					15			
<u>longiseta</u> <u>Rhoicosphenia</u> <u>curvata</u>		8							
Scoliopleura peisonis		8		59					382
Stephanodiscus astraea	7	58	45	1	294	139	477	509	
<u>S</u> . <u>hantzschii</u>					. *				
<u>S</u> . <u>minutus</u>	20	140	1,303	3	529	278	95		
Surirella angustata	2								
<u>S</u> . <u>linearis</u> var. constri	cta						95		

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

	Organisms	3/4-3/18	3/18-4/1	4/1-4/15	4/15-4/29 (Number per	4/29-5/13 square centim	5/28-6/11 eter)	6/11-6/24	6/24-7/9	7/9-7/22
	<u>Synedra</u> <u>acus</u> S.		41 74	674	14	5,876	833	859	1,528	382
	<u>gaillonii</u> <u>S</u> . nana	5								
ATT.	<u>s</u> .	22	58	1,078	<1	176		191		
2	ulna S. ulna	5	16	1,168	2	764	1,667			
	var. chasea <u>Tabellaria</u> <u>fenestrata</u>	na 25	214	180	2	2,644	1,806	4,201	9,167	3,438
	I. flocculosa	5	8				278	286		
	Chlorophyceae Ankistrodesmu	8	608	120 18		2,739	64,387	14,152	174,504	104,253
	convolutus					30				
	<u>falcatus</u> <u>Cladophora</u> sp. I ,					2,335	64,159	9,073	170,368	93,946

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

	Organisms	3/4-3/18	3/18-4/1		4/29-5/13 square centir			6/24-7/9	7/9-7/22
	Cladophora						1,259		
	sp. II								
	<u>Cosmarium</u>								
	sp. <u>Gleocystis</u>							414	
	vesiculosa								
A A	Kirchneriella								
•	obesa								
3	Mougeotia			585					
	sp. I								
	м.								
	sp. II								
	Oedogonium								
	sp. <u>Oocystis</u>								
	pusilla								
	Ω.							414	
	solitaria								
	Rhizoclonium								8,721
	hieroglyphi	cum							
	Scenedesmus					228		3,308	
	<u>bijuga</u>								

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

3/4-3/18 3/18-4/1 4/1-4/15 4/15-4/29 4/29-5/13 5/28-6/11 6/11-6/24 6/24-7/9 7/9-7/22

Organisms		- (Number per squ	are centime	eter)				
Scenedesmus quadricauda Spirògyra sp. Stichococcus bacillaris Stigeoclonium polymorphum Ulothrix sp.		120	374		2,865 955		1,586	
Chrysophyceae Dinobryon.			90	342	173 43	3,308 3,308	1,982 1,982	
<u>divergens</u> D. <u>sertularia</u>			90	342	130			
Myxophyceae <u>Anabaena</u> <u>wisconsinen</u> <u>Chroococcus</u>	<u>se</u>		1,676	1,941	3,906	49,522	105,055	
<u>dispersus</u> <u>Gomphosphaeri</u> <u>lacustris</u>	a				43			

Table continued on following page.

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

3/4-3/18	3/18-4/1	4/1-4/15	4/15-4/29	4/29-5/13	5/28-6/11	6/11-6/24	6/24-7/9	7/9-7/22	
			(Number per	square centim	neter)				

	Gomphosphaeria					
	lacustris			π.		
	var. compacta <u>Lyngbya</u>	853				
	limnetica	000				
	Merismopedia					
i	elegans					
2	Oscillatoria					4,767
	agardhii					
	Ω.	823	1,941	3,429	49,522	87,207
	limnetica				•	
	Ω.					13,081
	subbrevis					
	۵.			434		
	tenuis					
	Spirulina					
	laxa					
Ι	Dinophyceae					
	Glenodinium					
	borgei					
	Peridinium					
	inconspicuum					

Table continued on following page.

AII-34

Organisms

TABLE AII-6 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING MARCH 4 TO JULY 22, 1985

Organisms	3/4-3/18	3/18-4/1	4/1-4/15	4/15-4/29 (Number per	4/29-5/13 square centim	5/28-6/11 neter)	6/11-6/24	6/24-7/9	7/9-7/22
Number of specie Diatoms Non diatoms	s 35 869 0	33 4,263 0	34 23,594 603	32 194 120	45 30,971 4,505	37 69,462 66,670	43 47,450 18,231	27 318,275 227,334	23 401,426 211,290
Total Peryphtic Algae	869	4,263	24,197	314	35,476	136,132	65,681	545,609	612,716

TABLE AII-7

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING JULY 22 to OCTOBER 28, 1985

organisms	7/22-8/5	8/5-8/19	9/16-10/2 er square centime	10/2-10/17	10/17-10/28	
riganiisms		(Number pe	er square centim			
acillariophyceae <u>Achnanthes</u>	103,124 34,167	247,877 163,625	101,202 29,123	165 23	339 14	
affinis A. <u>conspicua</u>					7	
A. exigua		917				
A. haukiana	1,042					
A. linearis		· ·				
Amphipleura pellucida			419			
Amphora delicatissima	208	458	419		7	
<u>معانة</u> مvalis	417		419			
A. veneta						
Asterionella formosa						

Table continued on following page.

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING JULY 22 to OCTOBER 28, 1985

	Organisms	7/22-8/5	8/5-8/19 (Number p	9/16-10/2 er square centime	10/2-10/17 cer)	10/17-10/28	
	<u>Cocconeis</u> diminuta	ne here wed die eerste die terste wersen.		210			
	<u>C</u> . <u>pediculus</u>		1,375				
ATT-	<u>C</u> . <u>placentula</u> <u>Cyclotella</u>	208	917	210			
37	glomerata C. iris						
	<u>C</u> .	15,833	7,333	4,609	18	28	
	<u>keutzingiana</u> <u>C</u> . <u>ocellata</u>				5		
	<u>C</u> . <u>pseudostelligera</u> <u>Cymatopleura</u> <u>solea</u>			210			
	<u>Cymbella</u> <u>affinis</u>						

Table continued on following page.

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

	Organisms	7/22-8/5	8/5-8/19 (Number p	9/16-10/2 er square centir		10/17-10/28	
AII-38	Cymbella cistula C. helvetica C. prostrata C. protracta C.	416	1,375	2,514			
	<u>tumida</u> C.	208	458				
	ventricosa Diatoma	16,875	34,833	27,238	28	62	
	elongatum Diatoma elongatum var. minor D. vulgare Diploneis ovalis		419		7		

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number pe	9/16-10/2 er square centimet	10/2-10/17 ter)	10/17-10/28
<u>Fragilaria</u> bicapitata	417	458	629		
E. construens	625				
var. subsalina E. <u>crotonensis</u>	4,375	19,708	6,914	14	14
E. <u>harrissonii</u> E.	7,917	3,208	2,305	5	41
<u>intermedia</u> <u>Fragilaria</u> <u>pinnata</u>	1,042	1,833	2,305		
<u>Gomphonema</u> <u>abbreviatum</u>				5	
G. <u>olivaceum</u> G.	1,250	458	1,048		
<u>olivaceum</u> var. calcarea <u>G.</u> parvulum					7

Table continued on following page.

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number p	9/16-10/2 er square centime	10/2-10/17 eter)	10/17-10/28
Hantzschia elongatum	5		210		
<u>Melosira</u> granulata M.	1,250	458	1,467		
islandica Navicula	1,200	458	1,10,		
bacillum N.	1,458	1,833	1,257		
<u>cryptocephala</u> N.	833	1,000	-,		
cryptocephala var. veneta					
N. exigua	417				
N. grimmei					
N. lanceolata					7
N. placentula					

Table continued on following page.

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19	9/16-10/2 er square centime	10/2-10/17 eter)	10/17-10/28	
Navicula tripunctata Nitzschia acicularis N.	208					
A Clausii L N. L N. dissipata	208					
N. fonticola	4,375	2,292	2,514	. 9	28	
N. frustulum	625		1,467		7	
N. gracilis	2,292		2,305		14	
N. hungarica	208	458	210			
N. linearis N.	208			5	7	
recta						

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number per	9/16-10/2 10/2-10 square centimeter)	/17 10/17-10/28
Nitzschia				
sigmoidea				
<u>Pinnularia</u> viridis				
var. sudeticus				
Rhizosolenia		5		
longiseta				
Rhoicosphenia				
curvata				
Scoliopleura		419		
peisonis				
Stephanodiscus	625	917	210	
astraea				
<u>s</u> .				
hantzschii			•	7
<u>s</u> .				/
minutus				
<u>Surirella</u>				
<u>angustata</u> <u>S</u> .				
<u>linearis</u>				
var. constricta				

Table continued on following page.

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number p	9/16-10/2 per square centime	10/2-10/17 ter)	10/17-10/28
Synedra acus S. gaillonii S.			419	14	41
<u>nana</u> <u>S</u> . ulna			419		
<u>S</u> . <u>ulna</u> var. chaseana			1,886		
<u>Tabellaria</u> <u>fenestrata</u> T. <u>flocculosa</u>	5,000	3,667	10,266	32	48
Chlorophyceae <u>Ankistrodesmus</u> <u>convolutus</u>	10,307	95,853	11,552	78,458	
A. <u>falcatus</u> <u>Cladophora</u> sp. I		93,946	8,822	34,127	

Table continued on following page.

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number pe	9/16-10/2 er square centime	10/2-10/17 ter)	10/17-10/28
Cladophora					
sp. II				91	
Cosmarium				91	
sp. <u>Gleocystis</u>					
vesiculosa					
Kirchneriella				364	
obesa					
Mougeotia				18,934	
sp. I					
м.				24,942	
sp. II <u>Oedogonium</u>			1,934		
sp.			1,554		
<u>Oocystis</u>		187			
pusilla					
۵.			ē		
solitaria					
Rhizoclonium	8,721				
hieroglyphicum					
Scenedesmus					
bijuga					

Table continued on following page.

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number p	9/16-10/2 er square centime		10/17-10/28	
<u>Scenedesmus</u> <u>quadricauda</u>	1,586	506	455			
Spirogyra		1,214				
sp. <u>Stichococcus</u> bacillaris			341			
Stigeoclonium polymorphum						
<u>Ulothrix</u> sp.						
Chrysophyceae <u>Dinobryon</u> <u>divergens</u>	1982 1,982	560 467		546 546		
D. sertularia		93				
Myxophyceae Anabaena	2,660	24,344	1,547 637			
wisconsinense Chroococcus dispersus	47					
<u>Gomphosphaeria</u> lacustris	93			÷		

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number pe	9/16-10/2 r square centime	10/2-10/17 ter)	10/17-10/28
Gomphosphaeria			91		
lacustris					
var. compacta					
Lyngbya					
limnetica					
Merismopedia		228			
elegans					
<u>Oscillatoria</u>	93	341			
agardhii					
Ω.	2,427	23,661	819		
limnetica					
Ω.					
subbrevis					
Ω.					
tenuis					
Spirulina		114			
laxa					
	93	220			
inophyceae	93	228 114			
Glenodinium		114			
borgei	00	114			
Peridinium	93	114			
inconspicuum					

TABLE AII-7 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>) DURING JULY 22 to OCTOBER 28, 1985

Organisms	7/22-8/5	8/5-8/19 (Number pe	9/16-10/2 er square centime	10/2-10/17 eter)	10/17-10/28
Number of species	37	35	34	18	16
Diatoms Nondiatoms	103,124 15,042	247,877 120,985	101,202 13,099	165 79,004	339 0
Total Periphytic Algae	118,166	368,862	114,301	79,169	339

TABLE AII-8

POPULATION DEWSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), APRIL 4 TO NOVEMBER 26, 1985

	4/4-4/18	4/18-4/29	4/29-5/14	5/14-5/31	5/31-6/14	6/14-6/25	6/25-7/11	7/11-7/23	8/7-8/20	9/16-10/3	10/3-10/17	11/12-11/26
Organisms					(Numb	er per squar	e centimeter	()(;				

Bacillariophyceae Achnanthes	849 3	4,384	5,998 12	15,932 183	271,738	14,247 53	238,718 3,438	357,500 3,056	85,896 1,188	768,684 2,118	91,658 180	1,979 25
Affinia A.								611				
conspicua								611				
Δ.					407							
exigua					10,							
۵.						26		3,056			6	
haukiana								0,000				
Amphipleura				61						1,956	1,618	25
pellucida										.,	.,	
Amphora								1,222	326			
ovalis												
Δ.						26		611		180		
veneta												
Asterionella			35	275	5,296	922		611	163	4,134	31	
formosa												
Cyclotella		9	12	275		237						38
glomerata												
<u>c</u> .								611				
iris												
<u>c</u> .			35	92	815	105	3,056	3,056	7,809	5,703	3,595	19
keutzingiana												
£.								611				
pseudostellige	ra											
<u>c</u> .						26						
stelligera								4 970				
Cymbella							2,674	4,278	489	719	6	
prostrata Diatoma	431			61	227,333	5,189	181,806	214,500	47,870	30, 474	24,265	
elongatum	431			01	221,333	5,109	101,000	214,500	17,870	30,4/4	24,203	
D.		3,142	4, 942	11,733								
elongatum		3,142	1, 712	11, /33								
var. minor												
Val. minor												

Table continued on following page.

. ~

TABLE AII-8 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), APRIL 4 TO NOVEMBER 26, 1985

	4/4-4/18 4/18-4/29	4/29-5/14	5/14-5/31	5/31-6/14	6/14-6/25	6/25-7/11	7/11-7/23	8/7-8/20	9/16-10/3	10/3-10/17	11/12-11/26
Organisms				(Ni	umber per so	uare centime	ter)				

Diatoma elongatum												597	
var. tenue													•.
D.	80	139		31						1,956	1,797	151	
yulgare													
Fragilaria				31	814	237				815	539		
bicapitata													
Ε.												101	
capucina													
E.											180		
construens													
E.	6	61			407	105	382			326			
construens													
var. subsalina E.	19	52	23	397	4,889	2,134	6,875	34,222	18,333	11,570	6,650	25	
crotonensis	19	52	25	557	4,005	2,134	0,075	51,222	10,555	11,570	0,050	23	
E.	103	373	590	1,864	11,407	1,106	10,694	21,389	5,432	684,432	4,493	226	
intermedia									.,		1,120		
Ε.					1,630	237	2,674	4,278		978	2,157	19	
pinnata													
Gomphonema											899		
abbreviatum													
G.	132	269	12	31				611	3,585		346		
olivaceum													
<u>G</u> .	6								170				
olivaceum													
var. calcerea											539		
G. parvulum											539		
Hantzschia				31									
elongata				51									
elongala													

1

TABLE AII-8 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), APRIL 4 TO NOVEMBER 26, 1985

	4/4-4/18	4/18-4/29			5/31-6/14					9/16-10/3	10/3-10/17	11/12-11/26
Organisms					(Nu	mber per squ	uare centime	ter)				
elosira	3					211						
granulata												
•	6				407		764	3,667		489	891	
islandica					407	26					180	
cryptocephal					407	20					180	
	•					26		611	170			
cryptocephal												
var. veneta	-											
											180	
exigua												
•												6
hungarica												
var. luenebu	rgensis					26						
pupula						20						
avicula						26	382				180	
tripunctata												
edium											180	
dubium												
itzschia				31								31
acicularia											359	31
•				31							323	31
dissipata itzschia			12	214	4,074	316	764	2,444	2,037	1,141	4,134	38
fonticola			12	214	4,0,4	510	704	.,	2,057	.,	17131	
·		9		31	815	26		340	652	539	13	
frustulum		r										
		17		31	815				340	1,793	2,516	38
gracilis												
						26		611				
hungarica												

. •

Table continued on following page.

