

Metropolitan Water Reclamation District of Greater Chicago

Welcome to the November Special Edition of the 2020 M&R Seminar Series

NOTES FOR SEMINAR ATTENDEES

- All attendees' audio lines have been muted to minimize background noise.
- A question and answer session will follow the presentation.
- Please use the Chat feature to ask a question via text.
- The presentation slides will be posted on the internal MWRD website after the seminar.

Jonathan Grabowy, P.E. Managing Civil Engineer

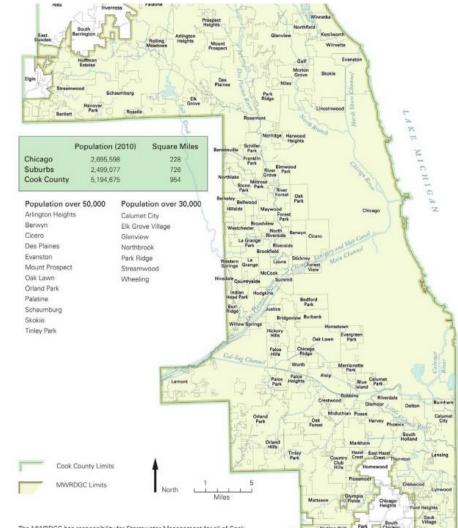
Capital Facilities Planning, Wastewater Research and New Technology Evaluation Monitoring and Research Department

Jonathan Grabowy joined the District in 1999, as an Assistant Structural Engineer in the Process Facilities Design Division of the Engineering Department. Since that time he has as worked in various areas including local sewers permitting, engineering planning, civil design, stormwater management, capital facility planning, and is currently the Managing Civil Engineer overseeing Capital Facilities Planning, Wastewater Research and New Technology Evaluation programs in the M&R Department. Significant accomplishments in Jonathan's career include: Calumet Sag Channel and Poplar Creek Detailed Watershed Plans, MWRD's Stormwater GIS Inundation Application, Long-term Capital Facilities and Biosolids Planning, Districtwide Odor Reduction Planning and Capital Project Evaluations. Jonathan is active in the Water Environment Foundation (WEF) Odor and Air Pollutants committee and he was a reviewer of the WEF "Manual of Practice 25 - Control of Odors and Emissions from Wastewater Treatment Plants" and participates in the NACWA Climate & Resiliency Committee.

He received his Bachelor of Science in Civil Engineering from Purdue University; a Master of Science in Computer Science, Telecommunication and Information Systems, De Paul University; and O Master of Engineering Management, Northwestern University

He is a Professional Engineer licensed in Illinois and Wisconsin.

The Thornton Composite Reservoir - Odor Lessons Learned from the Operation of a Unique 30 Billion Liter (7.9 Billion Gallon) Combined Sewer Overflow Mega-Structure


Jonathan Grabowy, PE - Metropolitan Water Reclamation District of Greater Chicago

