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BEFORE WE BEGIN
• SAFETY PRECAUTIONS

– PLEASE FOLLOW EXIT SIGN IN CASE OF EMERGENCY EVACUATION
– AUTOMATED EXTERNAL DEFIBRILLATOR (AED) LOCATED OUTSIDE 

• PLEASE SILENCE CELL PHONES OR SMART PHONES

• QUESTION AND ANSWER SESSION WILL FOLLOW PRESENTATION

• PLEASE FILL EVALUATION FORM  

• SEMINAR SLIDES WILL BE POSTED ON MWRD WEBSITE             
(https://mwrd.org/seminars)

• STREAM VIDEO WILL BE AVAILABLE ON MWRD WEBSITE          
(https://mwrd.org/seminars - after authorization for release is arranged)
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Presentation Outline
• Background

• Summary of findings from WERF study

• Take-home messages

• On-going work and future directions



Current Challenges in EBPR Practice

• Increasingly stringent permits demand higher consistency 
and stability 

• Backup chemical systems often required
• Sporadic metal salt addition negatively impacts P recovery 

processes
• External carbon may be required to obtain desired C/P 

ratio; increases carbon footprint
• Carbon competition between N and P removal
• Compatibility with short-cut N removal processes and 

carbon recovery processes



Conventional EBPR Design

• Not true “Anaerobic” zone:  
• primary effluent and RAS through the anaerobic zone bring DO
• ORP level usually not supporting sufficient fermentation
• Negatively impact on EBPR- i.e. VFA competition by non-PAOs

• PAO/GAO competition: 
• limited VFA is being competed by both PAOs, GAOs 
• VFA composition and concentrations impact PAO/GAO competition
• Typically low VFAs, Ks-type of competition
• Less efficient carbon/VFA utilization by PAOs

• Influent-dependent (C/P ratio): 
• Susceptible to influent C/P and fluctuations 
• Unfavorable C/P, external carbon supplement



An Alternative EBPR Strategy  
S2EBPR benefits 

• Involve different, less influent carbon-
dependent population selection 
mechanisms;

• Reduced dependence on rbCOD, 
chemical use, and carbon footprint

• Potentially eliminate anaerobic zone
• Multiple, flexible process configurations
• Enhance denitrification

• Internal carbon-drive denitrification



S2EBPR Configuration 

What happens in the side-stream 
reactor holds the key of how 
S2EBPR works

Side-Stream RAS (SSR)



S2EBPR Survey- Four Configurations 
Side-Stream RAS plus Carbon (SSRC)Side-Stream RAS (SSR)

Unmixed In-Line Fermentation (UMIF)Side-Stream MLSS (SSM)

Gu et al., WERF report2019



S2EBPR Research Goals and Objectives
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Summary of S2EBPR Facilities Performance

Parameter South Cary Westside 
Regional

Cedar 
Creek Henderson

Configuration SSR SSRC SSM UMIF

Average Flow Rate 
(mgd) 5.5 2.6 3.0 20.9

Influent BOD:TP 
ratio 39 38.4 102 46.5

Secondary effluent 
OrthoP (mg P/L)

0.43 
(final effluent 

TP)
0.12 0.75 0.46

Effluent TP permit 
limit (mg P/L) 2 0.25 1.5 0.22

• Surveyed 4 S2EBPR facilities, compared to 5 conventional
• Data over 3-years statistical performance evaluation
• Kinetics analysis 
• Microbial ecology survey and comparison 

Gu et al., WERF report2019, Onnis-Hayden et al., WER, 2019



Performance Survey of S2EBPR
South Cary Westside Regional

Cedar Creek Henderson
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Cary
Westside 
Regional

Cedar 
Creek Henderson Conventional 

EBPR*
50th

percentile 0.28 0.04 0.82 0.32 0.26

90th

percentile 0.89 0.10 1.10 1.00 1.60

90th/50th

ratio 3.17 2.39 1.34 3.13 11.5

Gu et al., WERF report2019, Onnis-Hayden et al., WER, 2019



Mechanism 1:  RAS-fermentation and VFA production

Questions:

1. What conditions required for RAS- fermentation?
2. VFA production rates?
3. VFA composition?  



VFA production and composition in side-stream reactor

0 hour 6 hour 12 hour 18 hour 24 hour 36 hour

Residual 
sCOD
(non-VFA)

Acetate

Uptaken VFA

Propionate

Continuous VFA production 

Simultaneous VFA uptake by PAOs

Gu et al., WERF report2019



Mechanism 1:  RAS-fermentation and VFA production

Why VFA composition and production rate matter?

