The Metropolitan

Water Reclamation District

of Greater Chicago

WELCOME TO THE DECEMBER EDITION OF THE 2017 M&R SEMINAR SERIES

BEFORE WE BEGIN

- SAFETY PRECAUTIONS
 - PLEASE FOLLOW EXIT SIGN IN CASE OF EMERGENCY EVACUATION
 - AUTOMATED EXTERNAL DEFIBRILLATOR (AED) LOCATED OUTSIDE
- PLEASE SILENCE CELL PHONES OR SMART PHONES
- QUESTION AND ANSWER SESSION WILL FOLLOW PRESENTATION
- PLEASE FILL EVALUATION FORM
- SEMINAR SLIDES WILL BE POSTED ON MWRD WEBSITE (www. MWRD.org: Home Page ⇒ Reports ⇒ M&R Data and Reports ⇒ M&R Seminar Series ⇒ 2017 Seminar Series)
- STREAM VIDEO WILL BE AVAILABLE ON MWRD WEBSITE (www.MWRD.org: Home Page ⇒ MWRDGC RSS Feeds)

Louis V. Storino, P.E., BCEE

Current: Principal Civil Engineer, Engineering Department, MWRD

Experience: Being in the Engineering Department, Collection Facilities/ Tunnel and Reservoir Plan (TARP) Section, Mr. Storino supervises a staff of five engineers, conducts engineering studies and analysis. He has been with MWRD since 1998 and has held numerous positions in both the Maintenance and Operations Department (M&O) and the Engineering Department.

Education: B.S. in Chemical Engineering and M.S. in Environmental Engineering, both from the Illinois Institute of Technology, Chicago, Illinois MBA in Finance from DePaul University, Chicago, Illinois

Professional: Registered Professional Engineer in Illinois Board Certified Environmental Engineer by AAEES Member of the Water Environment Federation (WEF) Treasurer of the Illinois Water Environment Association (IWEA)

Katarzyna (Kathy) Lai, P.E.

Current: Principal Engineer, Operations Manager, John E. Egan WRP, M&O, MWRD

Experience: - Operations Manager at the Egan WRP, managing both waste water treatment and solids operations including biosolids processing and sidestream treatment (ANITA[™] Mox).

- Senior Mechanical Engineer North Side WRP (now O'Brien WRP). Responsible for managing the mechanical maintenance of equipment within the plant and at the outlying locations.

- Associate Mechanical Engineer, at Calumet WRP. Responsible for mechanical maintenance of the plant equipment within the areas of responsibility.

Education: B.S. in Chemical Engineering, University of Illinois at Chicago, Illinois

Professional:Water Environment Federation (WEF)Illinois Water Environment Association (IWEA)

Dongqi (Cindy) Qin, Ph.D.

Current:Environmental Research Scientist, Wastewater Treatment ProcessResearch Section, M&R, MWRD

Experience: Wastewater treatment process research and development (2 WEF conference proceedings)

- Sidestream deammonification for nitrogen removal

- Enhanced biological phosphorus removal pilot and full-scale tests Applied chemistry (24 peer reviewed journal papers; citations 1,820 times)

- Formulation of new biomedical materials
- Organic/environmental samples analyses with various instruments

Education: Ph.D. (Chemistry), Beijing University, China
 M.S. (Chemistry), Jilin University, China
 B.S. (Polymer Chemistry and Physics), Jilin University, China

Professional: Water Environment Federation (WEF) American Chemical Society (ACS)

Metropolitan Water Reclamation District of Greater Chicago

ANITATM Mox Startup and Optimization at the Egan Water Reclamation Plant

Presented By

Kathy Lai, PE Cindy Qin, PhD Louis Storino, PE Principal Civil Engineer, Principal Engineer, M&O **Environmental Research** Scientist, M&R Engineering III MILLANDARDARDARDARD Can Mari

Acknowledgements

Engineering

- Kevin Fitzpatrick
- Brian Wawczak
- Meagan Matias

<u>M&R</u>

- Heng Zhang
- Joe Kozak
- Rachel Ryan

<u>Kruger</u>

- Meg Hollowed
- Glenn Thesing

Operators and Plant Staff

- Hitesh Shah (Plant Manager)
- John Kargbo
- Kent Anderson
- Adam Johnson
- April Browing
- John Alkovich
- Keith Myrda
- Kenneth Massey
- Dev Rijal

- Jeffery Simpson
- Kenneth Gavin
- Maurice Smith
- Vit Riew
- Mary Brand *
- Many more!