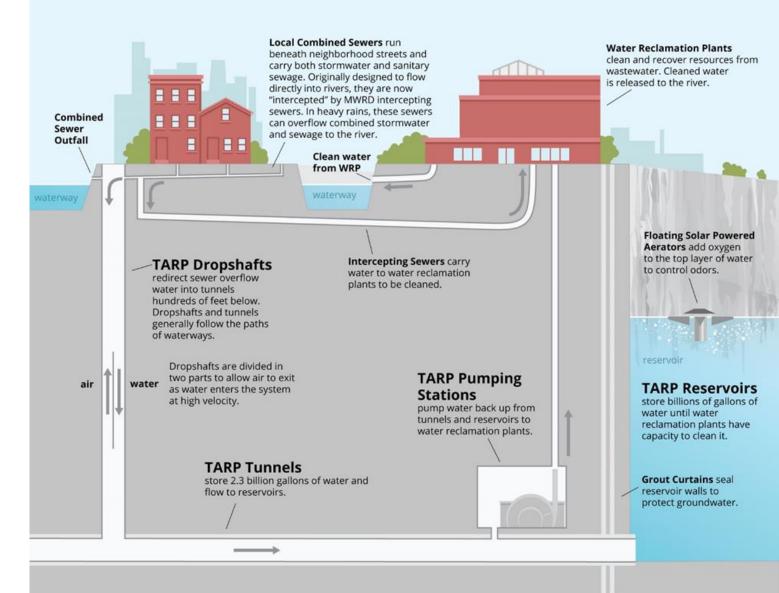
A few notes

- Presentation originally prepared for the 2020 WEF Odors and Air Pollutants Conference, scheduled for March 15-18, 2020
- The paper is available upon request.
- Co-Authors
 - Kevin Fitzpatrick Engineering
 - Reed Dring (retired M&O)
 - Dominic Brose M&R
 - Brent Bedell M&R
 - Weizhe An M&R
 - Kuldip Kumar M&R

The Metropolitan Water Reclamation District of Greater Chicago

- Created in 1889
- Located in Northeast Illinois
- 92% of Land and 98% of Assessed Valuation of Cook County
- Chicago and 128 Suburbs
- Responsible for Wastewater and Regional Stormwater
- Serves and Equivalent Population of 10.35M
 - 5.25M People
 - 4.5 M Industrial Equivalent
 - 0.6 M CSO

The MWRDGC has responsibility for Stormwater Management for all of Cook County, including areas that currently lie outside the MWRDGC's boundaries.

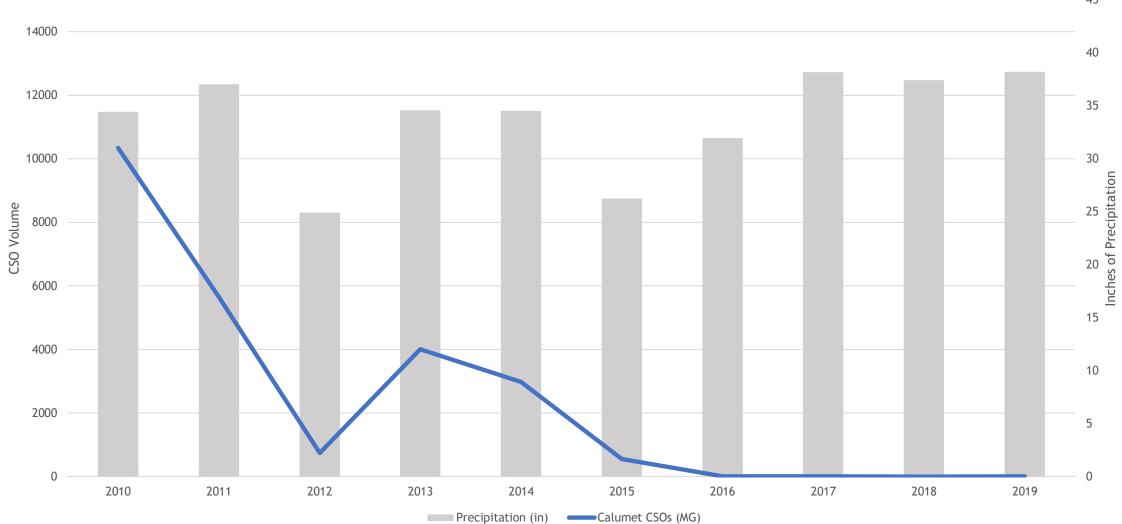


Tunnel and Reservoir Plan

- MWRDGC Long Term Control Plan for CSOs
- Started in 1975
- Phase I Tunnels (Completed 2006)
 - 109.4 Miles, 2.3 BG
- Phase II Reservoirs
 - Majewski (1998) 350 MG
 - Thornton (2003, 2015) 3.1 BG, 7.9 BG
 - McCook (2017, 2029 est.) 3.5 BG, 10 BG

