

Metropolitan Water Reclamation District of Greater Chicago

Welcome to the October Special Edition of the 2020 M&R Seminar Series

NOTES FOR SEMINAR ATTENDEES

- All attendees' audio lines have been muted to minimize background noise.
- A question and answer session will follow the presentation.
- Please use the Q&A feature to ask a question via text.

Dr. Dongqi (Cindy) Qin

- Cindy Qin has been with the Metropolitan Water Reclamation District of Greater Chicago for over 11 years. She is a Senior Environmental Research Scientist in the Capital Planning, Wastewater Research and New Technology Section of the Monitoring and Research Department's Environmental Research and Monitoring Division.
- Cindy has a Bachelor of Science and Master of Science in chemistry from Jilin University, Changchun, China and received her Ph.D. in polymer chemistry and physics from Beijing University, Beijing, China. Prior to joining the District in 2009, Cindy worked on research projects at various universities in the U.S. and China.

Metropolitan Water Reclamation District of Greater Chicago

BIOLOGICAL PHOSPHORUS REMOVAL EFFORTS AT THE METROPOLITAN WATER RECLAMATION DISTRICT'S STICKNEY AND CALUMET WRPS

Dr. Cindy Dongqi Qin

October 16, 2020

Outline

- Overview
 - District Nutrient Efforts
- Understanding Phosphorus (P) Removal
 - Enhanced Biological P Removal (Bio P)
 - Chemical P Removal (Chem P)
- Stickney WRP P Removal Road Map
- Calumet WRP P Removal Efforts
- Findings and Next Steps
- Acknowledgements

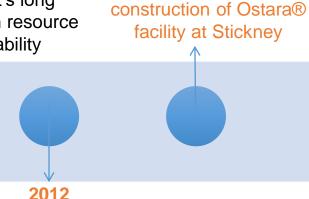
Phosphorus "Life Cycle": Current to Future

Wastewater Treatment

District Nutrient Efforts – Strategic Plan for Resource Recovery and Sustainability

2013

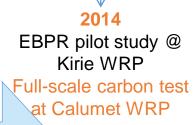
Converted all SWRP to


EBPR configuration

Awarded contract for

2011

Informed IEPA on steps:


- To biologically remove P using existing infrastructure
- Recover P where possible
- To work within District's long term strategic plan on resource recovery and sustainability

Formed a District-wide Phosphorus Task Force to study and implement of EBPR Full-scale test in one battery at the Stickney and Calumet WRPs