*Retired

Outlines

- Egan WRP
- NPDES Ammonia Limits
- Deammonification Process
- AnitaTM Mox Design Summary
- Process Overview
- Startup
 - Operation
 - Monitoring and Process Control
 - System Improvements
 - Data and FISH (Fluorescence In Situ Hybridization)
- Lessons Learned
- Conclusions

John E. Egan WRP

- Service Area: 44.4 square miles
- Service Population: 160,735
- •Type: Single Stage Nitrification with Tertiary Filtration and Disinfection
- Design Average Flow: 30 MGD 2016 Average Flow: 24.2 MGD
- Design Maximum Flow: 50 MGD Storm Flow Total: 140 MGD
- Receiving Stream: Salt Creek

NPDES Limits Ammonia-Nitrogen

	Load	d Limits – lb DAF (DMF)*	os/day	Con	centration mg/L	Limits	Sample Frequency
	Monthly Average	Weekly Average	Daily Maximum	Monthly Average	Weekly Average	Daily Maximum	Composite Sample
April-Oct.	375 (626)		751 (1 , 251)	1.5		3.0	2 days/week
NovFeb.	901 (1,501)		2,002 (3,336)	3.6		8.0	2 days/week
March	575 (959)	1426 (2377)	2,002 (3,336)	2.3	5.7	8.0	2 days/week

* Load limits based on design maximum flow shall apply only when flow exceeds design average flow

Partial Nitritation-Deammonification

Moving Bed Biofilm Reactor

Challenges

- Slow growth rate of anammox bacteria
- Exceeding mainstream capacity
- Alkalinity or micronutrient limitation
- Centrate availability
- Inhibiting NOB
- Temperature

- Prior operation at Egan required centrate to be pumped from the Egan WRP to the O'Brien WRP for treatment. Centrate had up to \sim 45% of plant N load.
- The ANITATM Mox project it reduces the ammonia load (~by 75%) in the return of the plant's centrate to the secondary treatment process will possibly allow the Egan mainstream secondary process to treat the ANITATM Mox effluent and residual untreated centrate at the facility.
- Project plans to eliminate the pumping of centrate from the Egan WRP to the O'Brien WRP, a distance of ~17 miles.
- The installation was using the existing infrastructure:
 - Retrofit thickener tanks
 - Aeration demand provided by the plant's existing blower capacity

ANITATM Mox Design Summary

pH, DO, NH3/NO3

ANITA Mox Reactors

Credit to Kruger for slide

TO HEADWORKS

Credit to Kruger for slide

ANITATM Mox Centrate Treatment (construction photo) at the Egan WRP.

10

Closer look at the reactor interior, mixers, air grid and effluent screen

3 3

-Conterna

2.3

J #1

- Typical startup estimated to take approximately 14 weeks
- Seeded media installed in two separate events a week apart
 - August 17, 2016 and August 24, 2016
 - Egan system used 10% seeded media, remainder 90% new media
 - 50 cubic meter bags of seeded media
 - 450 cubic meter bags of new media

Pre-startup: New media conditioning Startup process:

- 1. Batch
- 2. Intermittent
- 3. Continuous at low flow rates (80 gpm) and increasing
- 4. Continuous at design rates

Loading Seeded Media Into Reactors

Loading Seeded Media Into Reactors

Three stages of startup

- Initial Startup
 - August 26, 2016 December 22, 2016
 - Achieved 120 gpm for 7 days
 - Average flow 44 gpm
- Standby Period
 - December 23, 2016 August 2017
 - System placed in idle 29 days (10 day max cont)
 - Maintained low flow (avg 13 gpm)
- Secondary Startup
 - August 2017 Present
 - Currently at daily flow of ~80 gpm on weekdays (50% of design flow)
 - Expect to reach design rate at end of March 2018

Startup process interruptions resulting in on-going startup:

- Dewatering building operations Monday thru Saturday (utilize Equalization Tank volume on weekends)
- Blower baghouse maintenance blower/plant shutdowns (Fall 2016)
- Primary Digester contract work, loss of ability to make Class B biosolids
 - Mid December 2016 Centrifuge operation limited to once per week, sufficient to fill EQ tank and support minimum feed to ANITATM Mox
- Dewatering process equipment issues following contract work to upgrade facility and extended equipment outage (centrifuge fail, conveyor fail)
- Plant secondary treatment upset (September 2017), current winter start-up conditions, and no centrate treatment on-site prior to ANITATM Mox

