The Metropolitan

Water Reclamation District

of Greater Chicago

WELCOME TO THE APRIL EDITION OF THE 2015 M&R SEMINAR SERIES

BEFORE WE BEGIN

- PLEASE SILENCE CELL PHONES OR SMART PHONES
- QUESTION AND ANSWER SESSION WILL FOLLOW
 PRESENTATION
- PLEASE FILL EVALUATION FORM
- SEMINAR SLIDES WILL BE POSTED ON MWRD WEBSITE (www. MWRD.org: Home Page ⇒ Reports ⇒ M&R Data and Reports ⇒ M&R Seminar Series ⇒ 2015 Seminar Series)
- STREAM VIDEO WILL BE AVAILABLE ON MWRD WEBSITE (www.MWRD.org: Home Page ⇒ MWRDGC RSS Feeds)

CHUL PARK, Ph.D.

Current: Associate Professor, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA

Experience: - Assistant Professor, Dept of Civil and Envir Eng, Univ. of Massachusetts Amherst
 - Visiting Researcher, INRA, Laboratoire de Biotechnologie de l'Environnement (LBE),
 France
 Research InterestS: activated sludge; anaerobic digestion; algae-based wastewater
 treatment processes; bioflocculation of algae and bacteria; etc.

Education: B.S. Environmental Engineering, Yeungnam University, South Korea M.S. Environmental Engineering, Virginia Tech, Blacksburg, Virginia Ph.D. Civil Engineering, Virginia Tech, Blacksburg, Virginia

Professional: American Chemical Society (ACS); Association of Environmental Engineering and Science Professors (AEESP); International Water Association (IWA); Water Environment Federation (WEF); etc. Review for 15 National & Int'l Journals

Publication: Over 70 publications in journals and conference proceedings; 3 patents

Award: Paul L. Busch Award, Water Environment Research Foundation (2013);

Oxygenic Biogranules: Aeration-free & Energy-recovery Wastewater treatment

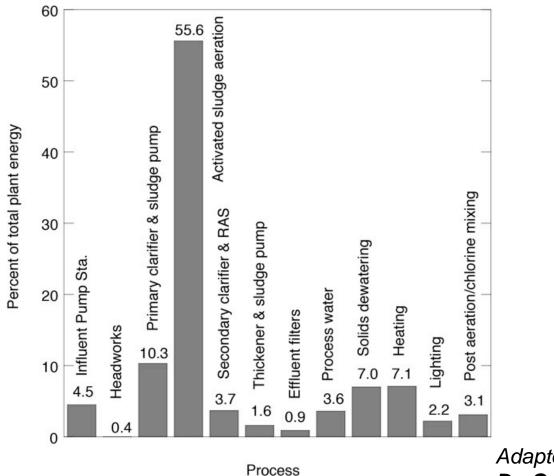
Chul Park, Ph.D.

Department of Civil and Environmental Engineering

University of Massachusetts Amherst

April 24th, 2015

Melting Glaciers



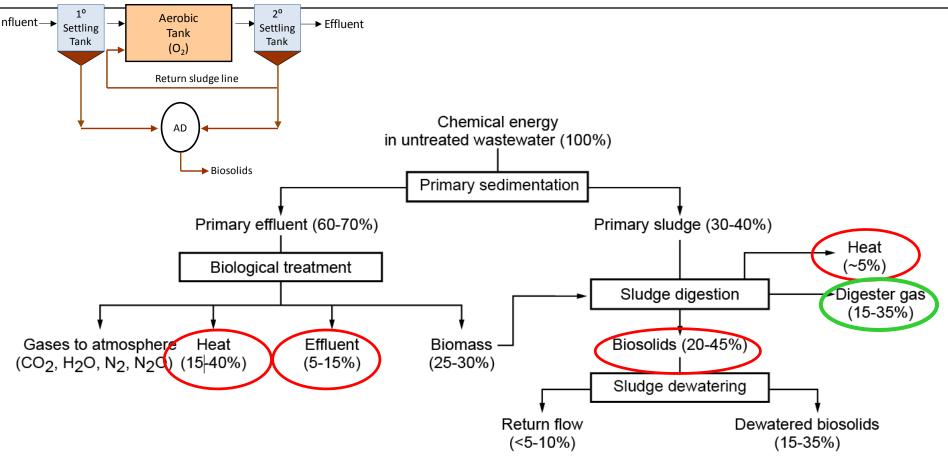
Source: http://www.weather.com (USGS photos by Bruce Molnia)

Wastewater Treatment

- Our responsibility for
 - Sanitation and public health
 - Environmental health
- The process is not free
 - 1.2-2.4 MJ/m³ wastewater (~2% of national E demands)
 - Up to 60% of this is for aeration (O_2)
- The carbon footprint
 - CO_2 , CH_4 , and N_2O
- More stringent regulations in future?