2011 – PRESENT

Actively participating in IEPA Nutrient Standards development

2016 P recovery facility

2015

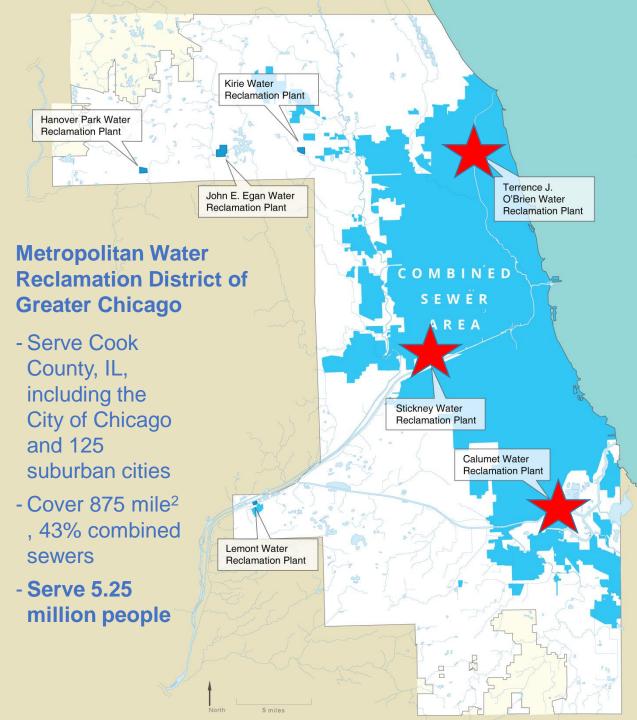
EBPR pilot study @

O'Brien WRP

Ostara® I/S @ Stickney WRP

2017

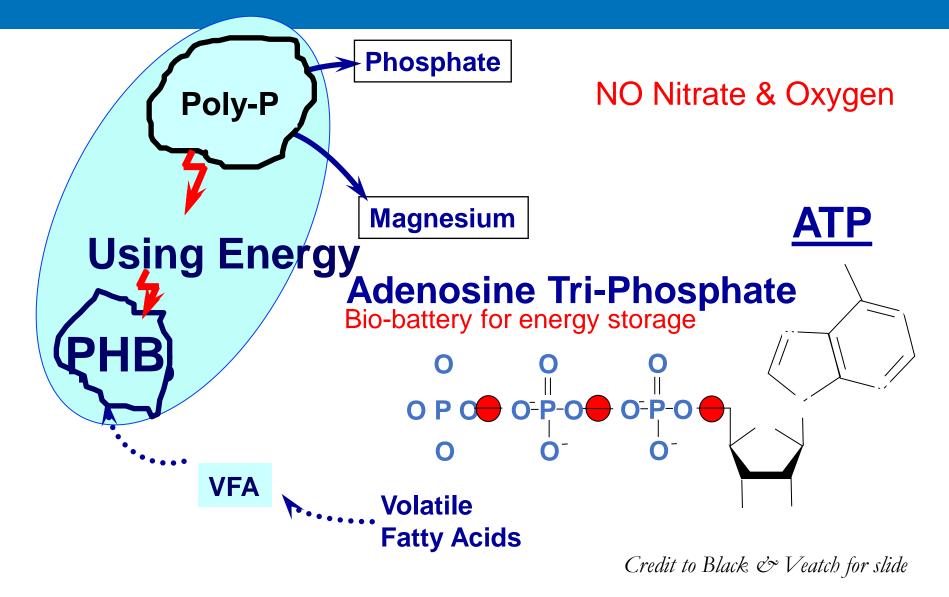
New NPDES


permits issued for

big three plants

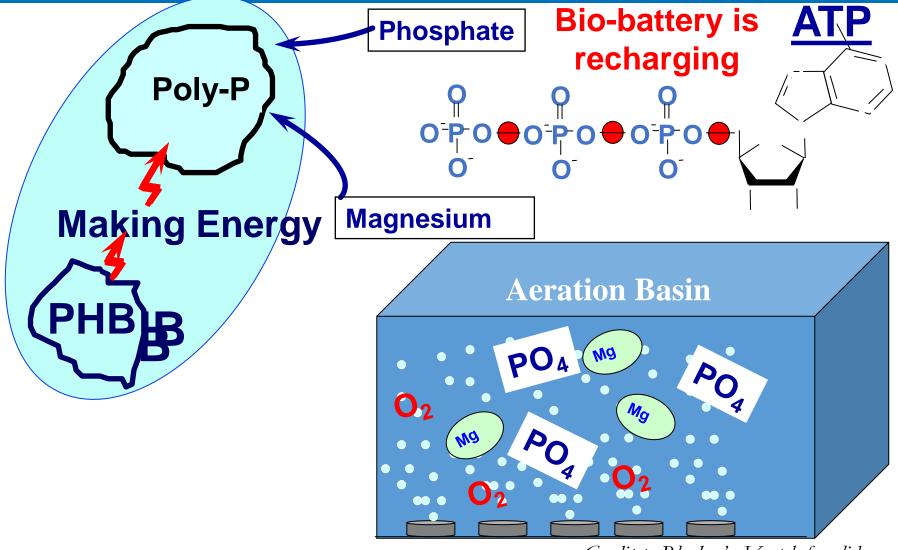
Big Three Phosphorus Permits

- NPDES permits
 - Big 3 plants (Stickney, Calumet, O'Brien) have finalized permits w/ compliance schedules
 - Required P feasibility study to identify methods and cost to meet the permit
- Avg. monthly of 1 mg/L TP in outfall
 - Stickney 49 months from 7/6/2017 → Aug 2021
 - Calumet 77 months from 8/1/2017 → Jan 2024
 - O'Brien 120 months from 8/1/2017 → Aug 2027
- Annual geomean of 0.5 mg/L TP in outfall by 2030


 Collection system: 554 miles of intercepting sewers and force mains fed by approximately 10,000 local sewer connections

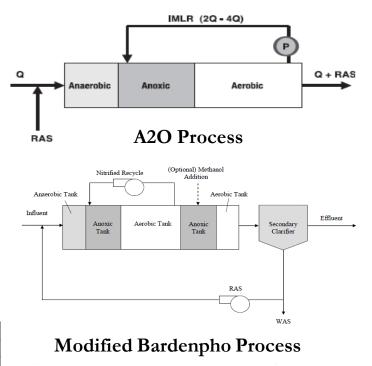
\leq

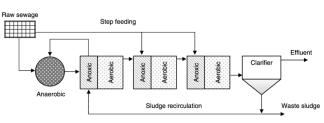
 Operate 7 WRPs and 22 pumping stations, handling daily flow of 1.4 billion gallons


Understanding Phosphorus Removal (Bio P vs Chem P)

Understanding Bio P Under Aerobic Conditions -Phosphate Uptake/ATP Production

Credit to Black & Veatch for slide

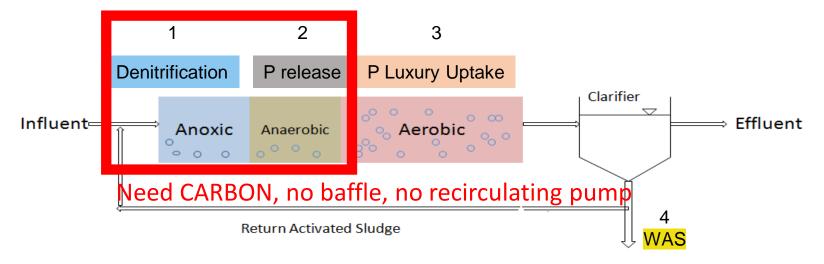

Traditional Bio P Processes and Infrastructure Needs


• Baffles

- Separation of zones
- · Allows for sludge blanket accumulation
- Mixers
 - To create truly anaerobic zone
 - To keep solids in suspension
 - To occasionally refresh the sludge blanket
- Recirculating Pumps

Process	Nitrogen Removal	Phosphorus Removal
MLE	Good	None
A ² /O	Good	Good
Step Feed	Moderate	None
Four-Stage Bardenpho	Excellent	None
Modified Bardenpho	Excellent	Good
SBR	Moderate	Inconsistent
Modified UCT	Good	Excellent
Oxidation Ditch	Excellent	Good

Source: Jeyanayagam (2005).



Modified UCT Process

- Bio P is a process cycling between Anaerobic and Aerobic zones
 - Anaerobic: uptake VFA and release Phosphate (ortho P)
 - Aerobic: luxury uptake ortho P and store energy

- 1. Denitrification: $NO_3 + carbon \rightarrow N_2$
- 2. P release: uptake VFA, release ortho P via the PAOs
- 3. P luxury uptake: uptake ortho P by PAOs
- PAOs settle out w/ other biomass in secondary clarifiers and removed from system → net removal from liquid stream

Chemical P Removal

- With addition of metal salts
 - Ferric chloride, ferrous sulfate
 - Alum
 - Lime
- Soluble phosphorus & soluble metal combine
 - insoluble precipitate forms (removed through sedimentation or filtration)

 $M^{+3} + PO_4^{-3} = MPO_4(s)$

• Using iron,

$$FeCl_3 + H_3PO_4 = FePO_4(s) + 3HCl_3$$

- Dosing
 - 1 mole of Fe reacts with 1 mole P
 - Typically, ratio of ~2 mole of Fe/mole P used
 - Results in 5.2 10.5 mg FeCl₃/mg P

Bio P versus Chem P

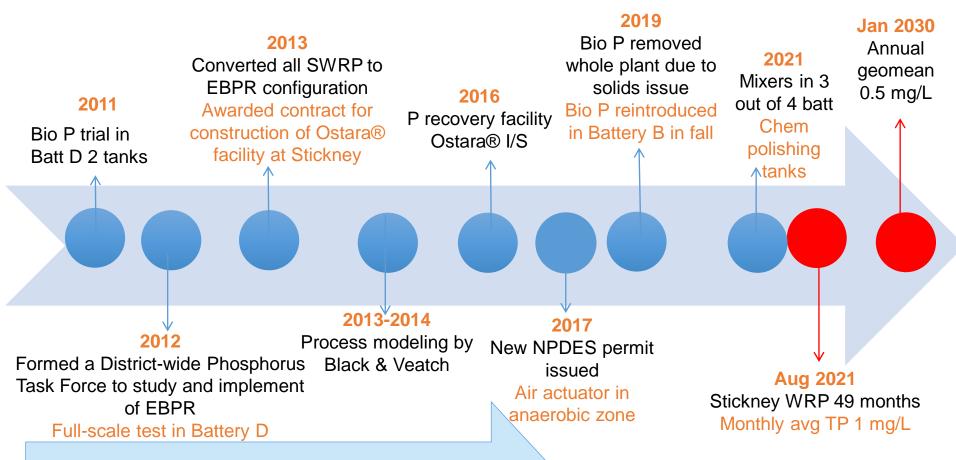
	BENEFITS	DISADVANTAGES	CAPITAL COSTS
Chem P	 Easy to implement Low capital costs Smaller footprint (little additional infrastructure) Reliable (no toxicity issues) 	 Increased sludge production (up to 25%) Unable to recover P from sludge Ongoing chemical costs Possible UV inhibition if overdosed w/ FeCl₃ Consumed alkalinity Increase MLSS Vivianite formation 	 Pumps Piping Chemical feed system Storage tanks Building (potentially) Additional sludge handling (potentially)
Bio P	 Less sludge production Less chem costs Can recover P Can be coupled w/ chem P Lower operational costs 	 More complex control Toxicity upsets Hard to dewater sludge Takes up nitfrication capacity Possible backmixing if no baffles Downstream struvite formation 	 Baffles Pumps Mixers Instrumentation