Egan ANITATM Mox Media Progression

Treatment Plant Operators collect samples

- Daily samples for process control analyzed in TPO lab
 - Ammonia-N, Nitrate-N, Nitrite-N, pH, and Alkalinity
 - TPOs make process corrections and adjustment based on results
- Samples also submitted to District Analytical Lab Division (ALD) for similar and additional analyses and reporting – 3 to 5 times per week depending on parameters

- Daily sample results and 24-hr DCS trend data forwarded to the team consisting of Egan M&O operators, Kruger, and District Engineering and M&R staff
- Initially, process change recommendations provided by Kruger
- Currently, all process changes initiated by District operators, Kruger reviews results and trends and provides input as needed
- Process very robust: daily samples are sufficient for monitoring;
 once startup completed and stable operations established, daily sampling will be reduced to fewer weekly samples
- Process very robust: with centrifuge outages and the very low flow operations, system responds well when returned to continuous operation

Monitoring DCS Trends & Bench Sheets

AM Reactor 2 - HSR

11/19/2016 12:00:00.000 AM					
E55AIT5200A.UNIT0@NE REACTOR 2 AMMONIA-N	146.783	MG/L	Scale:	400	50.000 Actual Value
E55AIT5200B.UNITO@NE REACTOR 2 NITRATE-N	106.504	MG/L	Scale:	200	0.000 Actual Value
E55AIT5205.UNIT0@NET0 REACTOR 2 TEMPERATURE	87.820	DEGF	Scale:	120	32.000 Actual Value
E55AIT5202.UNIT0@NET0 REACTOR 2 PH	6.411	PH	Scale:	10.000	3.000 Actual Value
E55AIT5201.UNIT0@NET0 REACTOR 2 DO	0.105	MG/L	Scale:	3.000	0.000 Actual Value
E55FIT5203.UNIT0@NET0 REACTOR 2 AIRFLOW	0.527	SCFM	Scale:	800	0.000 Actual Value
E55FIT5053.UNITO@NET0 EQ CENTRATE TO FLOC FL	119.871	GAL	Scale:	350	0.000 Actual Value