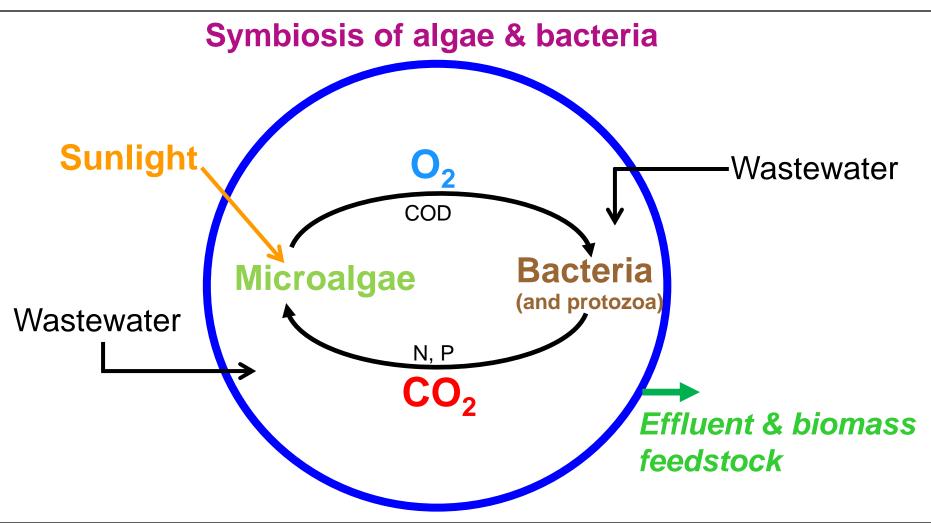
Energy Usage in the Activated Sludge Process

Adapted from: **Dr. George Tchobanoglous**


Wastewater Treatment

- Our responsibility for
 - Sanitation and public health
 - Environmental health
- The process is not free
 - 1.2-2.4 MJ/m³ wastewater (~2% of national E demands)
 - Up to 60% of this is for aeration (O_2)
- The carbon footprint
 - CO_2 , CH_4 , and N_2O
- More stringent regulations in future?

Wastewater Treatment: Opportunities

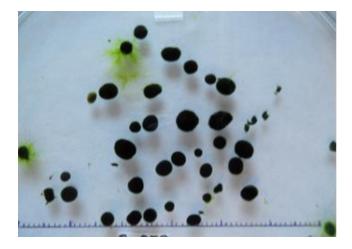

- Chemical (calorific) energy in wastewater
 - 6-8 MJ/m³ wastewater (2.2 KWh/m³)
 - = (12-15 MJ/kg COD) (0.5kg COD/m³)
 - = 6-8 MJ/m³ wastewater
 - > 2-5 times the energy used to treat it
 - > 3.2 x 10¹⁷ J per year \rightarrow 3-6% of national E
 - > This is renewable energy!!!
- Stickney WWTP: 100~200 MW plant?
- Dilemma: wastewater organic is dilute

Energy Flow in the Activated Sludge Process

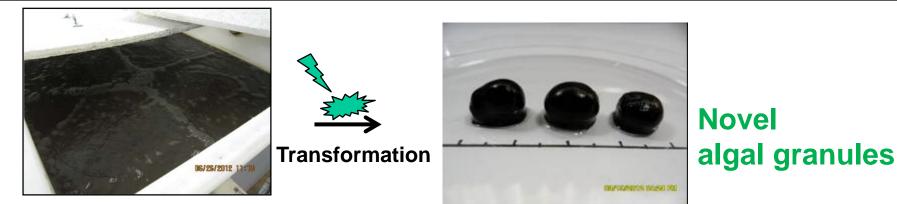
Adapted from: **Dr. George Tchobanoglous**

Microalgae-based Wastewater Treatment

Challenges


- Algae do not usually aggregate
- Inability to bioflocculate results in ineffective separation of algae from water
 - Recycling of biomass
 - Harvesting (wastage) of biomass
- Needs light!
- Limited reactor configurations: e.g., open ponds
- High-rate algal ponds (still HRT ≈ SRT)
 - Activated sludge process (HRT ≈ 1/24 SRT)

Oxygenic Biogranules

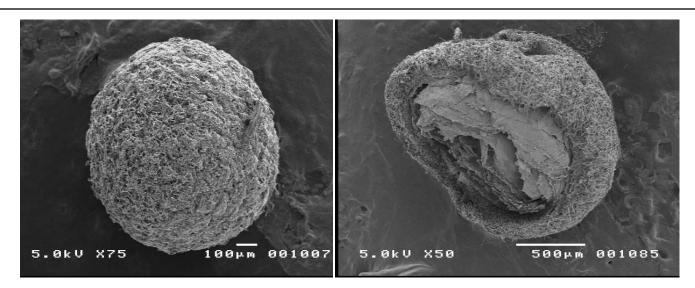

 Bacteria and microalgae naturally form a granule under certain incubation conditions