• PAO and GAOs have different kinetic rates 
towards different VFAs
• Higher propionate/acetate favors PAOs

• VFA feeding rates affect population selection
• Different PAOs, GAOs have varying Ks/Kmax

• More complex VFAs enrich for more diverse PAOs
• More robust EBPR activity with complex VFAs



Mechanism 2:  S2EBPRs Favors PAOs over GAOs

Questions:

1. What happens to PAOs in side-stream reactor?
1. Fate of PAOs? 
2. Genotype and phenotype of PAOs

2. What happens to GAOs?

3. How about other microorganisms (OHOs)?  



Mechanism 2:  S2EBPR Favors PAOs over GAOs

What happens to PAOs in side-stream reactor

1. PAOs stay alive for up to 48-72 hrs ( or longer) 

2. PAOs take up VFAs and produce PHAs at higher 
level than typical

3. EBPR activity increased overtime!



Mechanism 2:  S2EBPR Favors PAOs over GAOs

PAOs stay alive for up to 72 hrs
FISH results- measure “live” cells

Gu et al., WERF report2019



Mechanism 2:  S2EBPR Favors PAOs over GAOs

PAOs take up VFAs and produce PHA

Gu et al., WERF report2019



Mechanism 2:  S2EBPR Favors PAOs over GAOs

EBPR activity increased over time in side-stream 
reactor- optimal transit time point varies

S2EBPR

Gu et al.,  unpublished data



PAOs and GAOs abundance
South 
Cary

Westside 
Regional

Cedar 
Creek Henderson

Accumulibacter 6.4% 7.6% 6.2% 5.1%

Tetrasphaera 15.3% 18.1% 20.2% 19.7%

Known GAOs 0.7% 0.5% 0.3% 3.8%

• Accumulibacter and Tetrasphera were abundant in S2EBPRs
• Comparable relative PAOs abundances in S2EBPR and conventional;
• Low GAOs abundance of known GAOs with the exception of Henderson

Gu et al., WERF report2019, Onnis-Hayden et al., WER, 2019



Microbial diversity in S2EBPR plants is higher 
than those in conventional EBPRs
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Gu et al., WERF report2019, Onnis-Hayden et al., WER, 2019



Sequencing/Oligotyping reveals differences 
in Accumulibacter micro-diversity

• Community fingerprints show 
differences in A2O and 
S2EBPR if at finer-resolution 
level beyond 16s OTU

• Accumulibacter clades are 
different between S2EBPR 
vs Conventional.
 Potential kinetic 

differences between 
clades 

 VFA preference could be 
different

Srinivasan et al., We have posted a pre-print of this paper on the pre-print server bioRxiv
(https://www.biorxiv.org/content/10.1101/596692v1). (in review)

https://www.biorxiv.org/content/10.1101/596692v1


*Metagenomic analysis 
discovered new Accumulibacter
MAGs for full-scale EBPR

* One unique Accumulibacter
MAG associated with S2EBPR

*Comparison with other known 
Accumulibacter MAGs to reveal 
potential differences  

Genome-resolved Metagenomics of 
Ca.Accumulibacter in Full-Scale Facilities



Evidences of sequential polymer usage in PAOs- implications in decay and 
competition between PAOs and GAOs

Single cell Raman microspectroscopy reveals temporal trend of polyP and 
glycogen utilization in PAOs and GAOs
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Accelerated polyP usage after 24 hours,
Accompanied by cessation of glycogen 
utilization

Glycogen use in GAOs:
Quick glycogen utilization 
in 12 hours and stabilizes

Glycogen use in PAOs:
Stops after 24 hours
Implying depletion of 
available glycogen to PAOs

Gu et all, WERF report (2019), Li et al, unpublished



Mechanism 2:  S2EBPR Favors PAOs over GAOs
Competition among PAOs, GAOs, OHOs

PAOs stay alive, 
store PHA, 
eventually decay

Anaerobic incubation time
(in side-stream reactor)

OHOs decay 

PAO

GAOGAOs stay alive 
initially, then decay  

OHO

Fate of PAO, GAO and OHOs
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Mechanism 2:  S2EBPR Favors PAOs over GAOs

Competition among PAOs, GAOs, OHOs

New, different PAOs?
-- New sub-clades of Accumulibacter

Role of Tetrasphaera? 
- No statistical difference in abundance between
S2EBPR and conventional 

Unknown GAOs
- Lower abundance of known GAOs
- Unknown GAOs revealed by Raman

Other organisms of interest:  
--denitrifying PHA-accumulating organisms



Mechanism 3:  Phenotypic shifts in PAOs
S2EBPR leads to more PHA content at both individual cell 
and population level

Wang et al., Unpublished data

(PPB- PHA producing bacteria)Carbon type affects phenotypes



Mechanism 3:  Phenotypic shifts in PAOs
Biochemical Pathway Shifts??