Disco Besching Result Probe Disco Southing Result Probe Disco Result Probe Result <th>Date</th> <th></th> <th>R</th> <th>eactor #</th> <th>1 Are a</th> <th>S PF</th> <th colspan="3">Reactor #2Nic ON</th> <th colspan="4">Reactor #3 A iz OAI</th> <th colspan="4">Reactor #4 A fr o FF</th>	Date		R	eactor #	1 Are a	S PF	Reactor #2Nic ON			Reactor #3 A iz OAI				Reactor #4 A fr o FF					
TPO NH3-N [11.5] [1.6] 11.4 11.3 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3	Time		Diston	Reading	Result	Probe	Dilution	Reading	Result	Probe	Bildan	Beat OK	Result	Probe	Dilution	Reading	Result	Probe	
NO2.N I 4488 438 1.38 1.444 1.653.553 NO3.N 1.1.9 5.34 534 50.6 1.1.9 5.33 50.2 1.1.9 4.1.2 41.2 51.3 1.1.0 4.7.2 41.2 51.3 51.4 51.4 51.4 51.5 51.5 51.4 51.4 51.4 51.4 51.5 51.5 51.5 51.4 1.1.0 41.2 41.2 51.3 51.4 41.2 51.5 51.4 1.1.0 41.2 51.4 41.2 51.5 51.5 51.4 1.1.0 41.7 41.7 41.7 51.5 51.5 51.4 1.1.0 41.2 51.5 51	TPO	NH3-N	1:10	11.6	116	175	1:10	14.1	141	130	1:10	11.8	118	190	1:10	12.7	127	169	
MOANT 1110 5.34 53.4 50.6 1110 5.33 56.2 1110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 4.12 41.2 59.3 110 130	0.50	NO2 N	I	.488	.458		1	1.38	1.38		1	1.44	1.44		1	,553	,553		
ALC 1 23,9 1 45,4 45,4 1 23,9 1 13,6 13,6 750 armp 83,3 83,3 83,3 87,2 85,2 85,2 76 armp 83,3 6,34 6,34 6,34 6,34 7,99 6,35 6,35 76 armp 23,9 1 13,0 14,0 <td< td=""><td>141213</td><td>NCR-N</td><td>1:10</td><td>5.34</td><td>53,4</td><td>80,6</td><td>1:10</td><td>5.83</td><td>58.3</td><td>86.7</td><td>1:10</td><td>4.12</td><td>41.2</td><td>59.3</td><td>1:10</td><td>4.78</td><td>47.8</td><td>51,4</td></td<>	141213	NCR-N	1:10	5.34	53,4	80,6	1:10	5.83	58.3	86.7	1:10	4.12	41.2	59.3	1:10	4.78	47.8	51,4	
Temp 83.3 87.2 85.2 JA Arino 0.497.4074120041200412004120041200412004120041		ALC	1	23,9	23.9		1	45.6	45.6		2	139	239	1.212	1	136	136		
J*A OF C.4.4.1 C.1.5 G.3.4 G.3.2 C.4.4 7.9.9 G.3.5 C.5.4 N/11*0 0.4 ppm / 40 m / 2004f .4 ppm / 2004f	750	Temp	83.	8		Call Street	83	1.3		ANSTRO DE	87	.2			82	12	100		
Air Info 0.4 yr 1.4 or M 1.2004F .4 yr .4 yr 1.5 or M 1.2004F .4 yr 1.0004F INFL NB2N NO2N NO3N Alkalinity InFL NB2N NO2N NO3N Alkalinity InFL NB2N NO2N NO3N Alkalinity InFL Infl ND2N NO3N Alkalinity InFL Infl ND2N NO3N Alkalinity Infl ND2 ND2N NO3N Alkalinity Infl Infl Infl Infl Alkalinity Infl Reactor #1, jr off Reactor #2, ir.off Reactor #3, ir.off Reactor #4, ir.off Date Reactor #1, jr off Reactor #2, ir.off Reactor #3, ir.off Reactor #4, ir.off Date Reactor #1, jr off Reactor #2, ir.off Reactor #3, ir.off Reactor #4, ir.off Date Reactor #1, jr off Reactor #2, ir.off Reactor #3, ir.off Reactor #4, ir.off Date Reactor #1, jr off Reactor #2, ir.off Reactor #3, ir.off Reactor #4, ir.off <	AT	p,≓			6.44	6.15		1920-192	6.34	6.32	16		6,40	7,09		100	6.38	6,86	
INFL. NH3-N NO2-N NO3-N Alkalinity INFL. Immunov Immunov <td></td> <td>Air Info</td> <td colspan="3">0.4, Pm /40 . N / 2004f</td> <td colspan="4">.47pm 140m 120004</td> <td colspan="4">1472-1500N/2008P</td> <td colspan="4">1400m / 400N / 200ff</td>		Air Info	0.4, Pm /40 . N / 2004f			.47pm 140m 120004				1472-1500N/2008P				1400m / 400N / 200ff					