TABLE AII-8 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), APRIL 4 TO NOVEMBER 26, 1985

Nitzschia				31							1,258	44
linearis												
4.												13
palea												
4.						26						
recta												
4.		9										
unknown #5												
Pinnularia												6
microstauron												
Scoliopleura					407		382	1,222				
peisonis												
Stephanodiscus		9			815	158	382	1,833	170	326	359	19
astraea												
S.	3										180	
hantzschii												
S.			35	30		53			170			
a. minutus			35	50								
	6	208	243	336	1,222	132				7,822	8,987	
Synedra	•	208	213	330	1,222	152				.,	0,,,,,,,,	
ACUS												6
<u>s</u> .												Ū
nana												
<u>s</u> .		9										
pulchella								611		489	359	
<u>s</u> .	19	52	12					611		405	339	
ulna							344		226			
<u>s</u> .	32	17		92			764	2,444	, 326			
ulna												
var. chaseana								17 117	1 467	10 505	10.050	
Tabellaria		9	35		8,963	2,608	22,535	47,667	1,867	10,592	19,052	119
fenestrata												

TABLE AII-8 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), APRIL 4 TO NOVEMBER 26, 1985

Organisms	4/4-4/18	4/18-4/29	4/29-5/14	5/14-5/31				7/11-7/23 ter)		9/16-10/3	10/3-10/17	11/12-11/26	
Tabellaria flocculosa				31	815	184	1,146	3,667	163	359			
Chlorophyceae Ankistrodesmu: braunii	4				579		30,753	19,971	1,240	2,942	32		
Botryococcus					83								
Cladophora sp.					248		28,887	19,971	1,240				
Mougeotia										2,862			
sp. <u>Pediastrum</u> borvanum										16			
Planktonema							1,217						
<u>lauterborni</u> <u>Scenedesmus</u> <u>bijuga</u>	1				83								
<u>S.</u> <u>quadricauda</u>					165		649			64 32			
Chrysophyceae Dinobryon				20	41	61 61	1,379 1,379			32			
<u>divergens</u> D. <u>sertularia</u>				20	41								
Myxophyceae <u>Gomphosphaeri</u>				281			9,088	84,000	1,098	627 32			
<u>lacustris</u> Lyngbia limnetica				281									

Table continued on following page.

AII-52

5

TABLE AII-8 (Continued)

POPULATION DENSITY OF PERIPHYTIC ALGAL SPECIES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), APRIL 4 TO NOVEMBER 26, 1985

	4/4-4/18	4/18-4/29	4/29-5/14	5/14-5/31	5/31-6/14	6/14-6/25	6/25-7/11	7/11-7/23	8/7-8/20	9/16-10/3	10/3-10/17	11/12-11/26	
Organisms						lumber per s	quare centim	eter)					
Oscillatoria limnetica							9,088	84,000	1,098	595			
Dinophyceae <u>Peridinium</u> inconspicuum	n						162						
Number of specie	es 14	16	13	25	24	28	22	27	15	30	32	26	
Diatoms	849	4,384	5,998	15,932	271,738	14,247	238,718	357,500	85,896	768,684	91,658	1,979	
Nondiatoms	0	0	0	292	620	61	41,382	103,971	2,388	3,601	32	0	
Total Periphytic Algae	c 849	4,384	5,998	16,224	272,358	14,308	280,100	461,471	88,234	772,285	91,690	1,979	

TABLE AII-9

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
acillariophyceae	1,439	3,471	4,298	5,655	5,568	8,208	4,266	4,621	3, 370	7,117	6,655	2,607	3,275	2,566	1,452	2,078	3,761
(Diatoms)																	
Achnanthes	10	17	8	7		13	25			48	16	121		2	2	18	26
affinis																	
Δ.			3				6			19						19	15
conspicua																	
Δ	14	31	11	11		18	55				4	21			6	23	50
exigua																	14730
Δ.	6	7	14				24			45		8			2	9	44
haukiana																	
Δ.		7															
linearis																	
Δ.																3	
montana																	
Amphipleura							3										
pellucida																	
Amphiprora									,						2		
ornata																	
Amphora								6									5
commutata																	
Amphora	12	31	11					34	3		6	4	4	16		31	45
delicatissima																	
Δ.	1		<1						16					4			10
ovalis																	
Δ.	4					7		19			13			4		9	20
veneta																	
Asterionella	65	575	925	1,094	1,338	1,975		674	695	282	150	25	60	459		161	207
formosa																	
Caloneis								12									
ladogensis																	
Cocconeis	4	3									6						
diminuta																	

Table continued on following page.

AII-54

...

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Cocconeis	1	7		5										4		3	10
pediculus																	
<u>c</u> .	1	3	3					3								1	
placentula				58	11		219	7		36	41					95	20
Cyclotella	39	14	24	28	11		219	,		36	41					95	20
glomerata		-								7	37	22	8	13	7	4	
<u>c</u> .	4	7	5							'	37	22	•	13	,		
iris	35	37	24	31	41	20	33	63	228	2,322	4,719	1,234	2,623	520	92	21	82
<u>c</u> .	35	37	24	31	41	20		05		2, 522	1,	1,231	.,	520	~		02
kuetzingiana C.																1	
kuetzingiana																-	
var. radiosa																	
C.	1	3														3	
meneghiniana																	
<u>c</u> .							6										
michiganiana																	
<u>c</u> .	3	7	5				6	3	10	6				17		18	13
ocellata																	
Cymatopleura	1	3	5					5			8					1	
solea																	
Cymbella													4				
cistula																	
c .							6										
naviculiformis																	
<u>c</u> .																	10
prostata																	
<u>c</u> .	4						6										
ventricosa																1	
Denticula																1	
elegans																	

Table continued on following page.

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Diatoma	6	20	116	296	231	360	191	15		7		24		2		12	13
elongatum																	
Diploneis																	8
ovalis																	
D.	1													2			
ovalis																	
var. oblongella Fragilaria	48	71	84	81		36	50				8	8	38	6	3	30	164
bicapitata	40	· •	04	•••		50	50					ŭ	50	•	5	50	
E.	11	31	27	72	33	82	95	109	39	20			4	4		12	42
construens		•••															
var. subsalina																	
E.	98	102	100	87	306	322	291	1,017	697	1,294	291	133	124	282	769	418	864
crotonensis																	
E.		3	5														
harrisson11																	
E.	12	17	5				12		9	20	12	15	40	6		3	28
intermedia															-		
Ε.	48	41	95		3	9	26		1	6		17		2	5	30	102
pinnata																5	20
Gomphonema																5	20
abbreviatum		3					22										10
G.	1	3					22										10
olivaceum G.																11	
parvulum																	
Gvrosigma		3								14							
kützingii																	
Hantzchia	4	10	16		3		6					1				8	10
elongatum		10															

.

Table continued on following page.

AII-56

.

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Melosira			6			18											
distans																	
M.	111	323	325	182	67	69	95	3									
granulata																	
м.	309	528	380	583	294	416	150	40	7	62	17	42	8	34	5	139	340
islandica																	
Navicula	1		5													4	
anglica																	
<u>N</u> .																	
bacillaria										•			2				
N.										8							
bicontracta		-															
N.		7															
cari										29	8	4	12	2			3
N.	6	3					12			29		•	12	2		•	3
cryptocephala						7	45	3		20	4	8	4		2	11	43
N.	4	10	16			'	45	3		20		8			2		43
cryptocephala																	
var. veneta	4	3	3	5		13	12			19					4	6	
<u>N</u> .	•	3	,	5		13				• •							
exigua															2		
N.																	
grimmei			5							7							
N. platystoma			, in the second s														
N.		7															3
pupula N.	1																
n. protracta																	
N.													8				
similis																	
AIMILIA																	

Table continued on following page.

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), DURING 1985

01	rganisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
	avicula tripunctata edium		3				9					,	4	÷				ъ 5
	dubium itzschia acicularis					103		17							28		6	
N N	<u>capitellata</u>		7	5				23		5	13		1	8	4		8	5
N	dissipata fonticola	6	7	6		7		35	3	15	155	21	70	116	52	4	73	35
AII N		1	3	8				3			33		8	17	2	4	27	130
58 N		3	3					36		2	6	16	41	57	29	13	56	85
N				8									4				11	5
N		3	27	27	5	178	174	138			7						37	65
ы	palea	4	3	6	104			7 19			6						. 3	15
N	recta	•	3	0	104			19			•						5	5
P	unknown #5 innularia															2		
R	<u>molaris</u> <u>hizosolenia</u> <u>eriensis</u>					2										7	1	
. B			10	20		160	20											

.

Table continued on following page.

.

. .

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10	
Rhoicosphenia	1	3														3		-
curvata																	1	
Scoliopleura	4		5				6						4		2	11	3	
peisons																		
Stephanodiscus	107	238	252	194	10	67	101	17	7	6	4	17	8	6	2	68	235	
astraea																		
<u>s</u> .			20	11												18	10	
hantzschil																		
<u>s</u> .	72	556	308	222	72	67	62	7	1					8				
minutus																		
Surirella							6					8			2	11	27	
angustata																		
<u>s</u> .																1		
biseriata																-		
<u>s</u> .	1																	
ovalis																		
<u>s</u> .			3															
ovata																		
Synedra	43	133	598	1,236	969	390	237	16	10	49	8		8	66	47	50	3	
ACUS																		
<u>s</u> .	1																	
ulna																		
<u>s</u> .	65	184	355	151	124	306	103	16		7	4					20	23	
ulna																		
var. chaseana																		
Tabellaria -	230	299	423	1,170	1,457	3, 351	1,968	2,365	1,640	2,332	1,262	717	82	977	464	560	880	
fenestrata																		
I.	28	61	27	50	159	459	109	168	1	232		50	32	19	4		18	
flocculosa																		
hlorophyceae <u>Ankistrodesmus</u> <u>braunii</u>	5	29	52	403	409	308	47	21	33	106	86	67	13	38 2	69	74	52	

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

Organisms	3/18	.4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Ankistrodesmus convolutus	5	3	3		2	10	11	3				2		٦	11	16	
Δ.				5	7										7	1	1
falcatus Characium						26											
debaryanum						10									14		
<u>Chlamydomonas</u> <u>globosa</u>				4													
<u>c</u> .														<1		1	
<u>sphagnicola</u> <u>Cladophora</u>						17						19					
sp. 1																	
<u>Closteriopsis</u> longissima		3				5											
C. longissima				2													
var. tropica														<1			
<u>Closterium</u> longissima																	
<u>c</u> .							1										
<u>venus</u> <u>Coelastrum</u>					2												
microporum					2						2			<1		1	
<u>Cosmarium</u> <u>pachydermum</u>					2						2			51			
var. pussillum C.										2							
tenue										-		7					
<u>Crucingenia</u> guadrata				5					90			,					
Dictyosphaerium														<1			

Table continued on following page.

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Dimorphococcus														<1			
sp. Gleocystis																	
vesículosa										2							
<u>Vesicilosa</u> (irchneriella																	
obesa														2			
agerheimia																	
ciliata											1						
dicractinium												2					
pusillum												2					
fougeot 1a					92												
sp.																	
Nephocytium														<1			
obesum																	
Docystis		13	13	25	15			14	28	35	44	10		14	22	11	19
DATVA															••		.,
2.											6						
pusilla																	
2.								1		30	6	10	13				
solitaria																	
andorina														3			
sp.																	
Pediastrum																	1
boryanum																	
2.																1	
duplex																	
																1	
duplex																	
var. clathratum																	
lanktonema lauterbornii																	23

Table continued on following page.

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Protococcus sp. Ouadrigula					7			3	5	3		3			29		
<u>lacustris</u> <u>Scenedesmus</u> <u>bijuga</u>						3	18				3	14					
<u>Scenedesmus</u> <u>dimorphus</u> <u>S</u> .					7					34	24			4			4
<u>quadricauda</u> <u>Stichococcus</u> <u>bacillaris</u> Ulothrix		10	36	362	275	250	17									41	
sp. Unknown <u>coccoid green</u>						7											
Chrysophyceae Diceras sp.			3	13	189	57	363	111	662	100 2	64	34	. 18	53 1	108	60 1	2
Dinobryon divergens			3	13	189	2 55	23 340	20	656 6	71 27	6 58	22 12	5 13	47 5	75 26	27 32	2
D. <u>sertularia</u>																	
Myxophyceae <u>Anabaena</u> affinia	40	155	236	529	782	1327	601	96	175	12	37	60	145	115 3	122	264	276
Δ. Δ. flos-aquae			20	59	31				138	7	7			17	90		2
Δ. scheremetievi			47								÷						

Table continued on following page.

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

rganisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
nabaena																8	i.
wisconsinense phanocapsa											7	7	26		18		. 1
delicatissima												-					•
phanothece										2							
gelatinosa																	
									<1		8	17 .	5	2	4		
nidulans				2	2	2	1				1	21	41	7			
<u>dispersus</u>				2	2	2	1				1	21	11	<i>'</i>			
dispersus				4								5					
dispersus				-													
var. minor																	
					20			12	23		13	5	62	5			
limneticus													8				
minor													0				
minor														3			
pallidus																	
mphosphaeria										2	1	5	3	3			
lacustris																	
														3			
lacustris																	
var. compacta										<1							
punctata																	
cillatoria		74												31		113	
agardhii																	
		61	169	464	649	1,294	593	84	6					23		89	1
limnetica		20															
1	40	20															
lutea														18	10		
<u>subbrevis</u>	14																2

Table continued on following page.