16

Stickney Water Reclamation Plant

- Serves 2.38 million people
- Flows:
 - Avg Design Capacity: 1,200 MGD
 - Average 2019: 827 MGD
- 4 aeration batteries
 - 8 tanks/battery
 - 4 passes/tank
 - 96 circular secondary clarifiers

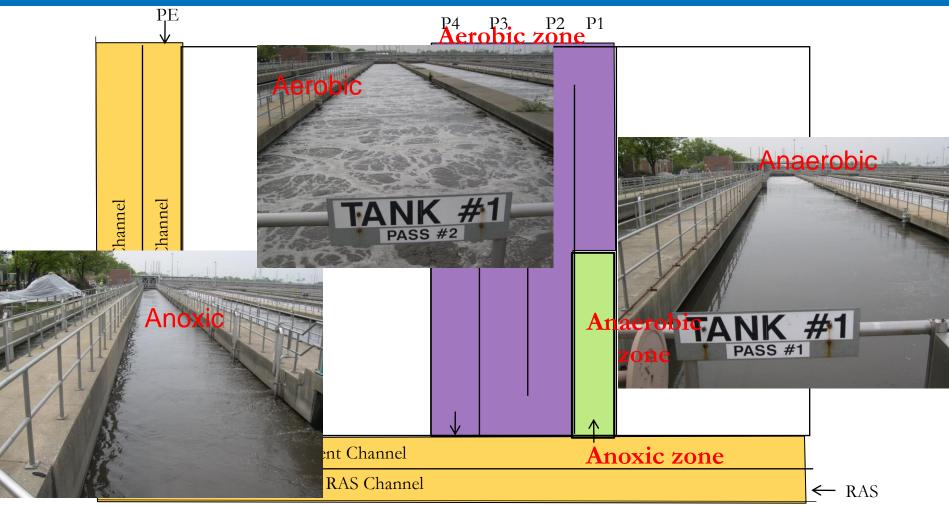
o Building


Battery B Battery A

Martine

Battery D Battery C

Stickney WRP Bio P Implementation Timeline

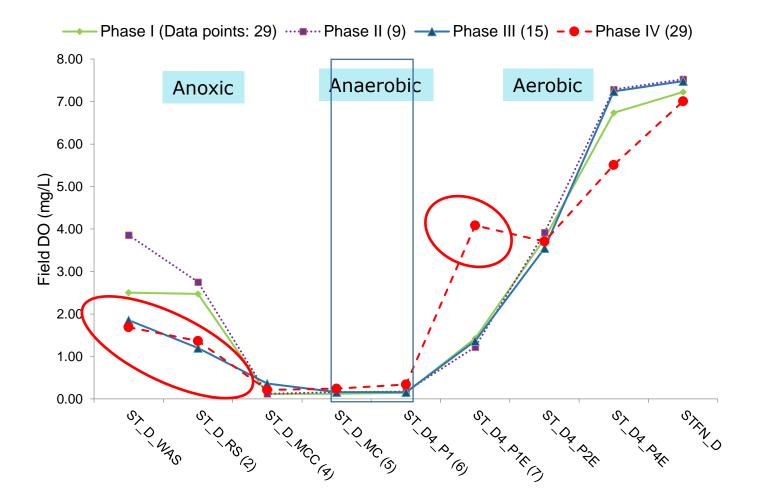


2011 – PRESENT

Actively optimizing bio P removal using existing infrastructure

Aeration Battery Conversion to Bio P at Stickney WRP

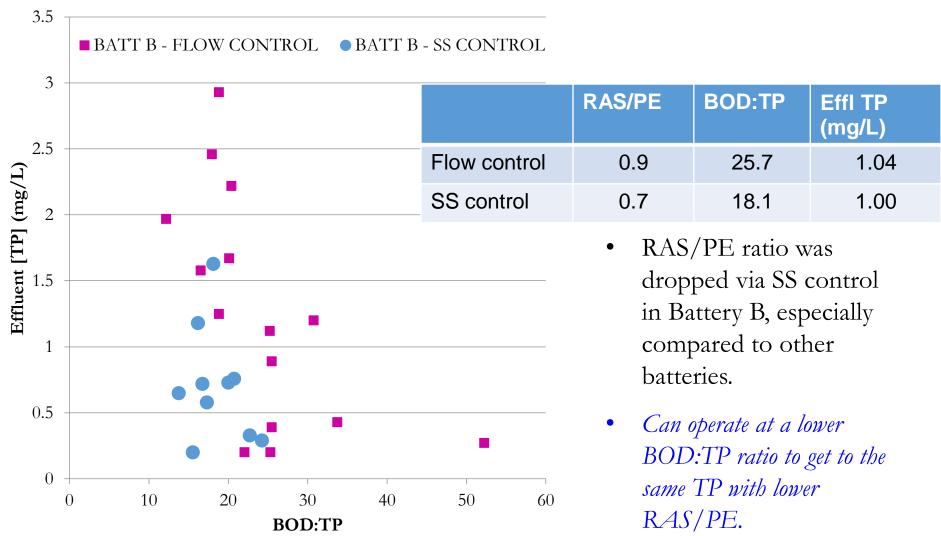
- •Using current air distribution system for mixing
- •No baffles
- •No recirculating pumps



