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BEFORE WE BEGIN
• SAFETY PRECAUTIONS

– PLEASE FOLLOW EXIT SIGN IN CASE OF EMERGENCY EVALUATION
– AUTOMATED EXTERNAL DEFIBRILLATOR (AED) LOCATED OUTSIDE 

• PLEASE SILENCE CELL PHONES OR SMART PHONES

• QUESTION AND ANSWER SESSION WILL FOLLOW PRESENTATION

• PLEASE FILL EVALUATION FORM  

• SEMINAR SLIDES WILL BE POSTED ON MWRD WEBSITE      (www. 
MWRD.org:   Home Page   ⇒ Reports  ⇒ M&R Data and Reports 
⇒ M&R Seminar Series  ⇒ 2017 Seminar Series)

• STREAM VIDEO WILL BE AVAILABLE ON MWRD WEBSITE  
(www.MWRD.org:  Home Page  ⇒ MWRDGC RSS Feeds)
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An SAB Original Study
• Undertaken to provide advice to EPA, from a scientific 

perspective, on managing problems caused by excess 
reactive nitrogen (Nr) in the environment.

• Analyzes the inputs and flows of reactive nitrogen in the 
U.S. 

• Recommends new risk reduction strategies to improve 
upon traditional media-specific regulatory and  
nonregulatory approaches.

• Recommends using the movement of nitrogen among 
environmental reservoirs in multiple ecosystems and media 
(the Nitrogen Cascade) as a framework for understanding 
and more effectively managing reactive nitrogen. 
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What is Reactive Nitrogen (Nr)?

All chemical forms of nitrogen, except N2

Examples: NH3-NH4
+, N2O, NO, NO2, NO2

-, NO3
-

Organic-N



Nitrogen problems
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Visibility/Smog-Ozone Formation

Grand Canyon, AZ Los Angeles, CA



Coastal Hypoxia/Pollution of Fresh Waters

Algal Mat, Lake Erie



~ 415 Hypoxic Regions Globally
www.wri.org/.../Global_nolakes.preview.jpg



Recommendations…

• 24 Recommendations
– 4 overarching recommendations
– 20 specific findings & recommendations 

addressing air, water, and land use issues, 
monitoring, research, and education

• 5 Management goals



Overarching SAB Recommendations

• The nitrogen cascade should be used as a framework to 
understand the environmental impacts of reactive 
nitrogen as it moves through multiple ecosystems and 
media. 

• Integrated cross-media management approaches and 
regulatory structures are needed to recognize tradeoffs 
and focus management efforts at points of the nitrogen 
cascade where they are most efficient and cost effective.

• EPA should form an intra-Agency Nr management task 
force to build on the existing breadth of Nr research and 
management capabilities within the Agency.

• EPA should convene an inter-Agency Nr management 
task force to coordinate federal programs that address Nr 
monitoring, modeling, research, and management.



Near Term Goals for Management Action

• The SAB estimates that a 25% reduction in Nr introduced into 
the U.S. environment might be achieved with existing 
technology in the coming 10-20 years through actions that 
could be taken by EPA and other management authorities. 
– Expanded efforts to control emissions of NOx from mobile sources and 

power plants could decrease the generation of Nr by 2.0 Tg/yr.
– Increased crop uptake efficiencies (through advances in fertilizer 

technology) could further decrease Nr releases by 2.4.Tg/yr.
– Livestock-derived NH3 emissions could be decreased by 0.5 Tg/yr 

through a combination of BMPs and engineered solutions, and NH3
emissions from fertilizer application could be decreased by 0.2 Tg/yr 
through BMPs related to application rate and timing.
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Why do we need reactive nitrogen?