TABLE AII-9 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), DURING 1985

Organisms	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Oscillatoria tenuis					80	31	107		۲							54	251
Dinophyceae Ceratium				2	2				2	17	6 1	12	8	1			
<u>hirudinella</u> <u>Glenodinium</u> <u>borgei</u>				2	2				2				8				
G. gymnodinium											2						
G. kulczynskii											2						
Peridinium												2					
<u>cinctum</u> P. <u>inconspicuum</u>										17	1	10		<1			
Euglenophyceae Euglena gracilis					21 19	5 5	3 3	7 7	11 11	2 2	1	2	5 5	5 5	4		
Phacus curvicauda					2												
Cryptophyceae Cryptomonas erosa	3			5	5								6				
Number of Species Diatoms Nondiatoms	51 1,439 48	54 3,471 184	51 4,298 291	35 5,655 952	40 5,568 1,408	37 8,208 1,697	50 4,266 1,104	33 4,621 235	28 3,370 708	46 7,117 237	42 6,655 194	45 2,607 108	35 3,275 189	56 2,566 218	36 1,649 106	65 2,078 398	59 3,761 330
Total Periphytic Algae	1,487	3,655	4,589	6,607	6,976	9,905	5,370	4,856	4,078	7,354	6,849	2,715	3,464	2,784	1,755	2,416	4,091

*Density = organisms per mL.

TABLE AII-10

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 9 TO JUNE 24, 1985

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/24
acillariophyceae	1,114	1,122	768	3,586	2,577	3,941	4,971	6,323	6,095	3,430	3,109	6,623
Diatoms)												
Achnanthes affinis	2	24	4	32	10	12	10	12	4	30	35	
A. clevei			1									
A. conspicua		2	1		5	10			15	15	2	16
A. exigua				11		16	10	4		11		
A. haukiana			1	25	10	9				7	2.	
A. hungarica	2								4			
A. lanceolata		2										
A. lanceolata												
var. elliptica												
A. lanceolata												
var. rostrata												
A. marginulata			1									
Amphipleura pellucida									7			*
Amphiprora ornata					5							
Amphora commutata												
A. delicatissima	4	4	5	35	21	10			37	11		
A. ovalis		2	2	3								
	2	-	ī	24	7	13						8
	-		_	10								-
A. sp. Asterionella formosa			5	3	256	664	1,917	1,437	807	661	561	1,148
				5	3			-,				-,
<u>Caloneis ladogensis</u>				3	10					4		
Cocconeis diminuta				7	10							
C. pediculus				,								

Table continued on following page.

TABLE AII-10 (Continued)

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/24
Cocconeis placentula				4	3				7		•	
Cyclotella glomerata				7	121	25	52	59	31	37	6	27
C. iris			1	3	3	11						
C. kuetzingiana	4	9	37	25	162	60	43	37	133	85	21	38
C. ocellata	4	16	2	7	2	3				4	6	6
C. pseudostelligera			1		3					4		
Cymatopleura solea					2	4					2	
C. solea	2											
var. apiculata												
Cymbella amphicephala			1									
C. helvetica				3								
C. prostata				4		3						
C. protracta					2						4	
C. sinuata			<1									
C. ventricosa		2										
Diatoma elongatum		4	<1		22	67	163	220	100	107	92	2
D. elongatum												
var. minor												
D. tenue												
var. elongatum												
D. vulgare								4				
Diploneia oculata			<1									
D. ovalis												
D. ovalis			<1	11								
var. oblongella												

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 9 TO JUNE 24, 1985

Table continued on following page.

TABLE AII-10 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 9 TO JUNE 24, 1985

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/24
Fragilaria bicapitata	42	27	19	120	79	104	48	32	60	15	2	46
E. construens	20	7	8	54	21	78	86	27	57	41	91	149
var. subsalina												
E. crotonensis	143	69	25	474	164	179	154	138	475	200	316	1,740
E. harrissonii			<1	3					7			
E. intermedia		4	7	55	21	47	25	13	7	4	4	13
E. pinnata	4	7	14	84	13	86	17		150	18	23	35
Gomphonema abbreviatum			<1			8					6	
G. olivaceum			2	9	3	9					10	
G. olivaceum							4					
var. calcarea												
G. parvulum												
Gyrosigma kutzingii												
Hantzschia elongatum		9	4		7	11		17	12			
Melosira distans						9						
M. granulata	29	111	90	257	168	333	261	137	137	18	27	9
M. islanidca	20	156	160	338	330	374	424	291	130	52	2	108
M. varians												
Navicula anglica		2			-							
N. bacillarum				4	5							-
N. cryptocephala			<1	11	8	12						8
N. cryptocephala	2	9	5	26	7	13		10		4	2	8
var. veneta												
N. exigua		2	2		8	4			27	4		

6.0

TABLE AII-10 (Continued)

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/2
avicula gastrum												
. grimmei										4		
lanceolata												
. mutica												
. platystoma			<1	3						4		
protracta			<1	3					-			
. <u>pseudocutiformis</u>	2											
. pupula	2											
. <u>pupula</u> var. rostrata												
. <u>scoliopleuroides</u>					3							
. <u>schonfeldii</u>					5							
. tripunctata			<1	10							2	
. tuscula			<1									
edium dubium												
itzschia acicularis								4				
. acuta												
. dissipata		4	1		2			6		7	2	
. fonticola			3	11	34	38	18	8	30	41	51	
. frustulum			1	29	10	12	6		7	4	12	
. gracilis		2	6	11	10	11	11	17			14	
hungarica				7	3						4	
. linearis			<1	4	7	21	6	38	45	41	8	
. palea										4		
. recta		2			3	4	31	6		4		

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 9 TO JUNE 24, 1985

Table continued on following page.

.

TABLE AII-10 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 9 TO JUNE 24, 1985

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/24
Nitzschia tryblionella										4		
var. levidensis												
N. unknown			<1									
Pinnularia microstauron												
Rhizosolenia longiseta					5	1	42	130	146	47	3	
Rhoicosphenia curvata			<1			4						
Scoliopleura peisons	2					7			15			
Stauroneis parvula	2									18	16	
Stephanodiscus astrae	24	105	70	517	130	231	90	91	84			
S. hantzschii							7		15	48	16	2
S. minutus		9	19	44	237	274	181	229	39	4		
Surirella angustata		2	<1		3							
S. ovalis				3		8						
S. ovata									7	233	49	3
Synedra acus			11	3	56	157	463	965	1,158			
S. amphicephala									-,			
S. nana			1									
S. ulna			-			4	8					
S. ulna	4	4	18	56	99	298	375	251	291	30	16	
var. chaseana	-					250	0,0		271	50	10	
Tabellaria fenestrata	721	485	204	1,133	473	622	392	1,141	2,051	1,408	1,555	2,87
T. flocculosa	79	42	20	100	21	75	27	134	2,051	189	147	2,07
Tropidoneis lepidoptera		16	20	3			27			109	14/	2.

Table continued on following page.

TABLE AII-10 (Continued)

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/2
hlorophyceae	102	151	66	73	6	29	82	270	136	147	378	:
Green Algae)										-		
Ankistrodesmus convol	utus 24	74	37			2				5	4	
A. falcatus							3	8	10	2		
Botryococcus protuber	ans								2			
var. minor												
B. sudeticus												
Chlamydomonas cysts				-								
C. globosa	21		1	7			2					
Cladophora sp. 1		42	15							27	225	
Closteriopsis longiss	ima		<1					2	4			
<u>Closterium venus</u>			1									
Coelastrum sphaericum				12								
Cosmarium pachydermum	1											
Crucigenia fenestrata												
C. quadrata						5						
Dictyosphaerium pulch	ellum								3			
Lagerheimia longiseta												
Mougeotia sp.												
Occystis parva	38			13			20		17	11		
Q. pusilla												
Occystis solitaria			<1									
Planktonema												
lauterbornii												
Ouadrigula lacustris	5						6		•			
Rhizoclonium sp.												
Scenedesmus bijuga	5	35	10	7		2		3				

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 9 TO JUNE 24, 1985

Table continued on following page.

.

TABLE AII-10 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 9 TO JUNE 24, 1985

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/24
Scenedesmus guadricauda Selenastrum minutus	9			13	6						7	
Stichococcus bacillaris				21		20	51	257	103	102		
Chrysophyceae Diceras sp.	66	4		10	6	7	16	78	137	30	142	225
Dinobryon bavaricum D. divergens D. sertularia	66	4		3 7	3	7	16	78	119	30	46 96	195 30
Stiptococcus urceolatus									18			
Myxophyceae	184	102	109	212	163	78	366	676	713	1352	795	195
(Blue-green Algae) <u>Anabaena circinalis</u>	104	102	109	212	105	/0	500			1352	155	76
A. flos-aquae		88	17				<1	17	8			
A. spiroides A. wisconsinense	47	00	1,									
<u>Aphanocapsa</u> <u>delicatissima</u> <u>Aphanothece microspora</u>						,						
A. nidulans	2	4	•	2			1					
<u>Chroococcus</u> <u>dispersus</u> <u>C. dispersus</u>	5		2	2		3		3				
var. minor												
C. limneticus								42				
<u>C. turgida</u> <u>Gomphosphaeria lacustris</u>								2	4			

Table continued on following page.

- 1

TABLE AII-10 (Continued)

Organisms	1/9	1/22	2/20	3/4	3/18	4/1	4/15	4/29	5/13	5/28	6/11	6/24
Merismopedia elegans											2.	
M. glauca												
Oscillatoria agardhii	52		31	21	9							
Q. limnetica	78	10	38	55	109	65	364	490	705	992	443	22
Q. lutea				141	30							
<u>Q. subbrevis</u>			18	134	15							
			3	151	10	10		122		356	352	97
Q. <u>tenuis</u>			<1			10		2		1	552	
- •			<1	<1				2		.1		
Dinophyceae												
<u>Ceratium hirundinella</u>								2		1		
<u>Glenodinium. borgei</u>			<1	<1				2		1		
G. pulvisculus												
Peridinium inconspicuu	m											
P. willei												
Euglenophyceae												
Euglena gracilis									7	18		13
Cryptophyceae			8	3	1		-	2				
Cryptomonas erosa			8	3 3	1 1		3	2				
Number of species	33	36	66	59	54	52	37	41	42	51	41	34
Diatoms	1,114	1,122	768	3,586	2,577	3,941	4,971	6,323	6,095	3,430	3,109	6,623
Nondiatoms	352	257	175	299	173	114	464	1,028	993	1,548	1,173	430
NONGLACOMS	552	2.37	175	233	1/5			-,		-, -, -, -, -, -, -, -, -, -, -, -, -, -		
Total Planktonic Algae	1,466	1,379	943	3,885	2,750	4,055	5,435	7,351	7,088	4,978	4,282	7,05
Total Planktonic Algae	1,400	1,5/5	545	5,005	27.00	.,	0,.00	.,				s

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE Waters of Southwestern lake Michigan at Chicago Harbor (Station 4-B, <u>Figure 1</u>), January 9 to June 24, 1985

*Density = organisms per mL

.

TABLE AII-11

Organisms	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
acillariophyceae	5,260	6,185	2,301	885	3,065	3,045	3,034	4,691	6,438	6,618	2,690
Diatoms)								×.			
Achnanthes affinis	6	30	2	12	48	18		31	76	29	
A. <u>clevei</u>	17				3				10		
A. conspicua	7	6		1	14	6	2	12	22	30	2
A. exigua		5		4	34	5	6	6	42	38	20
A. haukiana	7	1		1	31				76	13	7
A. hungarica											
A. lanceolata								6			
A. lanceolata							3				
var. elliptica											
A. lanceolata	15						2				
var. rostrata											
A. marginulata											
Amphipleura pellucida								6	13		
Amphiprora ornata											
Amphora commutata								7			
A. delicatissima	10		4	2	7	10		6	31	27	5
A. ovalis				7		2			14		
A. veneta	15		16		1	11	3	2		32	10
A. sp.											
Asterionella formosa	477	349		65		158	749	656	393	311	217
Caloneis ladogensis								7			
Cocconeis diminuta		4		3							
C. pediculus							6				

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JULY 9 TO DECEMBER 9, 1985

TABLE AII-11 (Continued)

				the second s							
Organisms	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Cocconeis placentula		2		3	3					۰.	
Cyclotella glomerata									44	141	29
C. iris		32	27	4	4	14	10	24	52		
C. kuetzingiana	472	2,827	1,567	615	2,021	1,518	170	823	487	418	150
C. ocellata	7		4		7		4	2	24	54	22
C. pseudostelligera	70	10	9	10	7	8					
Cymatopleura solea											
C. solea											
var. apiculata											
Cymbella amphicephala											
C. helvetica											
C. prostata											
C. protracta											
C. sinuata											
C. ventricosa											
Diatoma elongatum	99			4	10		8	9	6		7
D. elongatum						26					
var. minor											
D. tenue											
var. elongatum									7		
D. vulgare						2			,		
Diploneis oculata						3					
D. ovalis						5					
D. ovalis					4						
var. oblongella											

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JULY 9 TO DECEMBER 9, 1985

Table continued on following page.

TABLE AII-11 (Continued)

WA	TERS OF SOUT	HWESTERN	LAKE MICHIGAN	AT CHICAG	O HARBOR	(STATION 4-	B, FIGURE 1)	, JULY 9 T	O DECEMBER 9	, 1985	,
Organisms	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Fragilaria bicapit	tata 58	1	11	1	10	24	4	16	33	31	52
<u>F. construens</u> var. subsalina	3				17		2	9			
E. crotonensis	792	725	64	28	148	259	782	554	1,028	709	300
E. harrissonii		5						6		7	
E. intermedia	59	11	5	3	28	15	8	15	84	50	3
E. pinnata	44	46		5	45	31	18	22	87	105	17
Gomphonema abbrev:	atum						2				2
G. olivaceum										13	
G. olivaceum				4							
var. calcarea								3	ć		
G. parvulum								3	6		
Gyrosigma kutzing									14 20		
Hantzschia elongat	<u>tum</u>	6						6	20	13	
Melosira distans									07		
M. granulata		11							97		25
M. <u>islanidca</u>	89	43	16	10	31	34	28	28	16	148	11
M. varians									35		
Navicula anglica								6	7	13	
N. bacillarum									7	10	
N. cryptocephala	10	5	2	2	17	9	4	19			4
N. cryptocephala	17		4	4	10				43	7	4
var. veneta											
N. exigua	6				7			6	14		

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JULY 9 TO DECEMBER 9, 1985

Table continued on following page.

TABLE AII-11 (Continued)

Organisms		7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Navicula gastrum N. grimmei										16		
N. lanceolata							3		6			
N. mutica						3					1	
N. <u>platystoma</u> N. <u>protracta</u>											-	
N. pseudocutifor	nis											
N. pupula							3				5	
<u>N. pupula</u> var. rostrata							3					
N. scoliopleuroi	ies											
N. schonfeldii						3				33	5	
N. <u>tripunctata</u> N. <u>tuscula</u>										55	5	*
Nedium dubium								4			_	
Nitzschia acicul	ris					7	3		22	6	7	
<u>N. acuta</u> <u>N. dissipata</u>					1		3	8	6	22	38	7
N. fonticola		37	44	7	5	157	38	10	59	100	110	7
N. frustulum		10				21	17	4	16 53	158 261	123 154	11 27
N. gracilis		10 15	5	9		110	38	38 2	9	201	134	21
<u>N. hungarica</u> <u>N. linearis</u>		15	5			3		8	12	51	15	21
N. palea												
N. recta								2				

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JULY 9 TO DECEMBER 9, 1985

Table continued on following page.