Optimizing Operation Parameters for Bio P at Stickney WRP

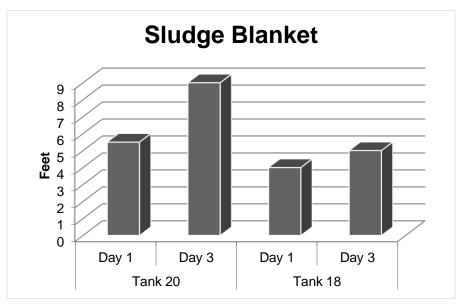
Phased approaches with controlled changes

- Air optimization
 - Create Anoxic/Anaerobic zones by closing air in RAS, influent and mixing channels and minimizing air in first half of pass 1s
- RAS flow reduction
 - Suspended solids control for air lifts to reduce RAS flow and subsequently minimize NO_3 and O_2 return
- Carbon optimization
 - —Holding primary sludge to generate VFA in preliminary settling tanks, however, this caused downstream sludge transfer issue
 - —Use less preliminary tanks to send more BOD to secondary, however, no correlation was found in improving P removal
 - -Resource Recovery Ordinance to bring high strength organic material in U
 - -Inline mixed liquor fermentation inconclusive 🖓
 - Rotating preliminary settling tanks in low flows to ferment primary effluent in preliminary tanks
- Control recycle streams in low flows

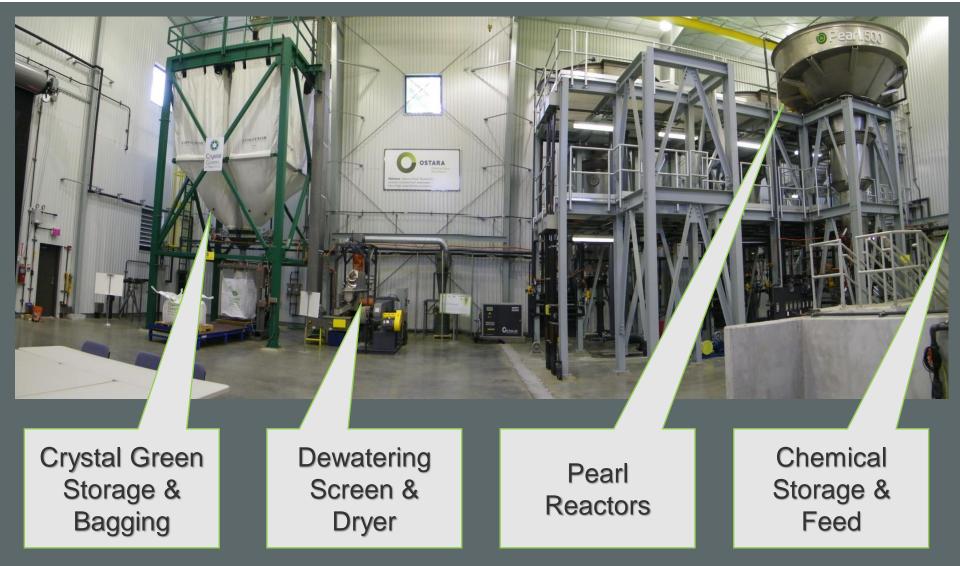

DO Monitoring Results During Pilot Test in Battery D

Phase I: Baseline Phase II: Minimize air in first half in pass 1 Phase III: Turn off air in channels Phase IV: Open up second half in pass 1

Control Return Sludge Flow via SS Control for Minimizing Nitrate Impact


Stickney Carbon Optimization for Bio P

- All carbon ratios indicate that SWRP is near the lower end of recommended ratios
 - BOD:TP ~ 24.5 (2014) vs. recommended > 25
 - rbCOD:TP ~ 11.5 (2014) vs. recommended 11-16
 - On daily basis, the process may be carbon limited about 50% of time.
- Prolonged periods of low BOD:TP have longer lasting impact
 - PAOs could be essentially starved over a period of insufficient carbon.
 - P release rates recover faster than uptake rates
 - Release rates recover within a day
 - Can take 3 days to recover orthoP uptake rates
 - May need BOD:TP to increase for a prolonged period to see recovery of system.


Preliminary Settling Tanks Rotation

- After 48 hours isolating preliminary tanks, carbon concentrations of primary effluent from tanks increased:
 - COD by 17% to 224%
 - solCOD by -10 to 161%
 - and VFA by 207% to 683%
- Sludge blanket in isolated prel tanks increased after 48 hours sitting time

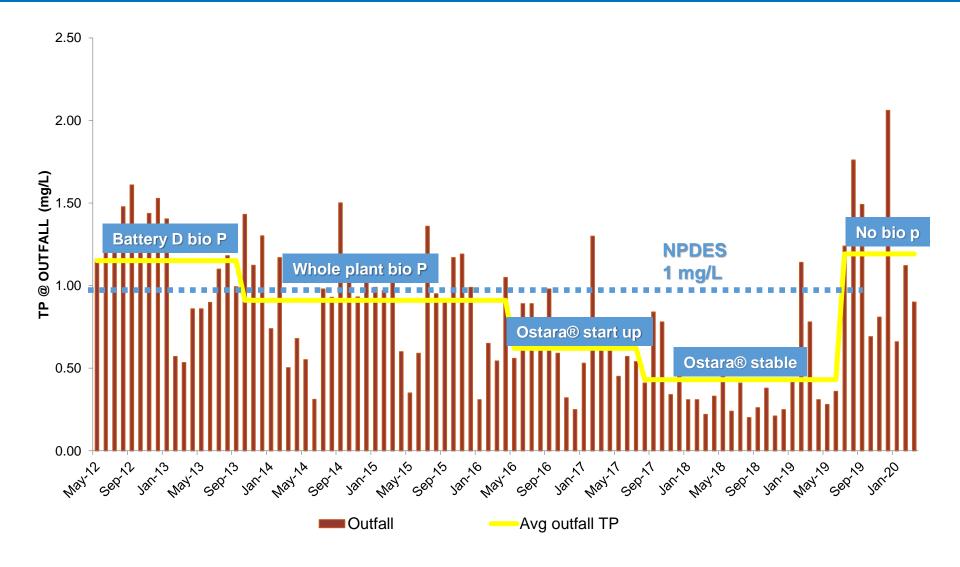
Complete Ostara System

Finished Product

High Purity (99.5% Struvite) 5-28-0 +10% - Slow Release Fertilizer Phosphorus | Nitrogen | Magnesium

- Enhanced Efficiency Fertilizer
- Reduces risk of nutrient run-off
- Sustainably made, with eco-friendly, high-performance benefits

COMPARISON OF MODEL OUTPUTS


Scenario		EFFLUEN	ТТР	RECOVER	ED TP
		mg/L	lbs/day	lbs/day	% of Inf TP
Baseline	Current configuration	0.6	3500		
Baseline_no Al	No Al or Fe in influent	1.5	8200		
Mod_Baseline	New Primaries, new GCT, and dedicated WAS thickening	0.9	5100		
Option 1	Post Digestion	0.6	3300	1900	9
Option 2	WASSTRIP and Post Digestion	0.3	1700	6300	28
Option 3	P recovery from LASMA	0.6	3600	2200	10
Option 4	Options 2 and 3 Combined	0.2	1400	7300	32

- 0.3 mg/L Effluent TP reduction w/ post-centrate recovered by Ostara® only.