TARP Operations

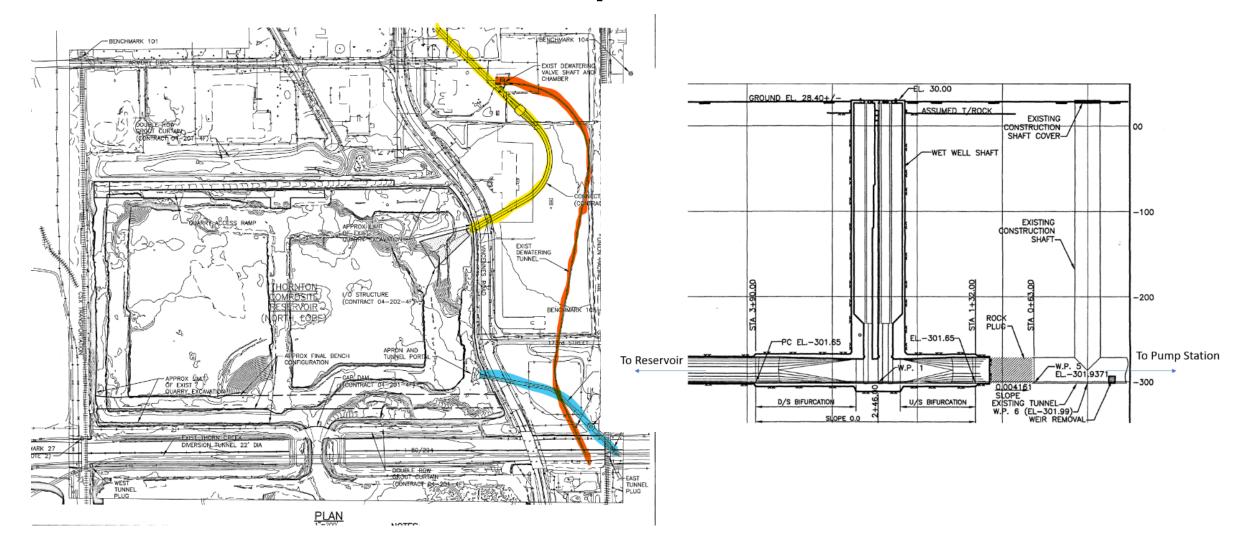
- Over 450 CSOs in MWRDGC Service Area
- Approx. 100 days of overflow to local waterway
- TARP provides additional volume for the sewers and WRPs to "catch-up"

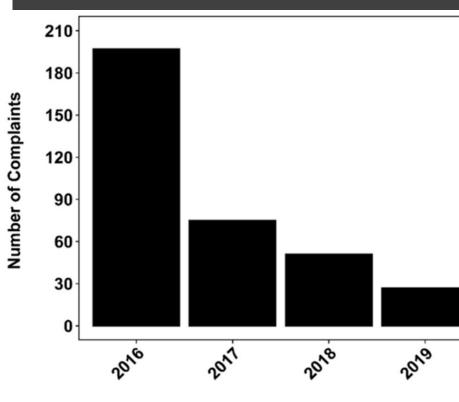

Thornton Composite Reservoir

The Thornton Reservoirs

- Thornton Transitional Reservoir
 - Completed in 2003
 - 3.1 Billion Gallons
 - Protects 9 Communities
 - Thorn Creek Overflow
 - 70 fill events 51 Billion Gallons
- Thornton Composite Reservoir
 - First fill November 2015
 - Protects 14 Communities
 - 38 Billion Gallons of CSOs