AII-76

л

TABLE AII- 11 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JULY 9 TO DECEMBER 9, 1985

Organisms	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Nitzschia tryblionella											
var. levidensis											
1. unknown						-					
<u>Pinnularia microstauror</u>	L					3				7	
Rhizosolenia longiseta									1		
Rhoicosphenia curvata									6		
Scoliopleura peisons		10					6				
Stephanodiscus astrae	69	28	7		24	22					
S. hantzschii	3					20	16	43	154	120	27
S. minutus	38	19	5		17	7	2		18	10	7
<u>Surirella angustata</u>								19		15	7
S. ovalis											
S. ovata											
Synedra acus	56	5			3	31					
S. amphicephala							43	68	75	30	4
S. nana										35	
S. ulna							8		20		
S. ulna	28		,								
var. chaseana	20	6	2		7				25	15	
Tabellaria fenestrata	2,535	1,869	530	157	521	661	1,070	2,100	2,626	3, 497	1,608
T. flocculosa	189	45	20	15		39	12		50	204	58
Tropidoneis lepidoptera			20			•••					

Table continued on following page.

TABLE AII-11 (Continued)

Organisms	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26 12	/9
Chlorophyceae		20	43	60	35	22	41	4	61	1 .	
(Green Algae)											
Ankistrodesmus convolutus				2			4		2		
A. falcatus								1	13		
Botryococcus protuberan											
var. minor											
B. sudeticus										1	
Chlamydomonas cysts						<1					
C. globosa				2							
Cladophora sp. 1											
Closteriopsis longissim											
Closterium venus											
Coelastrum sphaericum											
Cosmarium pachydermum					3						
<u>Crucigenia fenestrata</u>									4		
<u>C. guadrata</u>											
Dictyosphaerium pulchellum							3				
Lagerheimia longiseta							4				
Mougeotia sp.						10					
Oocystis parva		6	3	31	32	8	19		22		
Q. pusilla			21								
Q. solitaria			17	5							
Planktonema									20		
lauterbornii											
<u>Ouadrigula lacustris</u>		2	2	2							
Rhizoclonium sp.						3					
Scenedesmus bijuga				11							

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JULY 9 TO DECEMBER 9, 1985

TABLE AII-11 (Continued)

WATERS	OF SOUTHWES	TERN LAKE	MICHIGAN	AT CHICAGO	HARBOR	(STATION 4-B,	FIGURE 1),	JULY 9 TO DEC	CEMBER 9, 19	85	÷
Organisms	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
<u>Scenedesmus quadricauda</u> <u>Selenastrum minutus</u> <u>Stichococcus bacillaris</u>		12		7		, 379 m an a sha m a shi a	14			1	
Chrysophyceae Diceras sp. Dinobryon bavaricum	468	131 2	71 2	43	353	27	43	28	2	1	
D. divergens D. sertularia Stiptococcus urceolatus	466 2 1	120 9	50 19	34 9	53 300	24 3	40 3	28	2	1	
Myxophyceae	132	269	39	145	32	38	3	6	91	38	1
(Blue-green Algae) <u>Anabaena circinalis</u> <u>A. flos-aquae</u> <u>A. spiroides</u> <u>A. wisconsinense</u>	53	249		75		38			17	,	
Aphanocapsa delicatissi Aphanothece microspora	ima		2	29	13 3	<1					
A. nidulans Chroococcus dispersus C. dispersus		3	22 8	30 9	13 3	4	3	2 3	1		1
var. minor <u>C. limneticus</u>		15				23			38		
<u>C. turgida Gomphosphaeria lacustri</u>	Ls	2	7	2		4		1	1		

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JULY 9 TO DECEMBER 9, 1985

Table continued on following page.

AII-79

.

TABLE AII-11 (Continued)

Organisms	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Merismopedia elegans						<1					
M. glauca						<1				~	
Oscillatoria agardhii						47			47		
Q. limnetica	45								25		
Q. lutea											
Q. subbrevis											
Q. tenuis	34										
inophyceae		10 2	7	6	8	1					
Ceratium hirundinella		2		-	•						
<u>Glenodinium</u> . borgei				2	8						
G. pulvisculus		2	-								
Peridinium inconspicuu	n.	6	5 2	4		<1					
P. willei			2								
Luglenophyceae											
Euglena gracilis	5			11	3				1		
Cryptophyceae											
Cryptomonas erosa									1		
Number of species	38	41	34	38	47	51	39	41	62	46	33
Diatoms	5,260	6,185	2,301	885	3,065	3,045	3,034	4,691	6,438	6,618	2,690
Vondiatoms	605	430	160	205	431	87	87	38	156	40	1
Total Planktonic Algae	5,865	6,615	2,461	1,090	3,496	3,132	3,121	4,729	6,594	6,658	2,691

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JULY 9 TO DECEMBER 9, 1985

*Density = organisms per mL.

AII-80

.

TABLE AII-12

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), MARCH 19 TO JULY 11, 1985

Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Bacillariophyceae	2,806	5,158	8,962	8,426	4,599	5,527	6,590	6,799	7,437
(Diatoms)		.,	-,	.,	.,	-,	.,		.,
Achnanthes affinis	14	8	17				26	5	2
A. conspicua		11	10		8	8		5	12
A. exigua		6	39		5	8	39	8	
A. haukiana	5		10				6	25	12
A. hungarica					4		10		
A. lanceolata									
A. lanceolata									33
var. rostrata									
Amphipleura pellucida									
Amphiprora ornata	3								
Amphora commutata			20						
A. delicatissima	25		45					8	25
A. ornata									12
A. ovalis	3		29	9	4				
A. veneta	6	11						8	
Asterionella formosa	87	1,223	1,295	2,964	1,112	884	797	882	402
Caloneisbacillum									
C. ladogensis	5						3		
Caloneis schumanniana									
var. biconstricta									
C. silicula			10						
Cocconeis diminuta	3								
C. pediculus									
C. placentula	,								
Cvclotella glomerata	160	247	23	85	9	26	210	33	19

TABLE AII-12 (Continued)

Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Cvclotella iris			10			8	10		27
C. kuetzingiana	108	182	87	62	71	81	27	76	695
C. kuetzingiana									
var. planctophora									
C. meneghiniana									
C. michiganiana								8	
C. ocellata	8	10	15				6		:
C. pseudostelligera			15 8					5	3
C. stelligera							3		
Cymatopleura elliptica									
<u>C. solea</u>			17						1
Diatoma elongatum	17	110	84	402	91	133		25	2
D. tenue							124		
var. elongatum									
Diploneis ovalis							3	8	
D. ovalis									
var. oblongella									
Fragilaria bicapitata	83	157	518	32	12	8	121	25	23
F. construens	19	83	72	64	40	43	205	73	5
var. subsalina									
F. crotonensis	281	239	424	231	201	307	887	2,434	76
E. harrissonii	3	8	10						1
F. intermedia	14	34	76	16	4	3	32	8	2
F. pinnata	50	56	547	9		40	104	29	34
Gomphonema olivaceum		10							1
G. parvulum					4				

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), MARCH 19 TO JULY 11, 1985

TABLE AII-12 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), MARCH 19 TO JULY 11, 1985

Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Gyrosigma kützingii							· · · ·	16	
Hantzschia elongatum	6	11	45	50	9	23	10	8	74
Melosira distans			35				20		
M. granulata	306	254	678	259	40	35	104	37	235
M. islandica	404	268	933	257	107	60	91	34	347
M. varians		34							
Navicula anglica		10						2	
N. bacillum	3						10		
N. capitata		4							
N. cryptocephala	5	20	49				29	8	37
N. cryptocephala	22	4	17	7		7	33	25	27
var. veneta									
N. exigua	6	14	20		5				25
N. gastrum									
N. protracta									12
N. pupula	5								2
N. radiosa						3			
N. tripunctata							10		
Nitzschia acicularis						3	6		
N. dissipata	3	4		14			6	8	
N. fonticola	19	42	23		25	45	107	46	73
N. frustulum	17	12	76				3		25
N. gracilis	45	45	31	16			27		68
N. hungarica	3		17						12
N. linearis		10		9	32	11		25	
N. palea			8				9		
N. recta	3								
M. TENER	-								

TABLE AII-12 (Continued)

Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Nitzschia thermalis				14					
N. unknown V									
Pinnularia microstauron	(14)								
P. viridis	3								
<u>Rhizosolenia longiseta</u>		43		142	47	19			
Scoliopleura peisons			20				6		2
<u>Stauroneis parvula</u>									1
Stephanodiscus astrae	156	84	787	50	36	3	180	26	33
S. astrae	110	356	264	134	31	44	137		
var. minutula									
S. hantzschii	35		15						
S. minutus									
<u>Surirella angustata</u>		8							
<u>S. birostrata</u>									
<u>S. ovalis</u>									
S. ovata			8		4				
Synedra acus	31	268	444	1,303	893	318	92	34	3
S. nana									
S. ulna					4				
S. ulna	102	314	453	534	105	121	124	13	4
var. chaseana									
<u>Tabellaria fenestrata</u>	583	858	1,490	1,600	1,511	2,866	2,712	2,606	2,3
T. flocculosa	39	96	173	163	185	420	261	244	2
Tropidoneis lepidoptera		4							
lorophyceae	32	206	83	385	133	114	47	6	
Green Algae)									
Ankistrodesmus braunii									

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), MARCH 19 TO JULY 11, 1985

Table continued on following page.

TABLE AII-12 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), MARCH 19 TO JULY 11, 1985

Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Ankistrodesmus convolutus	8	3	8			5	2		
A. falcatus				10	5	2			
Chlamydomonas snowii									
Chlorella ellipsoidea									
Cladophora sp. 1						76	28		
<u>Closteriopsis</u> longissima	3				1				
C. longissima				6					
var. tropica									
Cosmarium sp.									2
C. pachydermum		2			2				
var. pussillum									
Crucigenia guadrata		6							
Dictyosphaerium pulchellum	2								
Eudorina elegans				2					
Gleocystis major									29
Micractinium pusilla									
Mougeotia sp.			19						
Occystis parva		6	32	7	18	14		3	25
Q. pusilla									
Q. solitaria					3				5
Pediastrum boryanum									
P. sculptatum									
Protococcus sp.									
Ouadrigula lacustris				7					
Scenedesmus arcuatus									
var. platydisca				2					

Table continued on following page.

TABLE AII-12 (Continued)

Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Scenedesmus bijuga					3				
S. denticulatus									
S. longus							17	•	
S. guadricauda		6		•			17	3	
Selenastrum contorta				8					
<u>S. minutus</u>	19	185	24	345	101	17			
Stichococcus bacillaris	19	185	24	343	101	17			
Tetraedron minimum									
Westella botryoides									
Chrysophyceae	8	40	33	96	226	228	99	315	414
Diceras sp									
Dinobryon bavaricum	3								
D. divergens	5						41	315	352
<u>D. sertularia</u>		40	33	94	226	228	58		60
<u>Mallomonas</u> caudata				2					
Synura uvella									1
	91	279	525	852	783	1,073	398	81	57
4yxophyceae (Blue-green Algae)	91	279	525	052	105	1,075	590	01	5
Anabaena affinis									
A. circinalis						7	43	69	29
A. flos-aque			80	7	40	13			
A. scheremetievi				45					
Apanocapsa delicatissima				1	3				
Aphanothece nidulans	2			1					
A. saxicola									
Chroococcus dispersus				2	2				

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), MARCH 3/19 TO JULY 11, 1985

Table continued on following page.

TABLE AII-12 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), DURING MARCH 19 TO JULY 11, 1985

Organisms	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Chroococcus dispersus									5.
var. minor									
C. limneticus	19								
Coelosphaerium kuetzingianum									
Gomphosphaeria lacustris									
Merismopedia elegans									
M. punctata		112		86					
Oscillatoria agardhii	46	140	445	643	498	600	226	12	28
<u>Oscillatoria limnetica</u> O. subbrevis	24	140	445	045	450	000	220	12	20
Q. tenuis	24	27		68	240	453	129		
Phormidium corium		-							
Invanieurum Sterrum									
Dinophyceae		3		4	4	3	3	3	8
Glenodinium borgei		3		4	4	3	3	3	
Peridinium inconspicuum									8
P. willei									
Euglenophyceae					7		5	13	2
Euglena gracilis					7		5	13	2
E. minutus									
Cryptophyceae		5 5		4	3				
Cryptomonas erosa		5		4	3				
Number of species	52	51	50	44	44	38	49	40	52
Diatoms	2,806	5,158	8,962	8,426	4,599	5,527	6,590	6,799	7,437
Vondiatoms	131	533	641	1,341	1,156	1,418	552	418	542
Total Planktonic Algae	2,937	5,691	9,603	9,767	5,755	6,945	7,142	7,217	7,979

*Density = organisms per mL

TABLE AII-13

Organisms	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Bacillariophyceae	4,616	4,601	60,834	2,056	3,683	2,478	5,872	7,654	5,556
(Diatoms)									
Achnanthes affinis	9	40	475	19	7	3	28		13
A. conspicua	5			4		3	21		4
A. exigua	15		119	5	5		9	31	7
A. haukiana	16	41	119	6			28	15	13
A. hungarica									
A. lanceolata								6	
A. lanceolata							14		
var. rostrata									
Amphipleura pellucida				2	3			9	
Amphiprora ornata									
Amphora commutata									
A. delicatissima		23		2	5		26	20	28
A. ornata									
A. ovalis	10	11	1	2	5			6	
A. veneta		23			5	7	18	19	
Asterionella formosa	117			5	259	511	374	240	308
Caloneis bacillum		11							
C. ladogensis	4								
Caloneis. schumanniana		11							
var. biconstricta									
C. silicula									
Cocconeis diminuta									
C. pediculus				2					
Cyclotella glomerata							18	209	40

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), JULY 23 TO DECEMBER 9, 1985

Table continued on following page.

TABLE AII-13 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), JULY 23 TO DECEMBER 9, 1985

Organisms	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Cyclotella iris	10	91		11	12	16			
C. kuetzingiana	1,712	1,578	55,405	1,309	1,103	182	508	435	214
C. kuetzingiana									8
var. planctophora									
C. meneghiniana				7					
C. michiganiana									
C. ocellata				2	5		16	8	7
C. pseudostelligera	13	4	357	11			7		
C. stelligera									
Cymatopleura elliptica		11	1						
C. solea								5	6
Diatoma elongatum		11		7	5	1	53	6	7
D. tenue									
var. elongatum									
Diploneis ovalis									
D. ovalis	14			2		1	5		
var. oblongella									
Fragilaria bicapitata	19	313	3	6	20	7	35	105	65
E. construens	18			4			16		
var. subsalina									
F. crotonensis	725	622	1,677	92	389	603	782	1,061	584
F. harrissonii		11		4					
F. intermedia	23		119	8	17	3	25	34	-
E. pinnata	39	210	6	19	14	7	70	6	21
Gomphonema olivaceum				8					
G. parvulum				10			5	6	

Table continued on following page.