Stickney WRP TP Removal - Monthly Averages

Operational Changes Made for Stickney Bio P

- Did not include
 - Baffles
 - Mixers
 - Use of existing air distribution for mixing
 - Recirculation pumps
- Optimizing existing infrastructure included:
 - Air input to all zones
 - Increased MLSS concentrations
 - Operating preliminary tanks to increase carbon loadings to Bio P process
 - Operating final tanks to minimize NO₃ load from RAS
 - Limiting P-loading variability by equalizing recycle stream flow and recovering P

Phosphorus Feasibility Study Summary – Stickney WRP

Technology Combinations For <u>0.5 mg/L</u>

- For annual average loadings: bio P + Ostara (partial) or bio P + PS fermentation
- For maximum month loadings: bio P only; however, nitrification with TARP flow could not be achieved in winter

Technology Combinations For <u>0.3 mg/L</u>

- For annual average loadings:
 - Combinations of bio P + WASSTRIP + Ostara + tertiary or + PS fermentation
- For maximum month loadings: TARP flow could not be accommodated in winter condition

Phosphorus Feasibility Study Summary – Stickney WRP Cont.

Technology Combinations For 0.1 mg/L

- For annual average loadings:
 - Combinations of bio P + tertiary + WASSTRIP + Ostara or + ferric in secondary and tetiary or + PS fermentation
- For maximum month loadings: TARP flow could not be accommodated in winter condition

Major Capital Projects to Meet Phosphorus Permit Limit at Stickney WRP

Contract #	Projects	Completion Years
11-195-AP	P-Recovery System (Pearl [®])	2016
15-122-3P	Actuation of Pass 1 Valves	2018
15-120-3P	WASSTRIP®	2018
15-124-3P	GCT Conversion to Fermenters	2019
19-157-3P	Mechanical Mixers in Pass 1	2021
19-159-3P	Chemical Polishing System	2021

Calumet Water Reclamation Plant

- Serves over 1 million people
- Flows:
 - Avg Design Capacity: 354 MGD
 - Average 2019: 308 MGD
- Full nitrification
- 5 aeration batteries
 - 48 aeration tanks
 - Conventional one or two passes/tank

A LINE MARKE

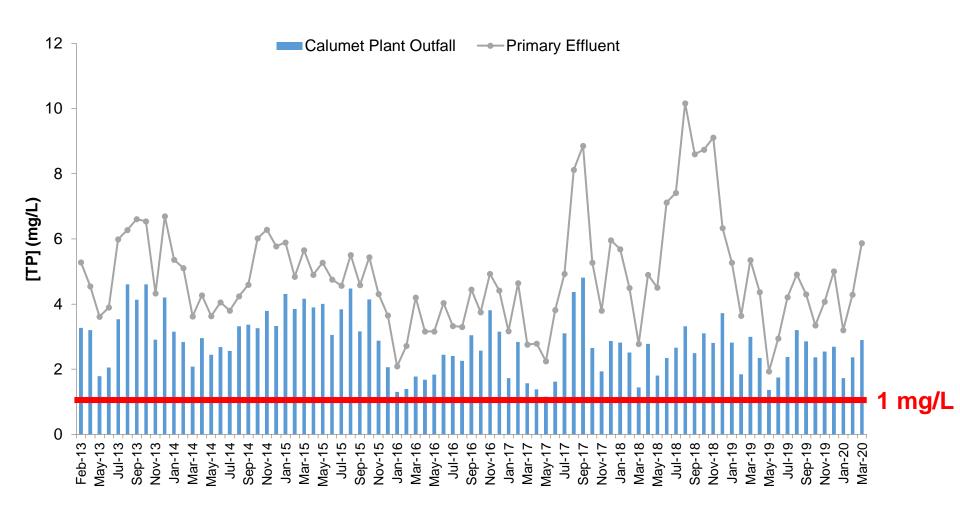
Primary Settling Tanks

Battery

TITLE .