• Human Nr requirement = 4.3 
kg/cap/yr

• US = 1.4 Tg/yr
• World = 28 Tg/yr
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Sources of reactive nitrogen introduced into 
the US in 2002 (Tg N/yr)

Haber Bosch
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Long Term Trends…
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Major  (US) federal laws for 
managing nitrogen

• CAA (1990) regulates NOx emitted into 
atmospheric systems, but not NH3

• CWA (1977) regulates NH3 and total Nr released 
into aquatic systems

• SDWA (1996) regulates NO3
- and NO2

- in 
potable waters

• EISA (2007) requires the setting of biofuel 
standards based on life cycle assessment



Changes in N wet deposition, 1994-2006
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US ammonia emissions

Hogs and Pigs, 10%
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Source: Battye et al. 1994



US Milk Production, 1970-2006



US Meat Production, 1970-2006
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US Nitrogen Budget
Tg N yr-1

N2

NOy NHx
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Nitrification and denitrification processes
(from Mosier and Parkin 2007)
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Metrics Case Study:  Chesapeake Bay

Image from Chesapeake Bay Foundation
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The Nitrogen Cascade in Chesapeake Bay –
Implications for Nr Management 

 Damage costs and marginal abatement costs per metric ton of Nr by source 
(atmospheric, terrestrial, freshwater) indicate that the least costly 
abatement and greatest gain comes from atmospheric emission controls.

Relative importance of all reactive nitrogen sources released into atmospheric, terrestrial, 
and freshwater media within the Chesapeake Bay Watershed (Birch et al., 2011)





U.S. Biomass Resources

Source:  U.S. DOE













































  








 


















































































































 















 




 








 






 






















 









 

























 



















 Expansions/New Construction
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U.S. Ethanol Plants



45 Year History: Price of Corn (U.S. $$/bushel)



SPARROW simulated N fluxes in stream reaches
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Carbon and Nitrogen Global Cycles



Carbon and Nitrogen Global Cycles



Major Environmental Impact Categories: N and C

Impact Reference Unit
(TRACI)

Carbon Nitrogen

Climate Change CO2 eq CO2, CH4 N2O

Eutro/Hypoxia Neq indirect NO3
-, NH3, NOx

Ecotoxicity 2,4-Deq compound 
specific

NH3

Human Health  
(Criteria)

Non-Cancer

PM2.5eq

Tolueneeq

substance 
specific

NOx

NH3

Acidification H+ H2CO3 HNO3, NH4
+

Smog Formation NOxeq CH4, CO, VOC NOx



Corn-Soybean Agrosystem for LCI

Landis et al, ES&T 41:1457-1464 (2007)



C and N Inventories/Corn & Soybean
(grown in rotation)
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Agricultural Inventory

Landis, et al. ES&T 2007, 41, 1457-1464
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U.S. N2O Emissions in 2005

On-Road Vehicles    
7%
Non-Road Mobile    
0.8%

Agricultural and Soil 
Management     

78%

Other Sources     
14%

Source:  Inventory of U.S. Greenhouse 
Gas Emissions and Sinks, 1990-2005



Case Study: Polylactic Acid (PLA)

Production

Product
End of Life



Comparative Results

Fossil Fuel Use

0

20

40

60

80

100

PLA-L PLA-L2 PLA-V PLA-B PLA-P PS-GPPS HDPE PET LDPE PP

M
J/

kg
 p

ol
ym

er

undefined

Petro

Polym

Ferment

CWM

Agriculture



Comparative Results

a) Eutrophication
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Comparative Results

Global Warming
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Comparative Results

b) Ecotoxicity
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Comparative LCA Results

Contribution to Midpoints
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Relative C/N Profiles



Concluding thoughts…[1]
Life Cycle Approach

• By following the flow of materials (and energy), 
life cycle analysis compels us to couple related 
subsystems, for example material acquisition to 
product development and use, nitrogen cycling 
to carbon cycling, demand to impacts, impacts to 
control measures to policy

• Helps in making holistic comparisons among 
options, policies, and designs  

• Clarifies the nature of tradeoffs, helping to avoid 
unintended consequences

• Illuminates those points where intervention 
works best

• Helps to identify critical research and data needs



Concluding thoughts…[2]

Is the nitrogen problem a lost cause?
– Total NOx emissions dropping
– NH3 emissions rising
– Nr needs vs impacts
– Complex interactions (cascade/coupling w/ C)
– Ongoing research needs
– Relative indifference
– Limited regulatory approach (TMDL)
– Conflicting policies (food vs fuel)
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