AII-89

· .

TABLE AII-13 (Continued)

Organisms	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Gyrosigma kützingii	5	11		2	3				۰.
Hantzschia elongatum						5	12	15	
<u>Melosira</u> <u>distans</u>									·
M. granulata							23	Sec. 19	21
M. islandica	65	526	123	36	39		35	97	33
M. <u>varians</u>									
Navicula anglica				2	5			6	
N. bacillum							9		
N. <u>capitata</u>				12					
N. cryptocephala	25	30	1	7	5				20
N. cryptocephala	11	23		16			33	15	7
var. veneta					-				
N. exigua		11		5	5	5	12	<i>,</i>	
N. gastrum								6	
N. protracta							-		
N. pupula							5		
N. radiosa	4			4			7		
N. tripunctata			1				1		
Nitzschia acicularis	_					•	20	9	11
N. dissipata	7	4		2	~	3	30	60	41
N. fonticola	92	41		64	64	18	186	11	17
N. frustulum	9	46	1		10	5	127	233	131
N. gracilis	16	11	120	31	43	23	229	233	131
N. hungarica		38		2	10	3 10	12	34	
N. linearis					3	10	12	34	
N. palea					10	2	21		
N. recta	4				10	3	21		

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), JULY 23 TO DECEMBER 9, 1985

TABLE AII-13 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), JULY 23 TO DECEMBER 9, 1985

Organisms	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
N. thermalis					-				
N. unknown V					2		-		12
Pinnularia microstauron							7	19	7
P. viridis									
Rhizosolenia longiseta									
Scoliopleura peisons	4	46							
<u>Stauroneis parvula</u>					212				
Stephanodiscus astrae	28	252	5		29	7	40	106	28
<u>S. astrae</u>	21	11					5		
var. minutula						-			
<u>S. birostrata</u>						3			
<u>S. ovalis</u>	5								
<u>S. ovata</u>									
Synedra acus	11			6	59	63	77	6	7
<u>S. nana</u>									4
<u>S. ulna</u>									
<u>S. ulna</u>	4		1	4	5				
var. chaseana							2		
<u>Tabellaria fenestrata</u>	1,556	464	2,300	306	1,443	956	2,842	4,648	3,739
T. flocculosa		76		9	84	30	70	141	133
Tropidoneis lepideptera									
Chlorophyceae Ankistrodesmus braunii	86	100	21	73	44	5			70 1

Table continued on following page.

TABLE AII-13 (Continued)

Organisms	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
A. convolutus				3	1 .				
A. falcatus									
Chlamydomonas snowii				2					
<u>Chlorella</u> ellipsoidea	25								
Cladophora sp. 1									
<u>Closteriopsis longissima</u>									1
C. longissima									
var. tropica									
<u>Cosmarium</u> sp.									
C. pachydermum									
var. pussilla				7					
<u>Crucigenia quadrata</u> <u>Dictyosphaerium pulchellum</u>				,					
Eudorina elegans									
<u>Gleocystis major</u>									
Micractinium pusilla					2				
Mougeotia sp.					-				
<u>Oocystis parva</u>	45		13	14	9	5			8
Q. pusilla		7			,				
0. solitaria	3	93	5	3	2				
Pediastrum boryanum					<1				
P. sculptatum				2					
Protococcus sp.					28				
Quadrigula lacustris	3								
Scenedesmus arcuatus				14					
var. platydisca									

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), JULY 23 TO DECEMBER 9, 1985

Table continued on following page.

TABLE AII-13 (Continued)

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), JULY 23 TO DECEMBER 9, 1985

Organisms	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
S. bijuga			<1	7					· · · · ·
S. denticulatus				7					
S. longus				7					
S. guadricauda	10								
Selenastrum contorta									
S. minutus			2						
Stichococcus bacillaris									
Tetraetron minimum					<1				
Westella botryoides				7					
hrysophyceae	67 2	278	67 2	28	18	6	45		
Diceras sp	2		2	3	2				
Dinobryon bayaricum									
D. divergens	49	283	39	10	14	3			
D. sertularia	16	95	26	15	2	3	45		
Mallomonas caudata									
Synura uvella									
yxophyceae	275	804	54	198	90	8	2	1	15
Anabaena affinis									14
A. circinalis			15		2				
A. flos-aque	5			125					
A. scheremetievi									
Apanocapsa delicatissima			8	9					
Aphanothece nidulans		73	21	7		5			2
A. saxicola	3								
Chroococcus dispersus		2	10	7	16	3			

Table continued on following page.

TABLE AII-13 (Continued)

Organisms	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
C. dispersus				24					
var. minor					100124-000				<i>2</i>
C. limneticus	156	7		24	36				
Coelosphaerium kuetzingi	anum						2		
Comphosphaeria lacustris				2	4			1	
<u>Merismopedia</u> <u>elegans</u>					2				
. punctata		30							
Oscillatoria agardhii					24				
0. limnetica	19	21							
0. <u>subbrevis</u>	7	671							
D. <u>tenuis</u>					6				
Phormidium corium	85					,			
nophyceae								•	
Glenodinium borgei									
Peridinium inconspicuum	18	9	3	3					
P. willei	2		2						
	_								
glenophyceae									
Euglena gracilis			7	10					
E. minutus					3				
		30							
yptophyceae		30							
Cryptomonas erosa		50							
mber of Species	49	43	33	64	51	31	43	38	
atoms	4,616	4,601	60,834	2,056	3,683	2,478	5,872	7,654	5,5
ndiatoms	448	1,321	165	312	155	19	47	1	14
		5 000	60 000	2 369	3,838	2,497	5,919	7,655	5,7
tal Planktonic Algae	5,064	5,922	60,988	2,368	3,038	2,491	5,919	,,055	5, 7

AVERAGE POPULATION DENSITY* OF PLANKTONIC ALGAL SPECIES COLLECTED BY KEMMERER BOTLE FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), JULY 23 TO DECEMBER 9, 1985

*Density = organisms per mL.

TABLE AII-14

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), MARCH 18 TO JULY 9, 1985

					Dates o	f Collection	- 1985			
Constituents	Units	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9
Temperature	°C	4	6	7	11	12	13	14	16	20
Turbidity	NTU	27	18	23	5.4	0.8	5.8	2.0	0.7	1.5
Secchi Disk	m	0.25	0.5	0.5	1.0	3.25	0.75	1.5	3.5	NA
pH-Laboratory	STD Units	8.2	8.0	8.2	7.7	8.3	7.8	8.0	8.0	8.0
pH-Field	STD Units	7.25	7.03	6.98	7.45	7.34	NA	7.9	7.01	7.27
Alkalinity as CaCO3	mg/L	118	120	130	112	112	143	116	112	134
Sulfates	mg/L	26	29	29	23	20	21	20	20	21
Fluorides	mg/L	0.21	0.28	0.19	0.17	0.17	0.12	0.16	0.14	0.14
Chlorides	mg/L	18	16	14	11	12	12	12	12	11
Phosphorus, Total	mg/L	0.015	NA	NA	0.020	0.020	0.020	0.017	0.013	0.017
Phosphorus, Dissolved	mg/L	0.003	NA	NA	0.017	0.013	0.013	0.013	0.010	0.083
Silica, Total	mg/L	0.9	3.5	3.8	1.1	0.3	1.0	0.7	0.4	0.3
Calcium	mg/L		26	34	29	30	31	33	28	28
Magnesium	mg/L	25 11	13	14	11	11	11	14	11	11
Potassium	mg/L	1	1	1	1	1	1	1	1	1
Sodium	mg/L	5	8	7	5	5	5	5	5	3
Solids, Total	mg/L	207	224	270	177	155	189	180	181	193
Solids, Total Volatile	mg/L	36	57	58	51	26	36	70	72	81
Solids, Suspended	mg/L	37	35	51	6	2	14	8	1	1
Solids, Volatile Suspended	mg/L	2	2	4	NA	NA	5	NA	NA	NA
Oxygen, Dissolved	mg/L	13.1	NA	12.5	11.7	11.2	10.5	10.0	10.0	8.7
Oxygen Demand, Chemical	mg/L	10	21	8	6	12	4	2	14	2

TABLE AII-14 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), MARCH 18 TO JULY 9, 1985

					Date	of Collec	tion - 1985			
Constituents	Units	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9
Dxygen Demand, 5-Day Biochemical	mg/L	<2	<2	<2	<2	<2	<2	<2	2	<2
Nitrogen, Total Kjeldahl	mg/L	0.250	NA	NA	0.170	0.183	0.207	0.247	0.253	0.197
Nitrogen, Dissolved Total Kjeldahl	mg/L	0.163	NA	NA	0.157	0.173	0.157	0.190	0.193	0.473
Nitrogen, Nitrate	mg/L	0.27	0.37	NA	0.21	0.19	0.21	0.17	0.25	0.20
Nitrogen, Nitrite	mg/L	0.01	<0.01	NA	0.01	0.01	<0.01	0.01	<0.01	<0.01
Fats, Oils, and Greases	mg/L	<1	4	<1	<1	1	<1	<1	<1	<1
Coaming Agents- MBAS	mg/L	NA	0.03	0.04	0.02	0.02	<0.01	0.01	0.06	0.01
ardness Titration as CaCO3	mg/L	136	124	184	136	132	132	148	156	180
lardness Atomic Absorption de- termination of Ca and Mg then cal- culated as CaCO ₃	mg/L	108	118	143	118	120	123	140	115	115
Aluminum	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
rsenic	mg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cadmium	mg/L	<1.0	<1.0	2.0	<1.0	1.0	1.0	<1.0	<1.0	2.0
hromium	mg/L	2.0	<1.0	2.0	2.0	1.0	3.0	2.0	<1.0	<1.0
Copper	mg/L	1.0	23.0	23.0	9.0	14.0	8.0	8.0	10.0	8.0
Iron, Total	mg/L	367	655	791	163	10	204	83	43	41
Lead	mg/L	1	3	4	10	2	3	1	1	1

.

۰.

TABLE AII-14 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), MARCH 18 TO JULY 9, 1985

					Dates	of Collectio	on - 1985				
Constituents	Units	3/18	4/3	4/17	4/30	5/13	5/30	6/13	6/24	7/9	
Manganese	mg/L	14	19	30	3	2	6	5	4	4	
Mercury	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	
Nickel	mg/L	2	2	<1	1	2	7	6	2	1	
Selenium	mg/L	<1	<1	<1	<1	1	<1	1	1	1	
Zinc	mg/L	51	33	15	7	4	8	9	9	11	
Phenol-like	mg/L	.1	1	2	1	<1	<1	1	. 1	<1	
Substances as Phenol											
Silver	mg/L	<1	<1	1	<1	<1	1	1	1	<1	
Cyanides, Total	mg/L	0.000	0.001	0.001	0.002	0.003	0.001	0.004	0.004	0.001	
Conductivity	µmhos/cm	264	282	289	258	290	282	282	268	277	
Plankton-Surface	org/mL	1,543	3,622	5,838	6,744	3,812	9,226	4,688	3,587	1,608	
Chlorophyll a	µg/cm ²	4.41	3.87	7.10	3.44	1.88	NA	2.10	2.15	0.87	
Organic Matter	µg/cm ²	43.2	50.4	57.2	49.6	46.4	44.0	32.4	47.6	39.6	
No. Spp.		39	37	38	35	26	32	39	27	22	
Spp. Div.	bits/cell	1.23	1.15	1.13	1.05	0.99	0.98	1.12	0.78	0.89	
Plankton-Bottom	org/mL	1,512	3,698	2,956	8,226	10,110	10,016	7,362	6,038	6,072	
Chlorophyll a	µg/cm ²	1.63	4.32	57.6	5.06	5.11	4.73	3.82	2.96	3.62	
Organic Matter	µg/cm ²	42.4	49.2	57.6	51.6	51.6	39.2	42.0	51.2	40.8	
No. Spp.		38	40	37	26	35	28	46	19	17	
Spp. Div.	bits/cell	1.18	1.22	1.23	1.04	1.12	0.88	1.16	0.65	0.66	
Periphyton	org/cm ²	802			204						
Chlorophyll a	µg/cm ²						0.070				
Organic Matter	µg/cm ²				14.2						
	µg/cm=	34			13						
No. Spp. Spp. Div.	bits/cell	1.00			0.86						

TABLE AII-15

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), JULY 24 TO DECEMBER 10, 1985

					Dates of Col	lection - 1985			
Constituents	Units	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10
Temperature	°c	20.5	22	18	17	13	14	7	3
Turbidity	NTU	1.2	1.0	1.6	2.2	0.7	1.6	1.2	12.0
Secchi Disk	m	2.0	2.25	2.5	1.5	4.0	2.5	0.75	0.5
pH-Laboratory	STD Units	8.1	8.0	8.2	8.1	7.9	7.9	7.7	7.6
pH-Field	STD Units	7.30	6.85	6.79	7.49	7.40	6.93	7.51	7.90
Alkalinity as CaCO ₃	mg/L	114	116	110	114	110	114	110	120
Sulfates	mg/L	18	19	23	17	23	25	21	26
Fluorides	mg/L	0.13	0.14	0.17	0.15	0.16	0.16	0.15	0.14
Chlorides	mg/L	10	10	10	12	12	12	25	8
Phosphorus, Total	mg/L	0.020	0.010	0.003	<0.001	NA	<0.001	0.002	0.010
Phosphorus, Dissolved	mg/L	0.023	0.007	0.003	0.004	NA	<0.001	NS	NS
Silica, Total	mg/L	0.3	0.6	0.6	1.2	0.9	0.5	1.6	4.7
Calcium	mg/L	29	26	30	30	30	37	32	30
Magnesium	mg/L	10	10	11	11	11	11	12	12
Potassium	mg/L	1	1	1	1	1	1	1	1
Sodium	mg/L	5	5	5	5	5	5	4	5
Solids, Total	mg/L	184	169	185	171	171	184	193	197
Solids, Total Volatile	mg/L	55	31	34	56	40	50	67	52
Solids, Suspended	mg/L	5	. 3	3	6	2	4	29	24
Solids, Volatile Suspended	mg/L	NA	NA	NA	NA	NA	NA	2	3
Oxygen, Dissolved	mg/L	7.8	7.5	9.9	9.4	10.0	10.5	11.2	13.4
Oxygen Demand, Chemical	mg/L	13	13	17	35	16	10	3	5

Table continued on following page.