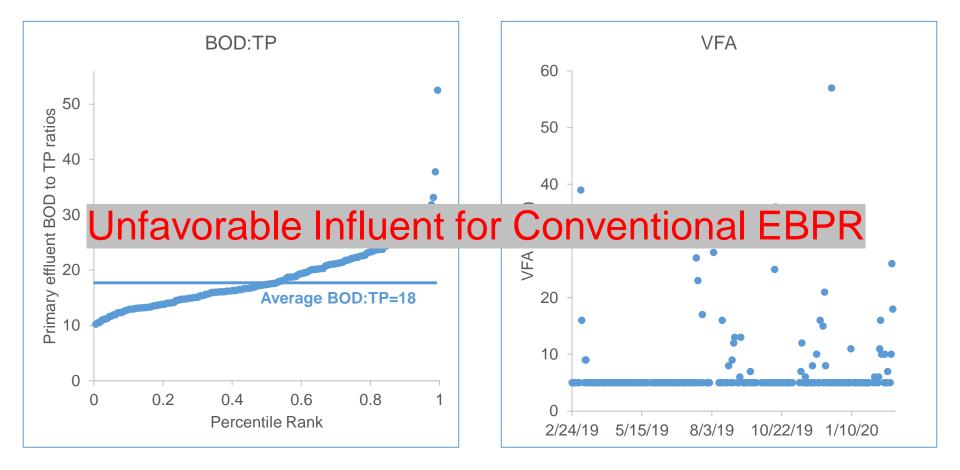
Battery E1

Battery E2

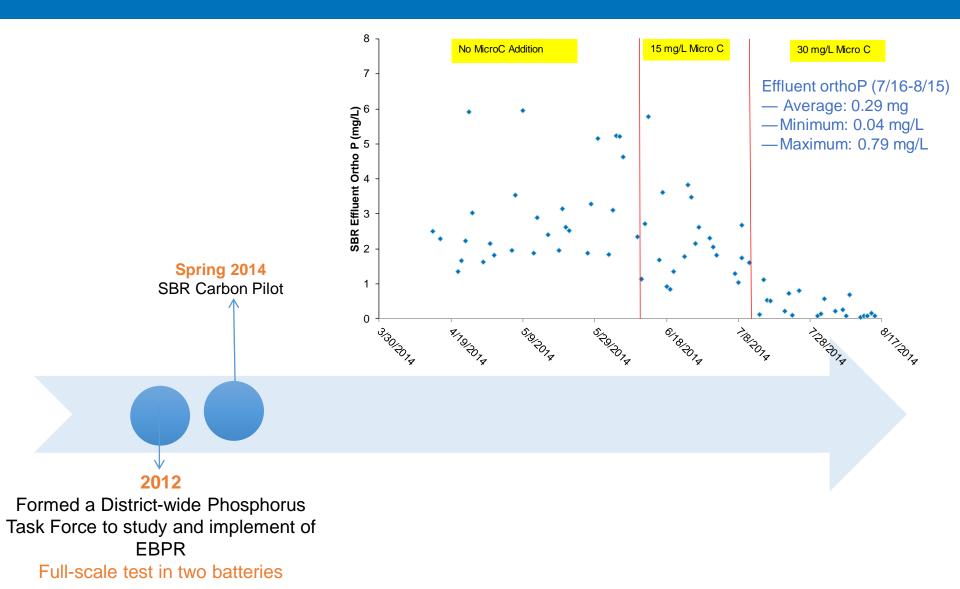

the second

- 52 circular secondary clarifiers

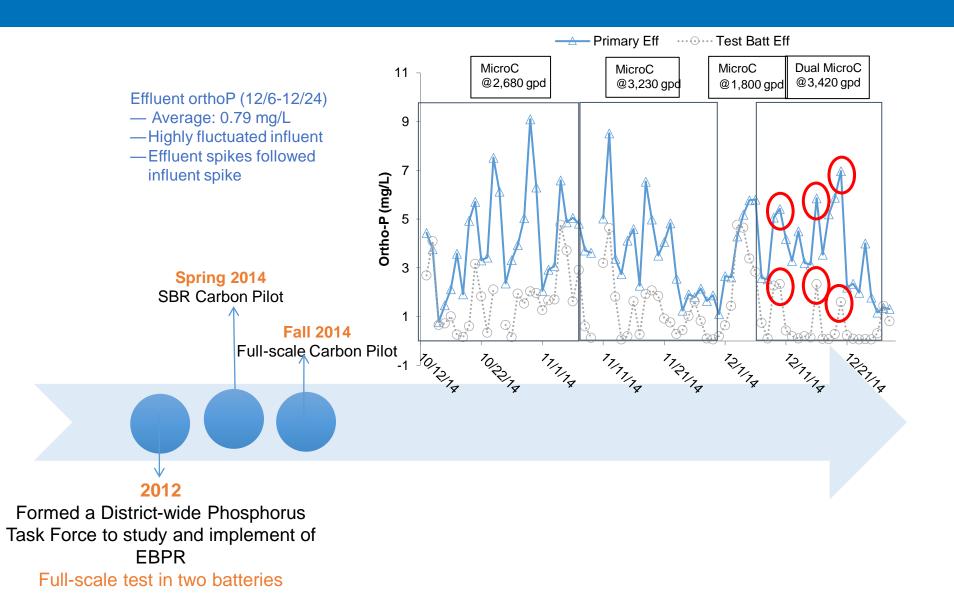
Battery A Battery B



Calumet Outfall and Primary Effluent Monthly Average TPs

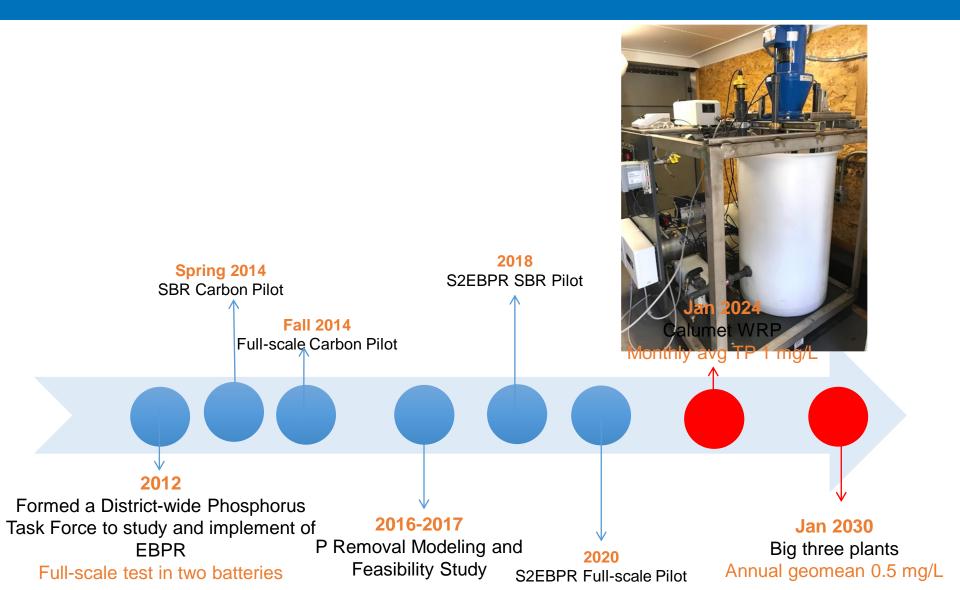

Low Carbon Primary Effluent

- 80% of the time below EBPR minimum BOD:TP requirement; similar observation in rbCOD:TP
- 77% of the time VFA concentrations below detection level