*Numbers as of 6/30/2020




Calumet (Thornton) TARP System CSOs/Precipitation Totals 2010-2019

45

Thornton Composite Reservoir

Complaint Data

MWRDC	-1112		лент кер	orting				1/8		
nit an Odor Inc	iden							(ATTENS	A DELEGISTIC	
uired									Sex James	
FIRST N	AME			Sel	ect Language 🔹 F		anslate			
LAST N	1 2000 E			Lake	e in the Hills Lake		nd Park	A STATE OF A	Singer Suite	
DAST N				2	arpentersville	Antograp		Ser Star		
This is where the odor	OCCUT	TION OF ODOR d, not neccessari	ly your home addre		- Elgin Dur	anneuro Nas	Tennon Service		the second	
DDRESS OR INTERSECT	ION		*	Sout	h Jgin thankindo	Addison		Start and a		(72)
			1		Charles Geneva	ream Elmin re-	Chiergo			
c	TTY			15	Bitavia	iowners Groot	dicerco	10.5 Baller		
51	ATE	linois •			Aurora Napervil	le Darien La	bank A			
ZIP CO					Polis	voodnage			Contraction of the second	
TELEPHO				arkvil	Oswego Rome	oville	Calumn			
				1	1	Tinle	The Lines of			E
EM	IAIL				ing la	Ning	1241	60-0	00000	• •
CONFIRM EM	IAIL									
	0	You will receive a	a confirmation ema		CRIPTION OF ODO	RI				
				77.8.)						
nt Details										
PPROXIMATE DATE OF OF								1-istell	11 11	
APPROXIMATE T	IME									
would you categorize	e the	Not Sure							Line of	
		Not Sure						E BON	THE REAL	
strong was the odor	?	Very Faint	•					-961		-
t was the appromixat ature (in °F)?	te								Y	
plicable, which direct d blowing from?	tion wa	IS Not Sure	•							
oplicable, how intense lowing?	e was t	he Not Sure	•							Å
the odor been recurr	ina? (I	f Ves	O No					Film		
ease expand in the ption field)	100 -									1
			Thori	nton Com	H2S Conce		rner SulfNo	se		
					HZ3 CONCE	ntration				
	80 -									-
						(PPBV)				
	60 -									
	(PPBV)									
	H2S (F									
	40 -									1
	20 -									1
		Sulf	Nose Detection Lir	nit 10 ppby			4 44.			
		3411	to se betection un			. 17		<i>i</i> l	+	-
				1	المدياس					
	0 -			The second s	State of the second second	and, and the	1 1	N. madel	HLLA	1
	1/2/	2018 1/4/2	2018 1/6/201	.8 1/8/2	2018 1/10	/2018 1/12	2/2018 1/14	4/2018 1/1	5/2018 1/18	8/2018