.

r

TABLE AII-15 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, <u>FIGURE 1</u>), JULY 24 TO DECEMBER 10, 1985

					Dates of Co.	llection - 1985				
Constituents	Units	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10	
Oxygen Demand, 5-Day Biochemical	mg/L	<2	2	<2	<2	<2	<2	<2	2	
Nitrogen, Total Kjeldahl	mg/L	0.253	0.223	0.237	0.238	NA	0.314	0.352	0.411	
Nitrogen, Dissolved Total Kjeldahl	mg/L	0.180	0.193	0.187	0.240	NA	0.246	NS	NS	
Nitrogen, Nitrate	mg/L	0.24	0.19	0.20	0.04	NA	0.04	0.07	0.20	
Nitrogen, Nitrite	mg/L	<0.01	<0.01	<0.01	<0.01	NA	<0.01	<0.01	<0.01	
Fats, Oils, and Greases	mg/L	<1	2	1	2	3	2	<1	<1	
Foaming Agents- MBAS	mg/L	0.01	0.01	0.01	NA	<0.01	NA	<0.01	<0.01	
Hardness Titration as CaCO ₃	mg/L	180	160	128	154	164	135	134	142	
Hardness Atomic Absorption de- termination of Ca	mg/L	114	106	120	120	120	138	129	124	
and Mg then cal- culated as CaCO ₃				ć.,						
Aluminum	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Arsenic	mg/L	<1.0	<1.0	<1.0	1.0	1.0	<1.0	1.0	1.0	
Barium	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cadmium	mg/L	<1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	
Chromium	mg/L	<1.0	<1.0	1.0	2.0	2.0	2.0	4.0	1.0	
Copper	mg/L	4.0	18.0	10.0	9.0	11.0	8.0	14.0	3.0	
Iron, Total	mg/L	91	55	26	109	27	58	333	683	
Lead	mg/L	<1	1	1	1	1	1	<1	1	

TABLE AII-15 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT WILMETTE HARBOR (STATION 2-B, FIGURE 1), JULY 24 TO DECEMBER 10, 1985

					Dates of Coll	lection - 1985				
Constituents	Units	7/24	8/6	8/19	9/18	10/2	10/18	11/13	12/10	
Manganese	mg/L	3	<1	<1	6	6	3	19	14	
Mercury	µg/L	<0.05	<0.05	<0.05	<0.05	0.2	<0.05	<0.05	<0.05	
Nickel	mg/L	1	3	1	7	9	7	10	3	
Selenium	mg/L	NA	NA	NA	<1	1	<1	<1	<1	
Zinc	mg/L	3	29	18	10	19	10	30	19	
Phenol-like Substances as Phenol	µg/L	1	1	<1	<1	1	<1	1	<1	
Silver	mg/L	<1	<1	<1	<1	<1	<1	<1	<1	
Cyanides, Total	mg/L	0.001	0.002	0.001	0.002	0.004	0.001	0.002	0.004	
Conductivity	µmhos/cm	276	261	258	266	262	254	277	263	
Plankton-Surface	org/mL	6,834	8,829	1,328	4,533	2,450	2,625	3,234	2,911	
Chlorophyll a	µg/cm ²	1.98	1.53	0.88	2.39	2.42	4.00	6.64	2.70	
Organic Matter	µg/cm ²	55.2	45.6	49.2	40.8	45.6	45.2	53.2	45.2	
No. Spp.		39	30	29	32	38	34	56	39	
Spp. Div.	bits/cell	0.79	0.49	0.51	0.70	0.90	0.90	1.30	1.11	
Plankton-Bottom	org/mL	5,783	4,594	4,207	3,933	2,256	1,845	1,742	5,267	
Chlorophyll a	µg/cm ²	4.54	5.99	1.29	3.32	2.60	4.44	7.46	4.46	
Organic Matter	µg/cm ²	53.2	52.0	48.0	48.4	41.2	34.0	49.4	41.6	
No. Spp.	pg/ cm	32	21	38	28	46	26	49	49	
Spp. Div.	bits/cell	0.71	0.36	0.90	0.55	0.87	0.81	1.28	1.23	
Periphyton	2100/0011									
Chlorophyll a										
Organic Matter										
No. Spp.										
Spp. Div.							•			

TABLE AII-16

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS of Southwestern lake Michigan at Chicago Harbor (Station 4-b, <u>Figure 1</u>), January 22 to June 24, 1985

						Dates of Co	llection - 19	85				
Constituents	Units	1/22	2/20	3/4	3/18	4/1	4/15	4/30	5/13	5/18	6/11	6/24
Temperature	°c	1.0	1.0	2.0	4.0	4.0	2.0	11.0	13.0	12.0	15.0	16.0
Turbidity	NTU	6.7	5.0	16.0	4.7	6.1	NA	2.2	0.7	1.0	1.4	1.2
Secchi Disk	m	NA	1.0	0.5	1.0	0.75	1.25	2.5	3.0	1.5	2.0	2.0
pH-Laboratory	STD Units	8.0	8.1	8.1	8.2	8.1	8.0	7.9	8.3	8.0	7.9	8.1
pH-Field	STD UNITS	6.93	6.97	7.20	7.30	6.76	7.07	7.15	6.94	6.75	7.90	7.17
Alkalinity as CaCO ₃	mg/L	120	130	130	116	112	120	114	112	100	118	112
Sulfates	mg/L	29	27	23	23	21	23	23	20	22	25	20
Fluorides	mg/L	0.21	0.22	0.17	0.20	0.31	0.18	0.17	0.18	0.16	0.13	0.15
Chlorides	mg/L	16	12	10	24	22	12	12	12	10	10	11
Phosphorus, Total*	mg/L	0.1	<0.1	NA	0.005	NA	NA	0.020	0.017	0.013	0.017	0.013
Phosphorus, Dissolved*	mg/L	<0.1	<0.1	NA	0.005	NA	NA	0.017	0.017	0.010	0.017	0.010
Silica, Total	mg/L	0.8	0.9	0.7	2.3	1.5	1.3	0.4	0.3	0.6	0.7	0.6
Calcium	mg/L	37	30	26	25	34	26	28	30	31	30	29
Magnesium	mg/L	12	12	12	11	12	11	11	11	11	11	11
Potassium	mg/L	2	1	1	1	1	1	1	1	1	1	1
Sodium	mg/L	8	8	6	6	7	8	5	5	5	5	5
Solids, Total	mg/L	209	190	167	161	191	191	170	153	193	163	186
Solids, Total Volatile	mg/L	56	48	45	32	38	44	42	17	58	33	60
Solids, Suspended	mg/L	7	6	32	8	12	6	2	2	3	2	5
Solids, Volatile Suspended	mg/L	NA	NA	8	NA	2	1	NA	NA	NA	NA	NA
Oxygen, Dissolved	mg/L	NA	13.8	13.1	13.2	12.1	NA	13.2	11.3	9.6	9.5	9.4
Oxygen demand, Chemical	mg/L	12	11	19	12	8	12	14	10	2	11	14
Oxygen demand, 5-Day Biochemical	mg/L	2	<2	2	<2	2	<2	<2	<2	<2	2	<2

TABLE AII-16 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS of Southwestern lake michigan at chicago harbor (Station 4-B, <u>Figure 1</u>), January 22 to June 24, 1985

			3		D	ates of Colle	ection - 198	5				
Constituents	Units	1/22	2/20	3/4	3/18	4/1	4/15	4/30	5/13	5/18	6/11	6/24
Nitrogen, Total Kjeldahl	mg/L	0.9	0.5	NA	0.273	NA	NA	0.203	0.223	0.177	0.197	0.230
Nitrogen, Dissolved Total Kjeldahl	mg/L	0.6	0.5	NA	0.273	NA	NA	0.183	0.190	0.173	0.180	0.193
Nitrogen, Ammonia	mg/L	<0.1	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrogen, Nitrate	mg/L	0.4	0.4	NA	0.30	0.28	NA	0.24	0.19	0.20	0.17	0.24
Nitrogen, Nitrite	mg/L	<0.01	<0.01	NA	0.01	<0.01	NA	0.01	0.01	<0.01	0.01	<0.01
Fats, Oils, and Greases	mg/L	<1	2	2	<1	5	1	<1	2	1	<1	1
Foaming Agents- MBAS	mg/L	0.01	NA	0.02	NA	0.02	<0.01	0.02	0.04	0.01	<0.01	0.05
Hardness Titration as CaCO ₃	mg/L	164	156	132	120	140	NA	154	136	128	140	164
Hardness Atomic Absorption de-2 termination of Ca and Mg then cal- culated as CaCO ₃	mg/L	142	124	114	108	134	110	115	120	123	120	118
Aluminum	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	mg/L	<1.0	<1.0	1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cadmium	mg/L	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1
Chromium	mg/L	<1	<1	5	2	1	<1	<1	<1	3	2	<1
Copper	mg/L	30	20	11	15	311	7	12	7	7	8	10
Iron, Total	mg/L	200	<200	621	119	160	NA	33	20	77	47	63
Lead	mg/L	20	<1	6	9	8	3	10	3	2	2	1
Manganese**	mg/L	<20	<20	16	3	6	6	3	4	6	4	6
Mercury	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	6	<0.05	<0.05	<0.05

TABLE AII-16 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, FIGURE 1), JANUARY 22 TO JUNE 24, 1985

						Dates of Col	lection - 198	5				
Constituents	Units	1/22	2/20	3/4	3/18	4/1	4/15	4/30	5/13	5/28	6/11 6/	24
Nickel	mg/L	<1	<1	2	1	2	2	<1	2	8	8	1
Selenium	mg/L	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	1
Zinc	mg/L	NA	NA	20	23	175	16	16	3	4	7	10
Phenol-like Sub- stances as Phenol	µg/L	2	1	1	1	<1	<1	1	<1	<1	<1	2
Silver	mg/L	<1	<1	<1	<1	<1	2	<1	<1	1	1	2
Cyanides, Total	mg/L	NA	NA	NA	0.013	0.118	0.002	0.001	0.003	0.001	0.003	0.00
Conductivity	µmhos/cm	301	231	300	269	259	283	259	290	273	276	272
Plankton-Surface	org/mL	1,383	1,113	3,128	2,887	4,568	4,393	5,327	5,408	5,358	5,814	5,152
Chlorophyll a	µg/cm ²	2.91	2.13	2.32	2.13	2.46	3.18	1.73	2.50	2.32	3.82	5.00
Organic Matter	µg/cm ²	NA	44.8	44.4	40.0	46.4	37.2	41.6	49.2	59.2	42.4	60.4
No. Spp.		36	42	44	43	37	31	32	28	35	31	21
Spp. Div.	bits/cell	1.06	1.23	1.13	1.25	1.20	0.98	1.00	0.94	1.05	0.98	0.72
Plankton-Bottom	org/mL	NS	912	4,279	2,615	3,530	6,513	7,714	8,659	4,885	2,750	8,990
Chlorophyll a	µg/cm ²	NS	2.24	3.39	1.40	3.45	5.86	NA	4.23	4.98	3.31	1.19
Organic Matter	µg/cm ²	NS	41.6	44.8	41.6	46.0	35.6	55.6	52.8	60.0	46.4	51.2
No. Spp.		NS	42	46	42	42	34	33	35	43	39	29
Spp. Div.	bits/cell	NS	1.21	1.13	1.25	1.26	1.11	1.16	1.09	1.09	0.98	0.81
Periphyton	org/cm ²	NS	NS	NS	802	4,247	24,196	237	35,467	NS	136,405	65,697
Chlorophyll a	$\mu g/cm^2$	NS	NS	NS	0.003	0.000	0.010	NA	NA	NS	0.124	0.01
Organic Matter	µg/cm ²	NS	NS	NS	9.3	NA	17.3	NA	26.7	NS	65.3	55.3
No. Spp.		NS	NS	NS	34	34	34	32	46	NS	37	43
Spp. Div.	bits/cell	NS	NS	NS	1.00	0.99	1.03	0.96	1.08	NS	0.75	1.18

NA - No Analysis

NS - No Sample

*For 1/22 and 2/20 detection limits were 0.1 mg/L, thereafter detection limits were 0.005. **For 1/22 and 2/20 detection limits were 20 mg/L, thereafter detection limits were 2 mg/L.

TABLE AII-17

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS of Southwestern lake Michigan at Chicago Harbor (Station 4-B, <u>Figure 1</u>), July 9 to december 9, 1985

					I	ates of Coll	ection - 198	15				
Constituents	Units	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Temperature	°c	20.0	20.0	20.0	18.0	17.5	15.0	13.0	13.0	7.0	5.0	2.0
Turbidity	NTU	2.1	2.2	0.98	1.8	1.3	2.7	3.2	1.0	2.0	7.3	5.7
Secchi Disk	m	2.5	2.5	2.75	3.75	1.25	2.0	1.5	1.5	0.5	1.0	1.0
pH-Laboratory	STD Units	7.9	7.9	8.1	8.2	8.0	8.0	7.8	8.2	7.8	7.8	7.8
pH-Field	STD Units	6.94	6.92	6.80	6.83	7.71	7.32	6.91	6.98	7.36	7.8	7.46
Alkalinity as CaCO3	mg/L	114	122	112	110	112	110	114	120	120	116	112
Sulfates	mg/L	22	18	23	21	4.9	24	21	22	23	19	24
Fluorides	mg/L	0.16	0.14	0.14	0.16	0.16	0.17	0.17	0.17	0.16	0.14	0.15
Chlorides	mg/L	14	8	10	12	12	12	14	14	11	2	8
Phosphorus, Total*	mg/L	0.013	0.017	0.007	0.007	<0.001	NA	0.001	<0.001	0.005	0.007	<0.001
Phosphorus, Dissolved*	mg/L	0.013	0.017	0.007	0.003	<0.001	NA	<0.001	<0.001	<0.001	<0.001	<0.001
Silica, Total	mg/L	0.4	NA	0.6	1.0	1.1	0.4	0.6	1.7	1.6	1.4	1.8
Calcium	mg/L	29	NA	26	30	31	27	37	37	32	27	27
Magnesium	mg/L	11	NA	10	11	11	11	11	10	12	11	11
Potassium	mg/L	1	NA	1	1	2	1	1	1	1	1	1
Sodium	mg/L	4	NA	5	5	5	5	5	6	5	5	5
Solids, Total	mg/L	186	203	215	189	203	175	196	181	193	175	180
Solids, Total Volatile	mg/L	83	80	106	63	62	33	77	51	49	32	39
Solids, Suspended	mg/L	4	4	3	3	6	6	6	5	19	10	8
Solids, Volatile Suspended	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	2	1	NA
Oxygen, Dissolved	mg/L	8.2	8.3	8.2	9.8	8.9	9.6	9.8	9.7	10.8	11.6	12.8
Oxygen Demand, Chemical	mg/L	2	20	4	6	15	7	10	1	6	9	<1
Oxygen Demand, 5-Day Biochemical	mg/L	<2	4	<2	<2	<2	<2	<2	<2	<2	2	<2

TABLE AII-17 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JULY 9 TO DECEMBER 9, 1985

						ates of Colle	ction - 1985					
Constituents	Units	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Nitrogen, Total Kjeldahl	mg/L	0.253	0.230	0.230	0.223	0.290	NA	0.377	0.248	0.385	0.444	0.458
Total Kjeldahl	mg/L	0.205	0.183	0.217	0.183	0.282	NA	0.254	0.302	0.270	0.305	0.324
litrogen, Ammonia	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
litrogen, Nitrate	mg/L	0.21	0.25	0.19	0.20	0.02	NA	0.14	0.01	0.07	0.10	0.15
litrogen, Nitrite	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	NA	<0.01	<0.01	<0.01	<0.01	<0.01
ats, Oils, and Greases	mg/L	<1	1	1	1	1	3	1	1	<1	1	<1
oaming Agents- MBAS	mg/L	0.01	0.02	<0.01	0.01	NA	NA	<0.01	<0.01	<0.01	<0.01	0.05
ardness Titration as CaCO ₃	mg/L	172	140	140	144	158	174	137	143	140	131	134
ardness Atomic Absorption de- termination of Ca and Mg then cal- culated as CaCO ₃	mg/L	118	NA	106	120	123	112	138	134	129	112	112
luminum	mg/L	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
rsenic	mg/L	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0
arium	mg/L	<0.2	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
admium	mg/L	<1	NA	1	1	<1	1	1	<1	<1	1	<1
hromium	mg/L	1	NA	4	2	<1	4	2	1	4	<1	2
opper	mg/L	6	NA	36	10	4	8	10	11	20	8	3
ron, Total	mg/L	74	NA	99	59	97	152	124	145	442	153	221
lead	mg/L	1	NA	2	<1	1	<1	1	<1	5	<1	1
langanese**	mg/L	3	NA	4	4	3 .	8	6	5	13	7	5
fercury	µg/L	<0.05	NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	<0.05

Table continued on following page.