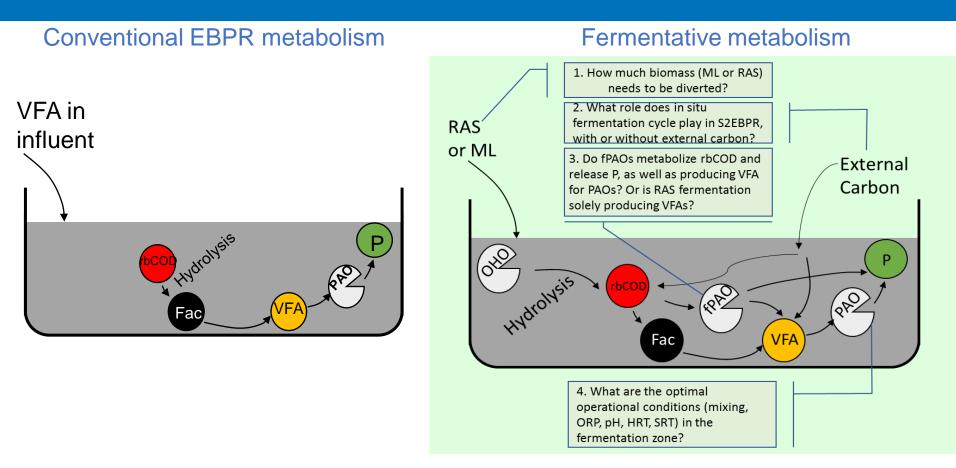


Calumet WRP P Removal Efforts

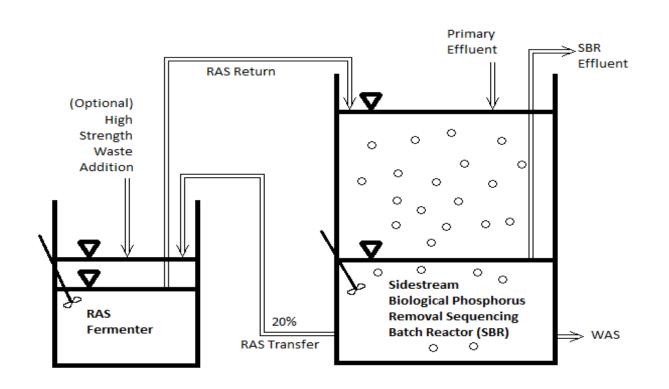
Calumet WRP P Removal Efforts



Calumet WRP P Removal Efforts


		Chemical	Biological (EBPR)		
	Alternative:	Alum	HSOM	HSOM + P Recovery	MicroC+ P Recovery
	Annual O&M (\$ millions)	5.7	0.7	0.9	7.1
	Capital Cost (\$ millions)	9.0	10.2	22.3	27.3
Spring 2014	Present Value (\$ millions)	112.3	22.9	38.8	155.6
SBR Carbon Pi				ficit: ecovery 200,00 ecovery 100,000	
2012 Formed a District-wide Phosph Task Force to study and implem EBPR Full-scale test in two batterie	ent of 2016-2017 P Removal Modeling				

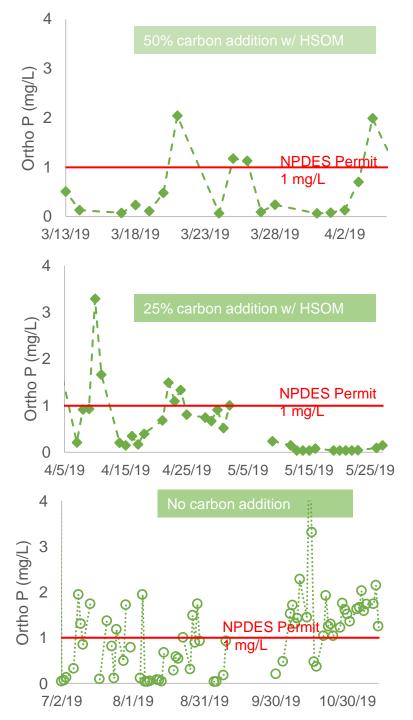
Calumet WRP P Removal Efforts


Motivations of using S2EBPR

- Stable anaerobic conditions reduce upsets
- Carbon production reduces reliance on influent characteristics
- Selective pressure leads to more effective use of carbon

Credit to Black & Veatch for slide

Schematic Sidestream Enhanced Biological Phosphorus (S2EBPR) Removal Process – Calumet Sequence Batch Reactor (SBR)

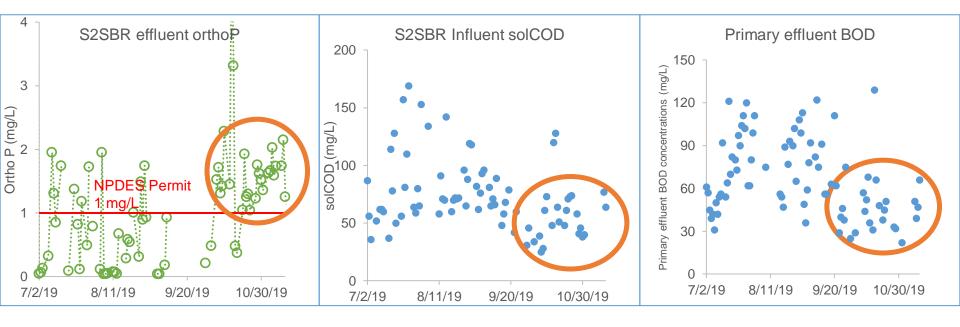

 S2EBPR process is a means for improving P removal performance as an alternative to adding large amount of external carbon source with low strength influent.

 Our goals are to overcome the challenge and meet the upcoming NPDES P permit in a sustainable way

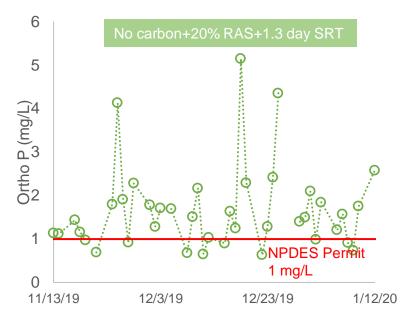
RAS fermenter

Main bio P reactor

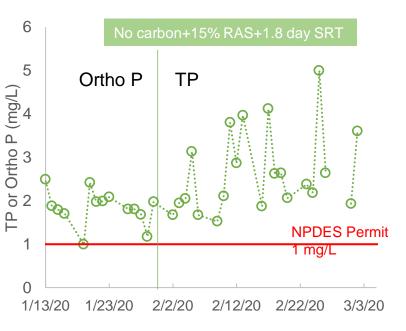
Calumet S2EBPR SBR Effluent Ortho P Concentrations (Scenarios #1,2&3)


- Biological P removal was successfully established with reduced carbon needs or possibly eliminating external carbon addition in SBR scale.
- More external carbon addition achieved higher average percent removal and stable operation

Test scenarios 20% RAS + 1 day SRT	50% carbon addition HSOM	25% carbon addition HSOM	No carbon addition
Stable operation periods	Mar 13 to Apr 4, 2019	Apr 7 to May 27, 2019	Jul 2 to Nov 12, 2019
Average effluent ortho P concentrations	0.55 mg/L	0.55 mg/L	1.07 mg/L
Ortho P removal	86%	81%	70%