Iomp Iomp pH Iomp Peed into \$0_3pm_f30oH_f40off? Reactor #2Alls off? Reactor #3_Alls off Reactor #4Alls off Date Reactor #1_A_ir		INFL.		NH	3-N	1		NC	Z-N			NÓ	3-N	r		Alka	linity		
Itemo Itemo pH Itemo Peed no SUgram / S										10.115									
pH read no SO grave #30 ord #40-FF Reactor #2 his off Reactor #3 his off Reactor #4 his off		Temp					1.11.10												
Teed not \$0,000 F400FF Reactor #1 A jr off Reactor #2 A jr off Reactor #3 A jr off Reactor #3 A jr off Reactor #3 A jr off Reactor #4 A jr off Date Reactor #1 A jr off Reactor #2 A jr off Reactor #3 A jr off Reactor #4 A jr off Diluter Reading Result Probe NH3-N NC2-N A jr 3 Probe Diluter Reading Result Probe NINEL NINE Diluter Reading Result Probe		pн	- 34 (B-16)		1.000		Street Control				- Destanta P				3.2020.00				
Date Reactor #1A jr = FF Reactor #2A jr = FF Reactor #2A jr = FF Reactor #2A jr = FF Reactor #3A jr = FF Reactor #4A jr = FF Time Diluter Reading Result Prube Diluter Reading Result Prube Diluter Reading Result Prube Diluter Result Prub Diluter Result Diluter Result Prub Diluter Result Prub Diluter Result		t and late	0.5	6	. 42	12.60													
Dilling Result Prube Dilling Result Prub Dilling Dilling <thdilling< th=""> Dilling <thdilling< th=""></thdilling<></thdilling<>	1000	Head into	8230	m 130	011 12	(00 69	- COLUMN COLUMN			1.00		1. S. S. C. O					1.1.1	1	
1700 NH3-N 11.0 11.6 17.6 11.0 13.4 14.4 11.3 13.4 11.6 13.4 13.4 14.4 11.3 13.4 11.6 14.4 11.3 11.4 14.4 11.3 11.4 14.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 13.4 11.4	Date	Head into	8047 R	leactor#	1Air	(00 FF 0 FF		Read	tor #2 🍂	leoff		Read	tor #3 A	ir on		Read	tor #4A	i on	
NO2-N I	Date Time	Head into	R R Dilutor	leactor #	1 <u>Ajr</u> Result	osff off Probe	Diatan	Reac	tor #2 🍂 Result	ic o r f Probe	Diution	Read Reading	tor #3 _A Result	ic ON Probe	D'ution	Read	tor #4A Result	j∂ O <i>M</i> Probe	
NCISH 1(10 5.35 5.35 8.0 1(10 5.11 51.1 7.9 1(10 3.58 5.5.8 50.0 1(10 41.0 41.0 41.0 45. 735 Temp F4.3 1 84.3 84.3 94.3 1 23.7 23.7 1 12.6 12.6 74 Temp F4.3 87.1 87.1 35.2 74 pi <	Date Time TPO	NH)-N	R R Dilutor 1750	Leactor # Reading	1 <u>A</u> jr Result	orf orf Probe	Dilution	Read Reading	tor #21 Result	le o FF Probe	Dilution [310	Reach Reacing 8.8%	tor #3A Result	Probe	Diution 1120	Read Rending 10.3	tor#4A Resu≐ ∫⊃3), O.M Prote	
ALX 1 43 43 1 84.3 94.3 1 84.3 94.3 1 84.3 94.3 1 84.3 94.3 1 84.3 94.3 1 87.4 87.4 85.2 1 <td>Date Time TPO</td> <td>Head into</td> <td>R Dilutar 1750 I</td> <td>Reading</td> <td>1A jr Result 116 .488</td> <td>orff Prube</td> <td>Dilution 1110</td> <td>Read Reading 13, 4 , 444</td> <td>tor #21 Result 132</td> <td>ie o F F Probe</td> <td>Di ution 210 </td> <td>Reach Reacing 8.88</td> <td>tor #3 Result 83.8</td> <td>Probe</td> <td>Bution 11.0</td> <td>Read Bending 10.3 1.69</td> <td>tor #4A Resur</td> <td>), ON Prote 133,</td>	Date Time TPO	Head into	R Dilutar 1750 I	Reading	1A jr Result 116 .488	orff Prube	Dilution 1110	Read Reading 13, 4 , 444	tor #21 Result 132	ie o F F Probe	Di ution 210 	Reach Reacing 8.88	tor #3 Result 83.8	Probe	Bution 11.0	Read Bending 10.3 1.69	tor #4A Resur), ON Prote 133,	