.

TABLE AII-17 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CHICAGO HARBOR (STATION 4-B, <u>FIGURE 1</u>), JULY 9 TO DECEMBER 9, 1985

						ates of Col	lection - 198	5				
Constituents	Units	7/9	7/22	8/7	8/19	9/16	10/2	10/17	10/28	11/12	11/26	12/9
Nickel	mg/L	<1	NA	2	2	3	7	10	8	13	10	2
Selenium	mg/L	1	NA	NA	<1	<1	1	<1	<1	1	1	<1
Zinc	mg/L	15	NA	58	17	8	14	16	25	21	11	16
Phenol-like Sub- stances as Phenol	µg/L	<1	1	1	<1	<1	1	<1	<1	<1	1	3
Silver	mg/L	<1	NA	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cyanides, Total	mg/L	0.002	0.001	0.001	0.003	0.003	0.003	0.001	0.001	0.001	0.002	0.002
Conductivity	µmhos/cm	288	277	272	261	277	267	256	260	272	268	258
Plankton-Surface	org/mL	3,566	5,009	2,369	1,163	3,721	2,905	2,069	3,155	7,246	7,900	3,771
Chlorophyll a	µg/cm ²	0.90	1.86	1.36	1.32	2.19	2.47	4.40	3.37	5.93	3.68	4.29
Organic Matter	µg/cm ²	42.4	67.6	36.8	50.8	44.8	41.2	45.2	45.6	48.8	37.2	40.4
No. Spp.		26	32	21	29	34	37	28	30	42	38	28
Spp. Div.	bits/cell	0.89	0.65	0.29	0.61	0.73	0.88	0.76	0.79	0.97	0.89	0.75
Plankton-Bottom	org/mL	8,164	8,217	2,548	1,131	4,027	3,506	4,156	6,324	5,894	5,425	1,611
Chlorophyll a	µg/cm ²	393	4.35	3.31	5.28	2.22	2.38	3.97	4.04	4.05	2.77	3.64
Organic Matter	µg/cm ²	45.2	58.8	33.2	50.0	52.0	49.2	39.2	45.6	53.6	40.0	41.6
No. Spp.		32	29	28	29	40	34	26	34	45	35	20
Spp. Div.	bits/cell	0.88	0.74	0.73	0.94	0.91	0.78	0.76	0.80	1.10	0.86	0.58
Periphyton	org/cm ²	47,924	444,407	119, 365	308,628	NS	148,405	157	361	NS	4	NA
Chlorophyll a	µg/cm ²	0.210	0.358	0.081	0.423	NS	0.467	0.033	0.017	NS	0.000	0.000
Organic Matter	µg/cm ²	119.3	122.0	68.7	108.7	NS	101.3	32.0	14.0	NS	14.0	17.3
No. Spp.		27	23	42	32	NS	37	11	18	NS	2	NA
Spp. Div.	bits/cell	0.78	0.83	1.10	0.75	NS	1.07	0.94	1.12	NS	0.30	NA

NA = No Analysis. NS = No Sample. **For 1/22 and 2/20 detection limits were 20 mg/L, thereafter detection limits were 2 mg/L.

TABLE AII-18

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), MARCH 19 TO JULY 11, 1985

					Dates of Co	ollection -	1985			1	
Constituents	Units	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11	
Temperature	°C	4.0	6.0	8.0	10.0	9.0	14.0	16.0	19.0	20.0	
Turbidity	NTU	4.1	3.8	3.5	0.6	0.8	1.2	1.9	1.5	1.6	
Secchi Disk	m	1.25	1.5	0.75	2.75	3.0	2.5	1.5	3.0	3.0	
pH-Laboratory	STD units	8.0	8.2	7.7	8.3	7.7	7.7	8.0	8.1	8.0	
pH-Field	STD units	7.05	7.12	7.20	7.08	7.29	6.98	8.1	6.96	7.08	
Alkalinity	mg/L	112	120	114	112	116	116	116	144	110	
as CaCO3											
Sulfates	mg/L	24	24	25	23	20	20	21	20	22	
Fluorides	mg/L	0.19	0.18	0.21	0.18	0.17	0.16	0.15	0.14	0.17	
Chlorides	mg/L	16	14	17	12	12	8	12	20	20	
Phosphorus, Total	mg/L	0.005	NA	NA	0.020	0.020	0.013	0.040	0.017	0.013	
Phosphorus,	mg/L	0.003	NA	NA	0.017	0.013	0.010	0.013	0.010	0.010	
Dissolved											
Silica, Total	mg/L	1.1	0.9	1.2	0.6	0.3	0.4	0.7	0.4	0.4	
Calcium	mg/L	23	23	29	29	31	31	33	29	30	
Magnesium	mg/L	10	12	12	11	11	11	14	11	10	
Potassium	mg/L	1	1	1	1	1	1	1	1	1	
Sodium	mg/L	5	6	8	5	5	5	5	5	5	
Solids, Total	mg/L	172	186	200	198	180	186	221	206	158	
Solids, Total	mg/L	35	39	55	62	51	86	103	130	43	
Volatile	-										
Solids, Suspended	mg/L	8	6	10	2	3	3	3	2	2	
Solids, Volatile	mg/L	NA	1	1	NA	NA	NA	NA	NA	NA	
Suspended											
Oxygen, Dissolved	mg/L	13.1	12.4	12.4	11.6	11.7	10.0	9.5	9.0	8.6	
Oxygen Demand,	mg/L	6	6	6	6	2	2		17	5	
Chemical	-										

Table continued on following page.

TABLE AII-18 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), MARCH 19 TO JULY 11, 1985

					Dates o	f Collection	- 1985			
Constituents	Units	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Oxygen Demand,	mg/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
5-Day Biochemical										0.050
Nitrogen, Total Kjeldahl	mg/L	0.215	NA	NA	0.210	0.203	0.213	0.250	0.230	0.253
Nitrogen, Dissolved Total Kjeldahl	mg/L	0.185	NA	NA	0.173	0.177	0.177	0.203	0.190	0.190
Nitrogen, Nitrate	mg/L	0.28	0.32	NA	0.24	0.20	0.20	0.15	0.24	0.21
Nitrogen, Nitrite	mg/L	0.01	0.01	NA	0.01	0.01	<0.01	0.01	<0.01	0.01
Fats, Oils, and Greases	mg/L	<1	1	<1	2	2	<1	<1	<1	<1
Foaming Agents- MBAS	mg/L	NA	0.03	0.02	0.05	<0.01	0.01	0.03	0.06	0.06
Hardness Titration as CaCO ₃	mg/L	132	NA	156	136	136	136	148	152	148
Hardness Atomic Ab- sorption deter- mination as Ca and Mg then calcula- ted as CaCO ₃	mg/L	99	107	122	118 .	123	123	140	118	116
Aluminum	mg/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1
Barium	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cadmium	mg/L	<1	<1	2	<1	<1	<1	1	1	<1
Chromium	mg/L	2	1	3	<1	3	3	3	1	1
Copper	mg/L	3	29	38	16	9	5	15	7	6
Iron, Total	mg/L	195	121	250	46	14	41	91	50	70
Lead	mg/L	4	3	10	9	2	1	3	1	1
Selenium	mg/L	<1	<1	1	1	1	1	<1	1.	<1

.

TABLE AII-18 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), MARCH 19 TO JULY 11, 1985

					Dates of	f Collection	- 1985			
Constituents	Units	3/19	4/4	4/18	4/29	5/14	5/31	6/14	6/25	7/11
Manganese	mg/L	5	4	6	2	2	5	6	4	7
Mercury	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/L	<1	1	<1	2	2	5	7	5	<1
Zinc	mg/L	25	22	19	18	6	4	16	9	5
Phenol-like Sub- stances as Phenol	µg/L	<1	1	1	2	1	<1	3	1	5
Silver	mg/L	<1	1	1	<1	<1	1	<1	1	<1
Cyanides, Total	mg/L	NA	0.006		NA	0.004	0.002	0.002	0.002	0.002
Conductivity	µmhos/cm	260	272	301	259	278	265	278	277	290
Plankton-Surface	org/mL	2,847	6,523	8,676	9,030	5,939	9,117	3,340	5,220	2,810
Chlorophyll a	µg/cm ²	1.92	3.23	4.12	NA	1.29	2.91	1.11	6.07	1.79
Organic Matter	$\mu g/cm^2$	44.4	31.6	45.4	44.8	48.8	42.8	40.8	49.2	58.8
No Spp.		38	38	37	36	28	28	38	20	33
Spp. Div.	bits/cell	1.19	1.20	1.14	1.06	0.95	0.90	1.11	0.69	0.97
Plankton-Bottom	org/mL	3,022	4,825	10,541	10,554	5,686	4,750	10,921	9,213	13,195
Chlorophyll a	µg/cm ²	2.17	4.90	12.29	NA	3.37	2.83	4.97	2.86	6.91
Organic Matter	$\mu g/cm^2$	50.0	35.6	60.8	42.0	54.0	46.0	43.2	48.4	62.0
No. Spp		44	40	42	34	37	30	35	34	43
Spp. Div.	bits/cell	1.26	1.28	1.22	1.02	1.11	1.00	1.03	0.81	1.16
Periphyton	org/cm ²	NS	NS	851	4,382	5,997	16,206	272,519	14,310	280,267
Chlorophyll a	$\mu g/cm^2$	NS	NS	0.000	0.000	0.007	0.006	NA	0.007	0.150
Organic Matter	$\mu g/cm^2$	NS	NS	17.8	37.3	17.3	8.9	40.0	38.7	70.0
No. Spp.		NS	NS	14	16	13	25	24	28	22
Spp. Div.	bits/cell	NS	NS	0.70	0.50	0.31	0.53	0.36	0.91	0.61

TABLE AII-19

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, FIGURE 1), JULY 23 TO DECEMBER 9, 1985

					Dates of	Collection -	1985			
Constituents	Units	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Temperature	°C	21.0	21.0	19.0	18.0	15.0	13.0	8.0	6.5	3.0
Turbidity	NTU	1.9	0.73	1.3	1.0	0.5	1.3	1.3	4.5	3.5
Secchi Disk	m	3.0	2.75	3.0	3.0	3.5	2.5	0.75	2.0	1.5
pH-Laboratory	STD units	8.1	8.2	8.3	8.1	8.1	8.0	7.9	7.8	7.8
pH-Field	STD units	7.20	6.82	6.81	7.33	7.46	6.90	7.45	7.36	7.60
Alkalinity as CaCO3	mg/L	112	114	116	110	112	114	116	112	110
Sulfates	mg/L	17	21	23	9.8	24	22	23	115	24
Fluorides	mg/L	0.14	0.14	0.13	0.16	0.18	0.16	0.16	0.16	0.17
Chlorides	mg/L	10	10	10	14	12	12	11	6	8
Phosphorus, Total	mg/L	0.017	0.010	0.010	<0.001	NA	<0.001	0.003	<0.001	0.001
Phosphorus, Dissolved	mg/L	0.017	0.003	0.007	<0.001	NA	<0.001	0.002	0.001	<0.001
Silica, Total	mg/L	0.3	0.5	0.6	1.6	0.6	1.1	0.5	1.5	1.5
Calcium	mg/L	29	26	30	30	30	37	32	28	28
Magnesium	mg/L	11	10	11	11	11	11	11	11	11
Potassium	mg/L	1	1	1	1	1	1	1	1	1
Sodium	mg/L	5	5	5	5	5	6	5	7	5
Solids, Total	mg/L	244	205	188	189	204	182	190	187	181
Solids, Total Volatile	mg/L	122	89	49	39	60	46	50	43	35
Solids, Suspended	mg/L	3	3	1	3	3	3	10	5	6
Solids, Volatile Suspended	mg/L	NA	NA	NA	NA	NA	NA	2	NA	NA
Oxygen, Dissolved	mg/L	8.4	8.5	9.5	8.8	9.5	10.0	10.8	11.8	12.8
Oxygen Demand, Chemical	mg/L	16	6	17	15	8	12	6	8	<1

TABLE AII-19 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), JULY 23 TO DECEMBER 9, 1985

					Dates of (Collection	- 1985			
Constituents	Units	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Oxygen Demand,	mg/L	<2	<2	<2	5	<2	<2	<2	3	<2
5-Day Biochemical Nitrogen, Total	mg/L	0.240	0.240	0.260	0.221	NA	0.328	0.364	0.315	0.383
Kjeldahl Nitrogen, Dissolved Total Kjeldahl	mg/L	0.197	0.193	0.180	0.256	NA	0.362	0.345	0.362	0.410
Nitrogen, Nitrate	mg/L	0.25	0.20	0.20	0.20	NA	0.01	0.01	0.28	0.24
Nitrogen, Nitrite	mg/L	0.01	<0.01	0.01	<0.01	NA	<0.01	<0.01	0.01	<0.01
Fats, Oils, and Greases	mg/L	1	2	1	2	1	1	<1	<1	<1
Foaming Agents- MBAS	mg/L	<0.01	<0.01	<0.01	<0.01	NA	<0.01	<0.01	<0.01	<0.01
Hardness Titration as CaCO ₃	mg/L	176	152	132	134	138	155	144	140	147
Hardness Atomic Ab- sorption deter- mination as Ca and Mg then calcula- ted as CaCO ₃	mg/L	118	106	120	120	120	138	125	115	115
Aluminum	mg/L	<1	<1	<1	1	<1	<1	<1	<1	<1
Arsenic	mg/L	<1	<1	<1	<1	1	<1	<1	1	1
Barium	mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cadmium	mg/L	1	<1	1	1	3	2	<1	1	<1
Chromium	mg/L	4	3	1	1	2	2	3	4	1
Copper	mg/L	3	9	7	8	29	11	6	8	4
Iron, Total	mg/L	71	42	12	65	71	56	371	74	159
Lead	mg/L	1	1	1	1	2	1	<1	<1	<1
Selenium	mg/L	NA	NA	NA	1	<1	<1	<1	<1	<1

.