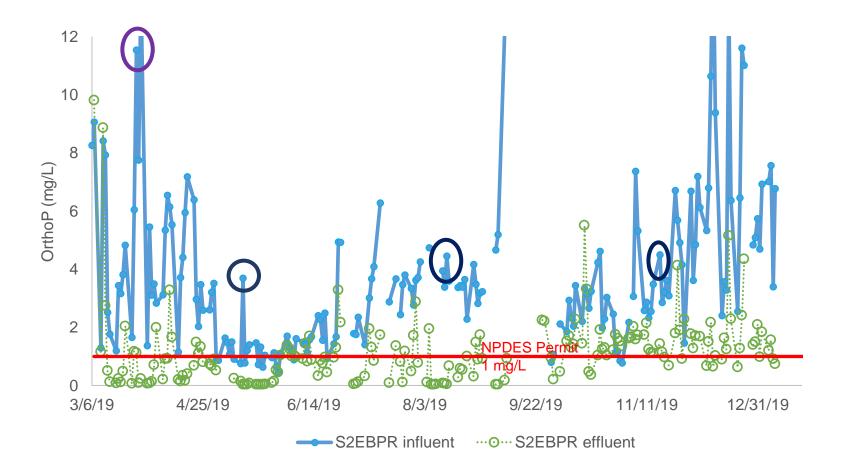

*data are excluded due to compressor failure and DO control failure; excluded 5/2-5/9/19,6/25-6/30/19,7/15-7/17/19/19, 7/22/19,7/30/19,8/15/19, and 9/10-9/29/19 data due to not aeration, no sludge transfer and autosampler w/ ML samples issues. No carbon addition scenario used data 7/2/19 and after with stable operation period.

S2EBPR SBR Effluent Ortho P and Influent Carbon During No Carbon Addition Scenario



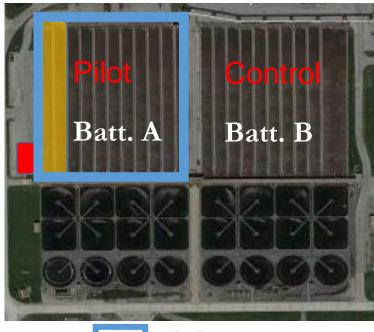
 Deteriorated performance might due to low influent carbon → insufficient carbon to ferment

Calumet S2EBPR SBR Effluent Ortho P Concentrations (Scenarios #4&5)


 Biological P removal was not improved by using larger fermenter volume and longer solids retention time.

Test scenarios	No carbon	No carbon	No carbon
	20% RAS+1 d	20% RAS+1.3 d	15% RAS+1.8 d
	SRT	SRT	SRT
Stable operation periods	Jul 2 to Nov 12,	Nov 13, 19 to	Jan 13 to Mar 13,
	2019	Jan 12, 2020	2020
Average effluent ortho P or TP concentrations	1.07 mg/L	1.66 mg/L	2.33 mg/L
Ortho P removal	70%	67%	52%

*data are excluded due to compressor failure and DO control failure; excluded 7/15-7/17/19/19, 7/22/19, 7/30/19 and 8/15/19 data due to not aeration and no sludge transfer issues. 0% scenario used data 7/2/19 and after with stable operation period.


○ S2EBPR can shave off influent P spikes

Full-scale S2EBPR Pilot Design S2EBPR Configuration and Construction Schedule

	RAS (w/ or w/o HSOM as carbon source)	
	Battery A	
RAS Flow	44 MGD	
Flow through Fermenter	8 MGD (~20% RAS)	
Target SRT	12 - 24 hours	
Volume Needed	4 mil gal	
Number of Tanks Utilized	2 tanks (425'x34.5'x15.5' = 1.7 mil gal)	
Notes	 Pump from open RAS channel to 2 tanks using submersible pumps with VFDs Use gates to block inflow and outflow to 2 tanks Installation of mixers Pump out of RAS fermentation tanks to PE channel HSOM as carbon source – could take from tank near Battery A No PS fermentation/fermentate 	

Construction start date 3/11/2020 Contract completion date 3/11/2021

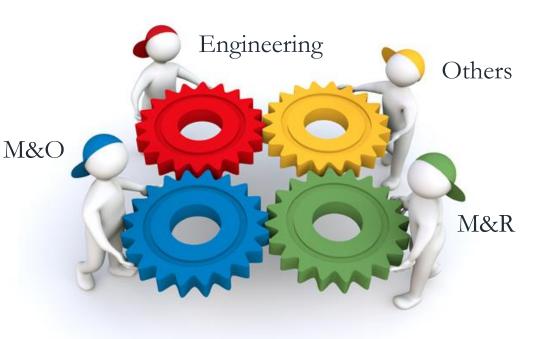
Phosphorus Feasibility Study Summary – Calumet WRP

Based on triple bottom line analysis, Chem P with ferric chloride is the recommended process for all treatment levels.

A phased implementation can be considered <u>if S2EBPR pilot</u> proven successful:

- To meet an effluent TP of 1.0 mg/L, 0.5 mg/L, and 0.3 mg/L: Chem P
- To meet an effluent TP of 0.1 mg/L: EBPR + S2EBPR + supplemental carbon + P recovery + cloth disk filters
 - More sustainable alternative if carbon can be generated from within the plant.

Findings and Next Steps


- Stickney WRP has completed biological phosphorus removal optimization with existing infrastructure.
 - More capital projects in place/ongoing to meet future stringent P permit
 - However, nitrification limitation due to TARP flow during maximum loading month in winter might be problematic
- Stickney WRP has re-converted all Batteries to bio P set up. Process optimization is ongoing but having some difficulties.
- Calumet WRP will be pilot testing S2EBPR in Battery A in an effort to reduce carbon needs to remove P in a sustainable way.
 - HSOM receiving station and possible primary sludge fermentation to provide carbon for better bio P performance
- Calumet WRP chemical polishing system is under design.
 - To consistently meet the upcoming P permit

Acknowledgements

Interdepartmental Phosphorus Task Force

Joe Cummings, **M&O** Brett Garelli , **M&O**, retired Pat Connelly, **M&O** Brian Perkowich, **M&O**, ED Tom Convey, **M&O**, retired Mwende Lefler, **Engineering** Glenn Rohloff, **Engineering** Catherine O'Connor, **Engineering** Joe Kozak, **M&R** Heng Zhang, **M&R**

Questions?

Identified Causes of Unstable Bio-P Performance at SWRP in Order of Importance

- 1. Carbon Limitations
- 2. Flow \rightarrow Low flow nitrate toxic and recycle stream contribution correlated with high TP
- 3. Solids deposition in first half of Pass 1s mixers to implement by 2021
- 4. Inconsistent Return Sludge Control
- 5. Biological Inconsistencies/Inhibition
- 6. Excess DO in Aeration Tanks or DO sags
- 7. Plant Shutdowns/Batteries O/S