135 Temp F4.3 .53.1 87.4 35.2 JA pi C.49.6.50 C.7.6.73 7.10 C.42 C.84.6.32 JA pi C.49.6.50 C.7.6.73 7.10 C.42 C.84.6.32 JA Air Into .4.7.7.20.01 Jac.84	Date Time TPO	NH3-N NC2-N NC5-N	R Biluter 1750 1 1750	n / 90 leactor # Reading 11. C . 488 5.35	1 <u>A ir</u> Result 116 .498 53.5	0269 076 Probe 175 80	Dilutan 1110 1 110	Reac Reading 13, 4 , 444 5, 11	tor #2A Result 132 .444 51.1	Icoff Probe 119 79	Diution 210 1 1 100	Read Reading 8.88 1.33 3.58	tor #3A Result 88.8 1.39 35.8	Probe 145 50.C	nutior 11.10 1.1.10	Read Bending 10.3 1.69 9.10	tor #4A Result 1 = 3 1.69 41.0	ir ON Probe 133, 45,5	
JA pi C.49 (.50 C.7 (5.73 7.10 C.42 C.84 (.32 Air Into .9 (77 / 2007 / 3004 / 2 ppm / 2007 / 6004 / .3 ppm / 2007 / 5004 / .9 ppm / 2007 / 4004 / 400	Date Time TPO	NH3-N NC2-N NC5-N ALX	8032 R Diluter 1050 1 100 1	Reading 11. 6 .438 5.35 43	1 <u>A</u>)r Result 116 .498 53.5 43	0269 076 Probe 165 80	Dillion 1110 1 110 1	Read Reading 13,4 ,444 5,11 84,3	tor #2/A Result 132 .444 51.1 54.3	Probe	Diution 1:10 1:10 1:10	Reacing 8.8% 1.33 3.55 237	tor #3 Result 88.8 1.39 35.8 237	Probe 145 50.C	1110 1110 1110 1110	Read Bending 10.3 1.69 9.10 12.6	tor #4A Result 1 = 3 1.69 41.0 12.6	i, o.v. Prote 133. 45.s	
Mirinto .4grm /2004 /3004 .2grm /2004 /6004 .3grm /2004 /5004 .4grm /4004 /4004 //4004 <th 4004<="" th=""> //4004 //4004</th>	//4004 //4004	Date Time TPO XH166 735	NH3-N NC2-N NC5-N ALX Temp	80 47 R Diluter 1750 f 1710 1	Reading 11. C .438 5.35 43 4.3	1/ 1/ Result 116 .498 53.5 43	osff Probe ICS 80	Dilucan 1110 1 110 1 1 1 1 3 3 3	Reac Reading 13.4 , 444 5.11 84.3	tor #2 <u>A</u> Result 132- 132- 132- 132- 132- 132- 132- 132-	Probe Probe 119 79	Di ution 210 	Reacing 8-88 1-3 3-58 2-37 7-1	tor #3 <u>A</u> Result 83.8 1.39 35.8 237	Probe 145 50.C	Diution 11.10 1.10 1.10 1.10 1.10 1.10	Read Bending 10.3 1.69 4.10 126 5.2	tor #4A Result 1 93 1.69 41.0 12.6	Probe 133, 45,5
NH3-N NO2-N NO3-N Alkalinity INFL.	Date Time TPO XHHG 135 JA	Head mo NH3-N NC2-N NC5-N ALX Temp pi	8032 R Diluter 1750 1 1710 1 1710 1 2 2 2 2	n /30 eactor # Reading 11. C . 488 5.35 4.3	1/ jr Result 116 .488 53.5 43	000 FF 0 FF Prube 175 80 6.50	Discon 1:10 1 1:10 1 1:10 1 .8 3	Reac Reading 13,2, ,944 5,11 84.3),1	tor #2A Result 132- .944 51.1 84.3	Frobe 119 79	Diution :10 :10 1:10 1:10 2:10	Reacing 8-388 1.31 3-58 237 2,1	tor #3A Result 88.8 1.39 35.8 237 7,10	с ол Probe 145 50.С	1:10 1:10 1:10 1:10 1:10 1:10	Read Rending 10.3 1.69 4.10 126 5.2	tor #4A Result 1 = 3 1, 6 9 4 1, 0 1 2, 6 6, 8 9	Probe 133. 45.5	