Table continued on following page.

TABLE AII-19 (Continued)

CHEMICAL ANALYSES OF WATER SAMPLES COLLECTED FROM THE INSHORE WATERS OF SOUTHWESTERN LAKE MICHIGAN AT CALUMET HARBOR (STATION 6-B, <u>FIGURE 1</u>), JULY 23 TO DECEMBER 9, 1985

					Dates	of Collection	on - 1985			
Constituents	Units	7/23	8/7	8/20	9/16	10/3	10/17	11/12	11/26	12/9
Manganese	mg/L	3	6	5	6	6	5	15	7	7
Mercury	µg/L	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/L	2	2	3	7	8	10	7	11	6
Zinc	mg/L	5	23	25	23	52	9	20	11	18
Phenol-like Sub-	µg/L	1	2	1	<1	<1	<1	<1	<1	<1
stances as Phene	01									
Silver	mg/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cyanides, Total	mg/L	0.002	0.00	1 0.001	0.003	NA	0.001	0.001	0.002	0.002
Conductivity	µmhos/cm	267	273	275	286	267	258	274	284	268
Plankton-Surface	org/mL	4,467	3,811	121,237	2,801	2,657	1,401	4,620	5,957	4,350
Chlorophyll a	$\mu g/cm^2$	2.16	1.37	1.05	1.35	2.07	4.46	5.62	2.90	0.11
Organic Matter	$\mu g/cm^2$	NA	34.0	58.4	45.6	43.2	41.2	46.8	NA	43.2
No Spp.		39	25	20	47	26	23	13	33	21
Spp. Div.	bits/cell	0.92	0.52	0.19	0.88	0.75	0.83	0.50	0.65	0.51
Plankton-Bottom	org/mL	5,676	14,053	823	1,910	4,950	3,599	7,234	9,428	7,087
Chlorophyll a	$\mu g/cm^2$	2.29	6.20	0.94	2.39	3.95	4.06	5.61	5.52	4.05
Organic Matter	$\mu g/cm^2$	40.0	37.2	55.6	50.0	39.2	40.0	48.0	51.2	45.6
No. Spp	P.97 C	34	36	29	43	39	23	33	24	33
Spp. Div.	bits/cell	0.80	0.97		0.77	0.86	0.70	0.83	1.03	0.71
Periphyton		488,609	NS	88,223	NS	95,381	91,681	NS	1,981	NS
Chlorophyll a	µg/cm ²	0.105	NS	0.041	NS	0.187	0.029	NS	NA	NS
Organic Matter	µg/cm ²	95.1	NS	69.3	NS	104.0	70.7	NS	40.4	NS
No. Spp.	F3/ 011	27	NS	15	NS	33	31	NS	26	NS
Spp. Div.	bits/cell	0.83	NS	0.64	NS	1.03	1.06	NS	1.04	NS

APPENDIX AIII

POPULATION DENSITIES OF BENTHIC INVERTEBRATES COLLECTED FROM THE INSHORE AREAS OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

TABLE AIII-1

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT WILMETTE HARBOR (STATION 2-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Taxon	4/85	Sampling Date 8/85	<u>s</u> 11/85
Annelida	Numb	per of Organism	s/m ²
Enchytraeidae		6	
Naididae		Ŭ	
<u>Piguetiella michiganensis</u>	44	1,039	32
Vejdovskyella intermedia		19	19
<u>Uncinais uncinata</u>		266	
Tubificidae			
Limnodrilus hoffmesteri			44
Limnodrilus udekemianus			6
Potamothrix moldaviensis			6
Undetermined immatures	6		
with capilliforms without capilliforms	6 25	1.0	
without capiliforms	25	19	551
Hirudinea			
<u>Helobdella</u> <u>stagnalis</u>			6
Arthropoda			
Crustacea			
Amphipoda			
<u>Gammarus</u> <u>pseudolimnaeus</u>	13		
<u>Hyalella azteca</u>	19		13
<u>Pontoporeia hoyi</u>	57	51	52
Insecta			
Tricoptera			
Hydropsychidae	6		
Diptera			
Tanypodinae			-
<u>Conchapetopia</u> sp.			6
Prodiamesinae <u>Monodiamesa</u> cf.	10	20	000
tuberculata	19	32	222
Luberculata			

TABLE AIII-1 (Continued)

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT WILMETTE HARBOR (STATION 2-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

		Sampling Dat	tes
Taxon	4/85	8/85	11/85
	Numbe	er of Organi	.sms/m ²
Orthocladinae		2	
<u>Heterotrissocladius</u> cf. <u>changi</u>			6
<u>Nanocladius</u> sp.	6		
<u>Parakiefferiella</u> sp.	222		
Chironominae	222		
Chironomini			
Chironomus			6
<u>anthraeinus</u> gr.			
Chironomus	44	279	114
fluviatilis gr.	,		
Chironmus sp.		32	6
Cryptochironomus	6	32	51
digitatus			
Cryptochironomus cf.	25	63	165
fulvus			
Cyphomella sp.	697	51	1,146
Glyptotendipes sp.		6	
Microtendipes	6		
cf. <u>pedellus</u>			
Paracladopelma	25	38	63
<u>camptolabis</u> -gr.			
Paracladopelma nereis		38	
<u>Paracladopelma</u> undine		25	
Polypedilium cf.	735	234	260
scalaenum			
Pseudochironomus sp.			6
Tanytarsini			
Tanytarsus sp.	32		

TABLE AIII-1 (Continued)

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT WILMETTE HARBOR (STATION 2-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

	Sampling Dat	ces
Taxon	4/85 8/85	11/85
	Number of Organi	sms/m ²
Mollusca	Number of organi	
Gastropoda		
<u>Amnicola limosa</u>	6	
Pelecypoda		
<u>Pisidium casertanum</u>		6
<u>Pisidium fallax</u>	6	
<u>Sphaerium</u> corneum	6	
Sphaerium rhomboideum		6
<u>Sphaerium</u> <u>striatinum</u>	6	6

*Three replicate bottom samples were collected once during the spring, summer, and fall.

TABLE AIII-2

1

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT CHICAGO HARBOR (STATION 4-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

	Sampling Dates		
Taxon .	4/85	8/85	11/85
	Numb	er of Organi	.sms/m ²
Coelenterata			
<u>Hydra</u> sp.	6		51
Annelida			
Enchytraeidae	6	6	
Lumbriculidae			
<u>Stylodrilus heringianus</u>		13	13
Naididae			
<u>Amphicaeta leydigi</u>	6		
<u>Nais communis</u>			6
<u>Nais simplex</u>		6	
<u>Nais variablilis</u>		13	
<u>Piguetiella</u> michiganensis	57		38
<u>Slavina appendiculata</u>		6	
<u>Vejdovskyella</u> intermedia	6	6	6
Tubificidae			
<u>Aulodrilus</u> americanus	6		
<u>Aulodrilus</u> <u>pluriseta</u>		6	13
<u>Ilyodrilus templetoni</u>	6		
Limnodrilus cervix	32	19	
Limnodrilus hoffmeisteri	272	44	6
Limnodrilus maumaensis		6	
Potamothrix moldaviensis	203	44	6
Potamothrix vejdovskvi	158	266	890
Tubifex superiorensis	6		
Undetermined immatures			
with capilliforms	184	481	532
without capilliforms	513	4,180	1,241
Hirudinea			
<u>Helobtella</u> <u>stagnalis</u>	6	139	158

Table continued on following page.

AIII-5

TABLE AIII-2 (Continued)

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT CHICAGO HARBOR (STATION 4-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

Taxon	4/85	Sampling Dat 8/85	tes
Arthropoda	Numb	er of Organi	sms/m ²
Crustacea			
Isopoda			
Asellus sp.		6	
Amphipoda		Ū	
Gammarus	51	329	120
pseudolimnaeus			
Pontoporeia hoyi		13	
Insecta			
Diptera			
Tanypodinae			
Procladius sp.		89	6
Diamesinae			
<u>Potthastia</u> cf.	6	32	44
<u>longimanus</u>			
Prodiamesinae			
<u>Monodiamesa</u> cf.		6	
<u>depectinata</u>			
Monodiamesa cf.		260	6
<u>tuberculata</u>			
Orthocladinae			
<u>Heterotrissocladius</u>	6	32	19
cf. <u>changi</u>		8	
Parakiefferiella sp.	665	25	63
Chironominae			
Chironomini			
Chironomus	6	114	25
<u>anthracinus</u> -gr.			
Chironomus	13	513	76
<u>fluviatilis</u> -gr.			
<u>Chironomus</u> <u>anthracinus</u> -gr. <u>Chironomus</u>			25

TABLE AIII-2 (Continued)

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT CHICAGO HARBOR (STATION 4-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

	Sampling Dates		
Taxon	4/85	8/85	11/85
	Numb	er of Organi	sms/m ²
Chironomus	i und	13	
plumosus-gr.			
Chironomus sp.		127	
Cladopelma sp.		13	
Cryptochironomus	13	44	
digitatus			
Cryptochironomus cf.	38	57	
fulvus			
Cyphomella sp.			6
Demicryptochironomus	51	108	63
sp.			
Dicrotendipes sp.		13	
Paracladopelma	6		6
<u>camptolabis</u> -gr.			
Paracladopelma	19		
winnelli			
Polypedilium	108	241	317
cf. <u>scalaenum</u>			
Polypedilium	82		
tuberculum			
Pseudochironomus	13	6	76
sp.			
follusca			
Gastropoda		6	
Amnicola limosa		6	
<u>Bithynia tentaculata</u>	6	6	
<u>Physella gyrina sayi</u>	6		
<u>Physella vinosa</u>		13	
Physella sp.	6		6
Valvata perdepressa	6		

Table continued on following page.

AIII-7

TABLE AIII-2 (Continued)

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT CHICAGO HARBOR (STATION 4-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

	Sampling Dates			
Taxon	4/85	8/85	11/85	
		C 0	2	
	Number	of Organ	lisms/m²	
<u>Valvata sincera</u>	6	13		
<u>Valvata tricarinata</u>		25		
Pelecypoda				
<u>Musculium</u> transversum	13	6		
Pisidium casertanum	57	19	6	
<u>Pisidium</u> <u>compressum</u>	6			
Pisidium fallax	6	241		
<u>Pisidium henslowanum</u>		13		
Pisidium nitidium	6			
cf. <u>pauperculatum</u>				
Pisidium subtruncatum	6			
<u>Pisidium</u> variabile		19		
<u>Sphaerium</u> striatinum	13			

*Three replicate bottom samples were collected once during the spring, summer, and fall.

TABLE AIII-3

.

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT CALUMET HARBOR (STATION 6-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

	Sampling Dates		
Taxon	4/85	8/85	11/85
	Numb	er of Organis	sms/m ²
Coelenterata	~		
<u>Hydra</u> sp.	165		6
Annelida			
Enchytraeidae	19	13	
Naididae			
Amphicaeta leydigi	19		
Chaetogaster diaphanus		51	
Nais communis		6	
Nais variabilis		203	38
Piguetiella michiganensis	190	51	177
Pristina foreli	19	19	32
Pristina osborni	13	6	
Stylaria lacustris	6	13	
Vejdovskyella intermedia	108	19	
Uncinais uncinata	6	38	
Tubificidae			
Aulodrilus pluriseta		6	
Limnodrilus hoffmeisteri	6	25	
Potamothrix moldaviensis	13		
Potamothrix vejdovskyi	13		
Undetermined immatures			
with capilliforms	82	6	
without capilliforms	25	82	89
Arthropoda			
Crustacea			
Amphipoda			
<u>Gammarus</u> <u>pseudolimnaeus</u>		13	6
Pontoporeia hovi	13	38	
Insecta			
Diptera			
Sipeera			

Table continued on following page.

AIII-9

TABLE AIII-3 (Continued)

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT CALUMET HARBOR (STATION 6-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

		Sampling Dat	es
Taxon	4/85	8/85	11/85
			, 2
Tanypodinae	Numbe	r of Organis	sms/m ²
Procladius sp.		19	
Diamesinae		19	
Potthastia			19
cf. <u>longimanus</u>			19
Prodiamesinae			
Monodiamesa		10	
		19	
<u>depectinata</u>		100	
Monodiamesa		120	
cf. <u>tuberculata</u>			
Orthocladinae			
Heterotrissocladius		25	13
cf. <u>changi</u>			
Parakiefferiella sp.	25	6	6
Chironominae			
Chironomini			
Chironomus		101	
anthracinus-gr.			
Chironomus		697	89
<u>fluviatilis</u> -gr.			
Chironomus		6	
<u>plumosus</u> -gr.			
Chironomus sp.		6	
Cryptochironomus		6	6
digitatus			-
Cryptochironomus		6	
fulvus		v	
<u>Cyphomella</u> sp.		19	
Demicryptochironomus	6	19	25
sp.	0		25
SP.			

Table continued on following page.

AIII-10

TABLE AIII-3 (Continued)

MEAN DENSITY* OF BENTHIC INVERTEBRATES COLLECTED AT CALUMET HARBOR (STATION 6-C) IN THE INSHORE AREA OF SOUTHWESTERN LAKE MICHIGAN DURING 1985

	Sampling Dates		
Taxon	4/85	8/85	11/85
	Number of Organisms/m ²		
Paracladopelma	44	6 6	25
<u>camptolabis</u> -gr.			
Paracladopelma		82	
undine			
Polypedillium	133	19	28
cf. <u>scalaenum</u> Bolumodilium	177	6	
<u>Polypedilium</u> cf. <u>tuberculum</u>	1//	0	
<u>Pseudochironomus</u> sp.			13
Tanytarsini			
<u>Microspecta</u> sp.		25	
<u>Tanytarsus</u> sp.	25		
Mollusca			
Gastropoda			
Amnicola limosa		6	
Pelecypoda			
<u>Pisidium casertanum</u>		6	
<u>Pisidium fallax</u>		13	

*Three replicate bottom samples were collected once during the spring, summer, and fall.

с. .