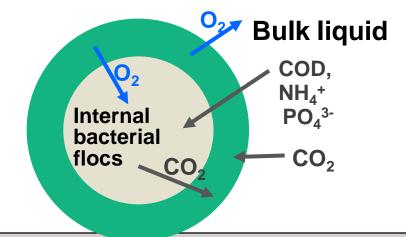
Oxygenic Biogranules

reaction period.

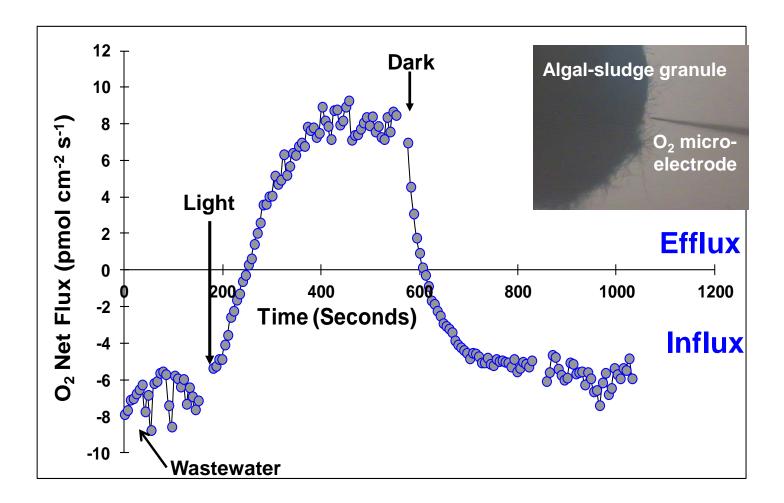
Activated sludge

Seeding and reactor operation for WW TRT.



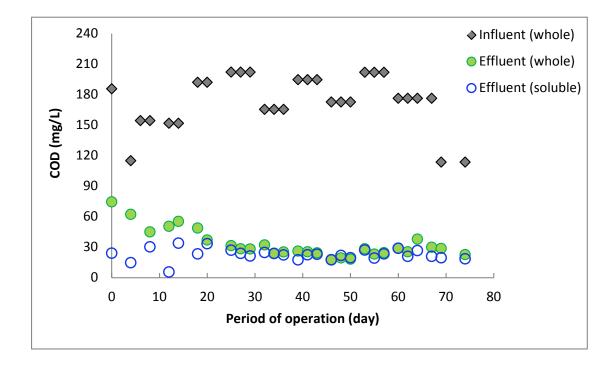

After 5 minute settling

4

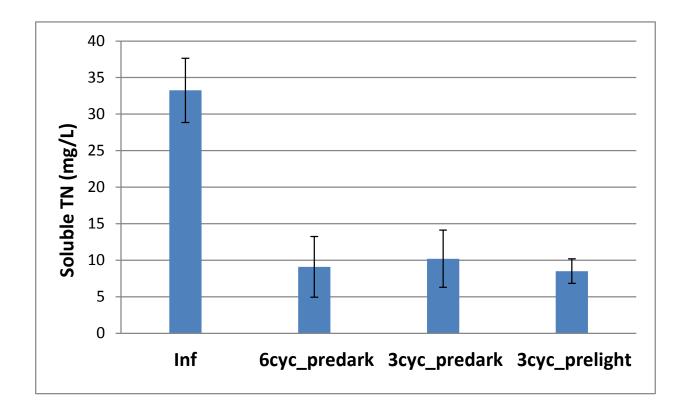

Civil & Environmental Engineering

SEM Images of Oxygenic Biogranules

In-situ Oxygenation and COD Consumption

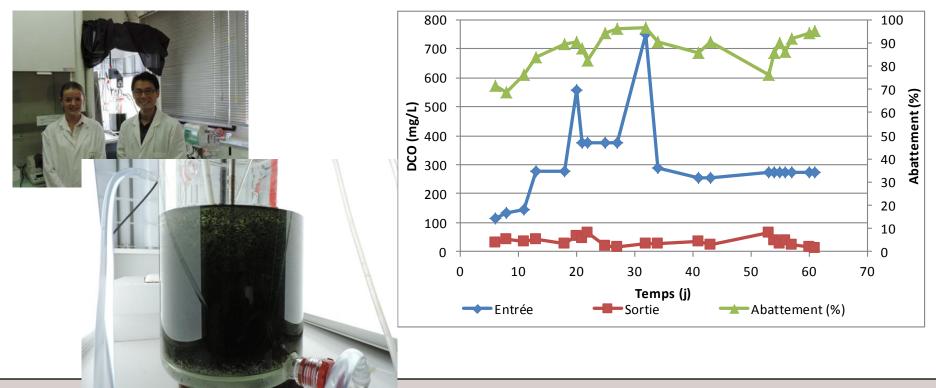

Operation of the 1st-generation Bioreactor

- Sequencing batch reactor (SBR)
- Light/Dark cycle
 - 2.5hr Dark + 3.5 hr Light (for one cycle)