Temp	Date Time TPO XMAG 735 JA	Head moo	8097 R Dilutor 1750 1 1750 1 1750 1 1 1750 1 1 750 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	n / 30 teactor # Reading 11. C . 488 5.35 4.3 4.3	1/ 1/ Result 116 .488 53.5 43 (.49 43	000 FF Prube 166 80 6.50 0.044	Discen 1210 1 1210 1 1 1 3 3 3 1 .7 93	Reac Reading 13.4 ,144 5.11 84.3 1.1	tor #2A Result 132 .444 51,1 84.3 6.7 2.0 w f	ie a f f Probe [1] 7] 6.73 Солf	Diution :10 :10 :103 :103 :103 :103 :103 :103 :103 :103	Reach Reach 3.5% 3.5% 3.37 2.1	tor #3A Result 88.8 1.39 35.8 237 7,10 /5	с ол Probe 145 50. с С.42 С.42	1110 1110 1110 1110 1110 1110 1110 111	Read Rending 10.3 1.69 9.10 126 5.2 /20	tor #4A Resu 1 = 3 1.69 41.0 126 .84 	i 0 M Probi 133, 45,5 45,5	
Тепррн	Date Time TPO XAMAG 735 JA	NH3-N NH3-N NC2-N NC5-N ALX Temp pi Air Into	R Diluter R Diluter 17:50 1 17:50 1 17:50 1 17:50 1 17:50 1 17:50 1 17:50 1 17:50 1 17:50 1 17:50 1 17:50 10	n / 30 leactor # Reading 11. C . 488 5.35 43 4.3 4.3 4.3 NR	1/4 / / Result 116 .488 53.5 43 6.49 93.5 43	000 FF 0 F F Prube 165 80 6.50 0.54	Dillon 1110 1 1110 1 1 1 1 3 3 3 .2 93	Reac Rezsing 13.4 ,944 5.11 84.3 1.1	tor #2A Result 133 .944 51.1 84.3 .0 w / 02-N	Frobe Probe 119 79 6.73 6.73	Ci ution 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:1	Reacine 8:38 1:33 3:58 2:37 7:4 	tor #3A Result 88.8 1.39 35.8 237 7,10 0-/50 3-N	г. ол Probe 145 50.С 50.С	1110 1110 1110 1110 1110 1110 1110 111	Reac Rending 10.3 1.69 4.10 1.26 5.2 	tor #4A Result 1 03 1.69 41.0 126 6.89 6.89 6.89 74 800	Prob 133. 45.5 6.35 0.40	
рн	Date Time TPO X/4766 735 JA	NH3-N NH3-N NC2-N NC3-N ALX Temp pi Air Into INFL.	R Dilling R Dilling 1 1 10 1 1 10 1 1 10 1 1 1 1 1 1 1 1 1	n / 90 Reactor # Reading 11. C . 438 5.35 43 4.3 4.3 1.3 NH	1/4 /r Result 116 .488 53.5 43 6.49 30 73 3-N	000FP 07F Prube 175 80 5.50 004	Diluten 1110 1 1110 1 1 3 3 3 4 1 3 3 4 1 3 3 4 1 3 5 3	Reac Rezding 13,4 ,444 5,11 84.3 1,1	tor #2A Result 133 .944 51.1 84.3 .0 0 / 2.0 0 / 2.0 0 /	1000 Probe 119 79 6.73 60.44	Diution 370 1 1:109 1 3 3 7 3 7	Reacing 8:88 1:33 3:55 2:37 2:4 /20 NO	tor #3A Result 887.8 1.39 35.8 237 237 237 237 237 23.0 24/50 24/50	с ол Probe 145 50.С С.42 2 - А	11.10 11.10 1 1.10 1 38	Read Rending 10.3 1.69 4.10 12.6 5.2 Alko	tor #4A Resur 1 = 3 1, 2 9 1 = 3 1 = 3 1 = 3 1 = 3 1 = 2 1 =	2 0 M Proba 133. 45.5 45.5	
	Date Time TPO XITING 735 JA	NH3-N NC2-N NC2-N NC3-N ALX Temp pi Air Into INFL. Temp	8037 R Dilutar 1750 1 150 1 1750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n / 90 Reactor # Reading 11. C . 488 5.35 43 43 43 43 43 43 43 43 43 43 43 43 43	14 17 Result 116 ,498 535 43 6,49 73 13-N	00 FF 07 F Probe 172 172 172 172 175 175 175 175 175 175 175 175	Discen 1110 1 110 1 110 1 1 1 3 3 3	Reac Reading 13.4 ,944 5.11 84.3 1.1	tor #2& Result 333 .944 51.1 84.3 .0 0 / 2.0 0 / 22-N	10 2 6 7 Probe 119 79 6.73 60.44	Di ution 1310 11:103 1 - 3pt	Reacing 8-secting 3-55 3-55 2-3 7 7-4 	tor #3 <u>A</u> Result \$27.8 1.39 35.8 237 7,10 04/50 83-N	Г. ОМ Ргобе 145 50. С 50. С	11.10 11.10 1.10 1.10 1.10 1.10 1.10 1.	Read Reading 10.3 1.69 1.69 1.2 2.2 2.2 Allo	tor #4A Result 1 03 1.29 41.0 126 5.29 6.29 6.29 6.29 6.29 6.29 6.29 6.29 74 80014	; 0 <i>M</i> Prote 133. 45.s	