Unpublished data

* S2EBPR processes appear to be associated with higher 
activity of the glycolysis pathway ((Lanham et al. 2013a, our 
study )

* South Cary, the only long-term running S2EBPR facility in 
the US with an SSR configuration seem to have higher level 
utilization of TCA cycle, which was later confirmed with 
agent-based model simulations 

* C/P ratio, C level and composition, availability of various 
intracellular polymers  all affect pathways activities



Mechanistic S2EBPR model

ASM2
(Henze et al, 2002)

Agent-based 
model

(Bucci et al, 2012)

+
S2EBPR Extension • Staged maintenance and 

decay
• Sequential polymer usage

• GAOs (Zeng et al, 2002)
• PHA+Glycogen

• Agent-based modeling

• OHOs 
• PAOs (Smolders et al, 1994)

• PHA+Glycogen+PolyP

Not Inherited:
• Inert organic substance/ 

fementation
• Nitrifiers and denitrifiers

Model development
Based on iAlgae and ASM2

Calibration
Data: Lu et al, 2007

8-day ana. starvation
(lab-scale)

Validation
Data: 36-hr ana.

(full-scale)

Application
Industrial model

(SUMO)

Evidences of sequential maintenance energy and polymers usage in PAOs 
and GAOs

Mechanism 3:  Phenotypic shifts in PAOs

Gu et all, WERF report (2019), Li et al, unpublished



How do we design S2EBPR?
Side-stream reactor
SRT

- Sufficient for RAS fermentation
- minimize methanogenesis
- Or shorter if supplement carbon/primary 

fermentation
- Issues or benefits of excessive carbon?

HRT
-Optimization of PHA accumulation
-Give PAOs advantages over others 
- Need optimization assessment tools (practical tool 

kits)
Mixing

- Decouple SRT and HRT
-Any sludge settling and odor issues?



How do we design S2EBPR?
Some experiences..

• At present no verified models are available for design 
which must be based on experience

• Divert at least 10% of RAS to side-stream fermenter
• Side-stream reactor HRT of 12-48 hrs
• Add primary sludge gravity thickener overflow (gto) if 

available
• Without gto allow for 1.5 day to 2 day SRT in fermenter
• Pass fermenter effluent to anoxic zone
• Size of fermenter could be reduced by switching off 

mixers for most of the time which will allow for 
thickening of sludge to at least 1%
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On-Going and Future work

Develop detailed design manual for S2EBPR
-- WRF project Led by BV and Cornell 

Establish S2EBPR models for full-scale plants
-- Part of the efforts for the WRF project above

Provide practical optimization/diagnostic tools and 
manual 

-- Standardized EBPR assessment protols

Compatibility with AB stage, short-cut N removal 
processes

- WRF project on-going
- For carbon recovery and C-foot reduction



On-going WERF project-background

The economic efficiency of the A/B process can be improved by adapting High-
rate activated sludge (HRAS) and Partial Nitritation/Anammox (PN/A) processes2,3

A-Process : HRAS
- Maximum removal and redirection of organics for 

energy generation using anaerobic sludge 
digestion

- SRT, HRT and DO control for max sludge generation

B-Process : PN/A
- Ammonia-based cyclic aeration control (Low DO) 
- Simultaneous nitrification and denitrification (SND)
- NO2 accumulation by AOB selection and NOB 

repression; N removal by Anammox MMBR

The increasingly stringent limits imposed on wastewater effluent P demand for 
more reliable and better optimization P removal processes.

1Jimenez et al., 2015. Wat. Res., 87, 476-482; Regmi et al. 2015, Biotechnol. Bioeng., 122(10), 2060-2067

Can we push the limits even further and achieve economical process for 
C, N, P removal?



On-going WERF project
Overall Objective

• Investigate the feasibility and mechanisms involved in a novel implementation of S2EBPR 
processes in combination with shortcut N-removal processes to enable simultaneous N removal 
and P removal. 

Goals

• Investigate the microbial ecology and fundamental mechanisms involved in the integrated nitrite 
shunt/deammonification and S2EBPR Process

• Develop initial design criteria and process control strategies for integration of S2EBPR with 
Shortcut N-Removal processes

• Incorporate fundamental insights into model framework to establish agent-based mechanistic 
and practical full-scale process models to facilitate process design and optimization
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