MINDD CHI-

1

Subn

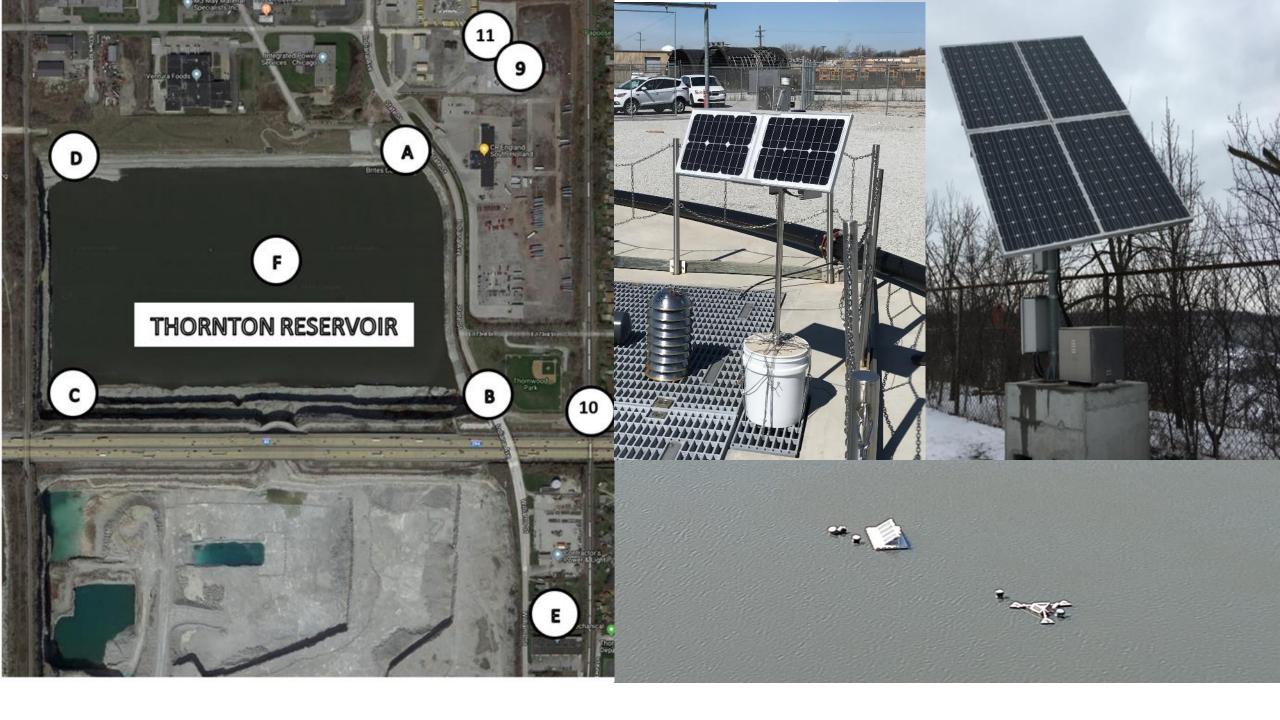
1. Hov odor? 2. Hov

3. Wh tempe

the wi 5. If a wind l

6. Has Yes, pl Descrip

H₂S Data Collection


- Jerome H₂S Analyzer
 - Detection Limit of 0.003 parts per million by volume (ppmv) to 30 ppmV (631-X) or 10 ppmV (605J)
 - Used for manned inspections, reliable and industry standard
- OdaLog High Range and Low Range
 - Detection Limits 1 to 50, 200 or 1000 ppmv (high range), 0.01 to 2 ppmv (low range)
 - Temporary temporal based monitoring requires weekly maintenance visits
- Envea
 - Detection Limit 0.02 to 1 ppmv (low range) and 0.30 to 20 ppmv (high range)
 - Solar powered monitoring with telemetry

Odors

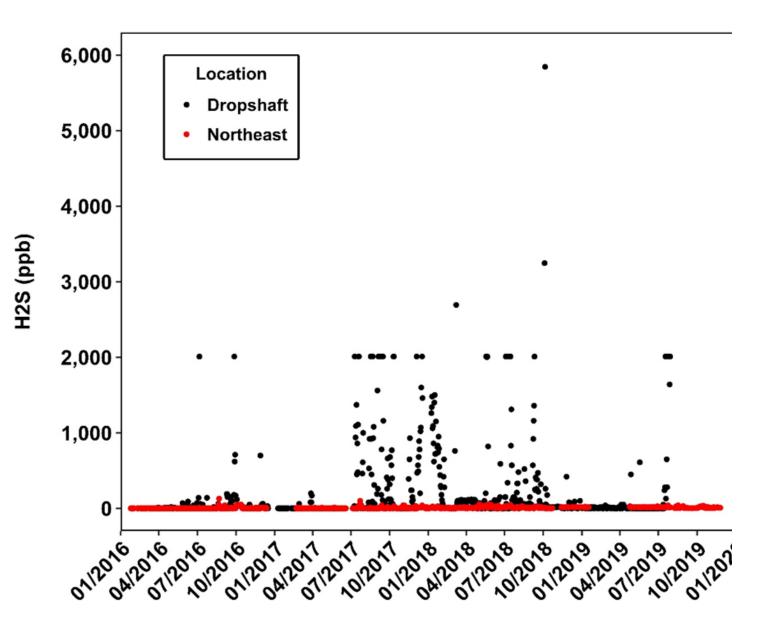
* From WERF Minimization of Odors and Corrosion in Collections Systems Phase 1 (2007)