Process Control

- Reactors Effluent Ammonia-N range: 150-200 mg/L
 - Adjust the aeration rate
- Reactors pH (6.5-7.0)
 - Adjust the aeration rate
 - Adjust feed rate
 - Add alkalinity (soda ash)
- Reactors Nitrite levels (<10 mg/L)
 - Elevated nitrite-N undesirable to anammox bacteria and levels need to be kept low

Dosing for Alkalinity

- Egan uses ferric chloride in dewatering process; this reduces available alkalinity making centrate alkalinity deficient
- Supplement with Soda Ash

Improvements

- Equalization Tank operates at varying levels during process start-up, on weekends, and during low flow standby period conditions – probes designed for continuous full submergence
- Installed sample tank with small sample pump to recirculate centrate and get continuous instrument readings

Improvements

- Added a Suspended Solids probe to the centrate line from Dewatering to ANITATM Mox.
- Limited supervision of centrifuges on/off shifts.
 High suspended solids content detected to take centrifuge off production.

Alert control room so
operator can go correct
the operation and
prevent high solids from
reaching process (high
solids undesirable to
ANITATM Mox process).

ANITATM Mox Initial Startup (8/31/16-12/22/16)

Influent Ammonia-N: 938 mg/L; Effluent Ammonia-N: 159 mg/L; Ammonia-N Removal: 83%

ANITATM Mox Standby Period (12/23/16-8/15/17)

ANITATM Mox Startup Data –Ammonia Load from Sidestream and Plant Influent

ANITATM Mox Startup Data – Percent Ammonia Load from Sidestream

ANITATM Mox Startup Data – JEOUT NH3-N

JEOUT NH3-N is monitored twice per week.

Egan ANITATM Mox Reactor "Seed Carrier Biofilms"

- Little to no
 AOB/NOB signal on seeded carrier biofilms
- Strong anammox
 (AMX) signal
 distributed throughout
 the thickness of the
 biofilm
- Anammox signal is strongest at the bulk/biofilm interface and does seem to decrease closer to the carrier/biofilm interface

K5 Seed Carrier, Egan WRP ANITATM Mox Reactor, Sampled October 12, 2016 (Alex Rosenthal, Wells Group, Northwestern University)

Egan ANITATM Mox Reactor "New Carrier Biofilms"

- ~20-50 micron thick "patchy" anammox signal detected on new carriers
- AOB signal detected with varied spatial patterns of enrichment
 - Basal layer (see lower left corner)
 - Finger-like protrusions extending from the basal layer (often connected to anammox basal layer biofilm)
 - Some microcolonies embedded within dense anammox signal
- Very little **NOB** detected

K5 New Carrier, Egan WRP ANITA™ Mox Reactor, Sampled October 12, 2016 (Alex Rosenthal, Wells Group, Northwestern University)

Egan ANITATM Mox Reactor "Suspension"

- Apparent selective enrichment of **AOB**.
- A few **anammox** microcolonies observed in most micrographs
- Very low abundance of **NOB** signal
- SRT is seemingly high enough to support AOB enrichment in the reactor suspension

Suspended Solids, Egan WRP ANITATM Mox Reactor, Sampled October 12, 2016 (Alex Rosenthal, Wells Group, Northwestern University)

- 1. Daily sampling is helpful in preventing process upset
- 2. System can maintain activity even at very low flows for extended periods of time
- 3. Maintaining some activity during down times allows for less stressful restart
- 4. Installing a suspended solids probe upstream of the diversion valve to ANITATM Mox process allows for early detection of high solids and upstream equipment adjustment before centrate gets to the process
- 5. If EQ tank is to be operated at varying levels, consider location of instrumentation
- 6. If system is alkalinity deficient, having reliably working alkalinity dosing system will prevent back breaking manual dosing to keep up with system demand

- Successfully implemented ANITATM Mox into existing, unused basins with collaborations between Engineering, M&O, M&R Departments and Kruger.
- Nitrogen removal in sidestream has allowed flexibility to plant operations and should help mitigate odor problems in pipelines.
- Feeding the system at low flows while repair of mechanical equipment upstream assisted in secondary startup
- Startup expected to be completed by the end of March 2018
- Despite various challenges:
 - Ammonia removal has averaged greater than 75%
 - TIN removal has averaged greater than 65%
- This project provides the District with invaluable knowledge, experience and opportunity to move towards the Mainstream Deammonification; learned experiences of sidestream and mainstream Deammonification @ Egan WRP may be applied to other District facilities.

QUESTIONS?

Kathy Lai, P.E. Principal Engineer 847.584.5403 laik@mwrd.org Lou Storino, P.E. Principal Civil Engineer 312.751.3167 storinol@mwrd.org Cindy Qin, PhD. Environmental Research Scientist 708.588.3472 qind@mwrd.org

A