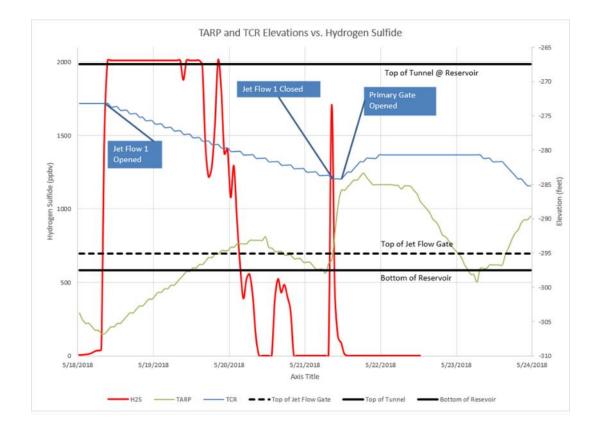
Name	Formula	Characteristic Odor	Detection Threshold (ppm)	
Hydrogen sulfide	H ₂ S	Rotten eggs	0.0005	
Ammonia	NH3	Irritating, pungent	17	
Skatole	C9H9N	Fecal, nauseating	0.001	
Indole	C ₆ H ₄ (CH) ₂ NH	Fecal, nauseating	0.0001	
Methylamine	CH ₃ NH ₂	Putrid, fishy	4.7	
Allyl mercaptan	CH2=CHCH2SH	Disagreeable, garlic	0.0001	
Amyl mercaptan	CH ₃ (CH ₂) ₄ SH	Unpleasant, putrid	0.0003	
Benzyl mercaptan	C ₆ H ₅ CH ₂ SH	Unpleasant, strong	0.0002	
Ethyl mercaptan	C ₂ H ₅ SH	Decayed cabbage	0.0003	
Dimethyl sulfide	(CH ₃) ₂ S	Decayed cabbage	0.001	
Trimethylamine	(CH3)3N	Pungent, fishy	0.0004	
Sulfur dioxide	SO ₂	Pungent, irritating	2.7	
Methyl mercaptan	CH ₃ SH	Dec <mark>ayed cab</mark> bage	0.0005	
Thiocresol	CH ₃ C ₆ H ₄ SH	Skunk, irritating	0.0001	
Thiobismethane	CH ₃ SCH ₃	Rotting meat	0.0011	

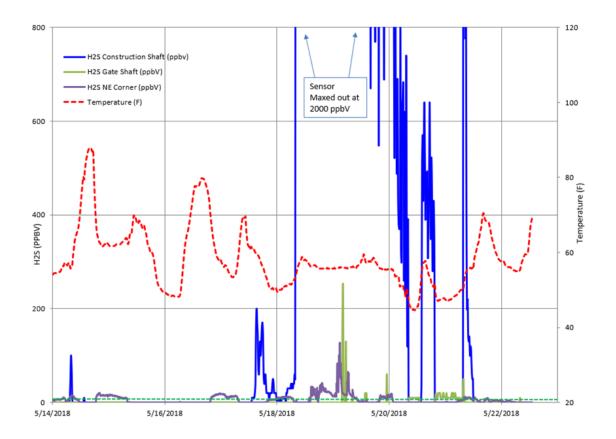
Table 2-1. Odorous Compounds in Wastewater.

Liquid Sample Collection

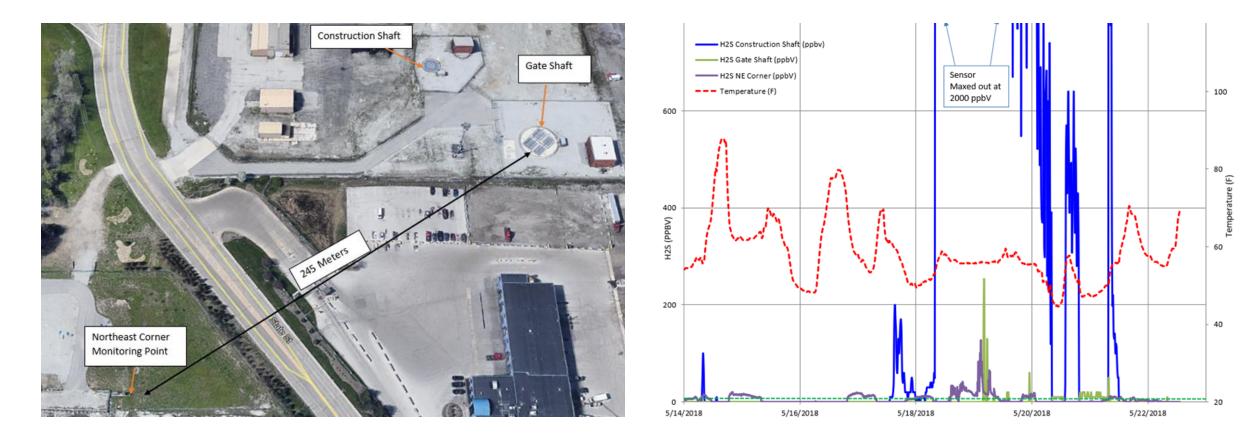
- Liquid and sediment sample collection only occurred for about a month
- Data collected was inconclusive due to limited data points
- Onsite liquid and sediment samples canceled for safety reasons

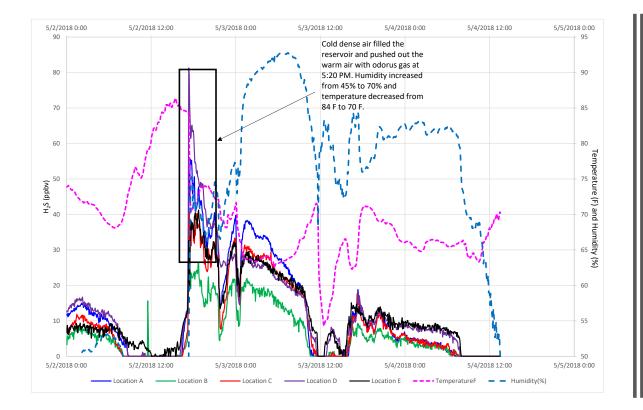

Sampling Issues

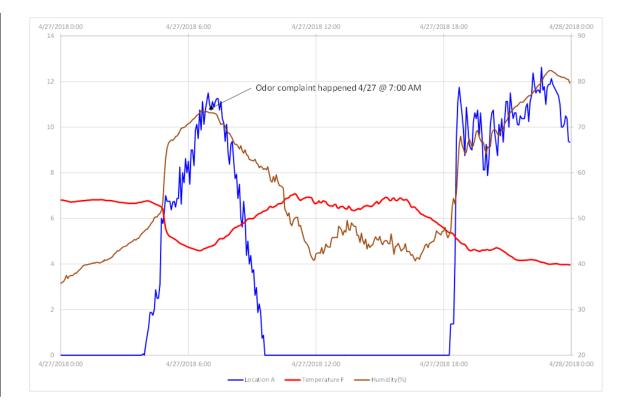

- Falling Ice/Rocks
- Confined Space
- Limited Rescue
- Wind
- Vandalism



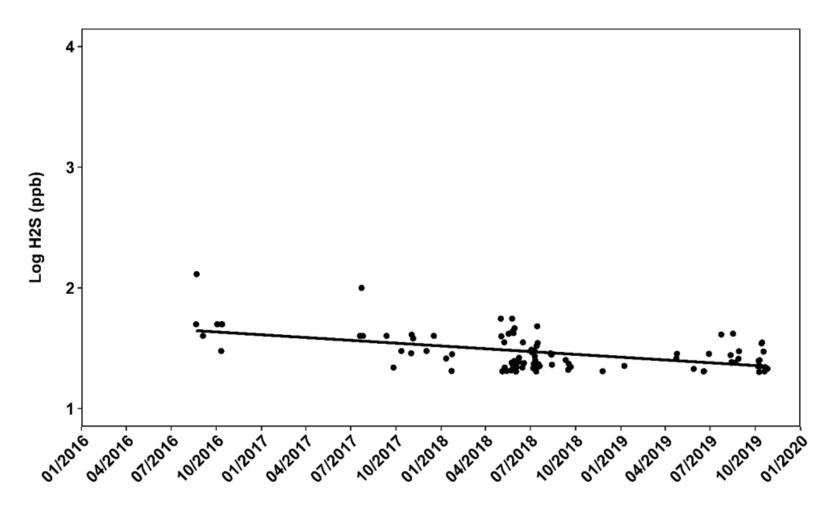
2 Distinct Odor Sources Identified


- Drop Shafts
 - Elevated readings with water movement
 - Localized and acute
- Primary Pool
 - More chronic reading
 - Larger area affected




Low Volume - Higher Levels from Tunnels

Influence from Tunnels to Pool



Debris and Pool Odor Over Time

Conclusions

- 2 Primary Sources of Complaints
- Tunnels are "easy" to fix
 - Temporary misting system
 - Carbon adsorption to be installed by 2022 as part of TTR decommissioning
- Primary Pool
 - Years of sediment in the tunnels were exposed to environment in 2015
 - Operational changes helped
 - Time was needed for system to stabilize
 - Odors complaints appear to be trending downward