- Primary effluent from the Amherst WWTP
- Seeding phase
- HRT: 18-24 hours
- SRT: 20-50 days
- Analysis
 - effluent quality, biomass characterization, biomass yield, etc

Effluent Quality



Effluent N Data

Study of Oxygenic Biogranules in France

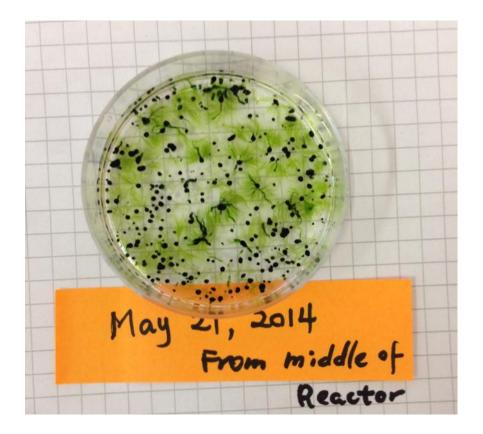
- Raw influent wastewater from Narbonne WWTP
- HRT = 1 day; volume of reactor (SBR) = 3 L
- SRT = 25 days

Conserving Energy in Biogranules

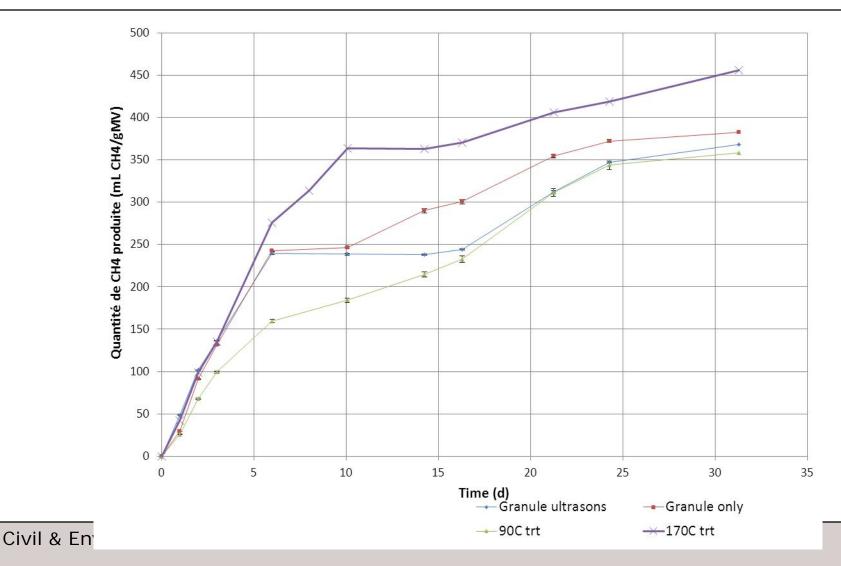
- Y_{obs} of activated sludge: 0.3-0.6 gCOD/gCOD
- Y_{obs} of oxygenic biogranules: ~1.5 gCOD/gCOD
- What does this mean?
 - 100% Recovery of COD energy into biomass: by fixing CO_2 -COD
 - Fixing more CO_2/HCO_3^- from wastewater into biomass
- Biocoal or anaerobic digestion?

Anaerobic Digestion and Pretreatment of Granules

- BMP experiments (mesophilic)
 - Granule only (2-times)
 - Ultrasonic-treatment (2-times)
 - 90 °C treatment (1-time)
 - 170 °C treatment (1-time)



The First BMP Experiment



Before & After Anaerobic Digestion (no pre-treat.)

The Second BMP Experiment

Biomass and Energy Recovery

- Y_{obs} of activated sludge: 0.3-0.6 gCOD/gCOD
- Y_{obs} of oxygenic biogranules: ~1.5 gCOD/gCOD
- Oxygenic biogranules showed 25% higher CH₄ yield than waste activated sludge
- Need some economics analysis

Simple Economics (Energy Analysis)

(MJ/m ³ wastewater)	ASP	ASG
Potential energy in raw wastewater	7.4	7.4
Energy recovery as feedstock for AD	4.1	7.4-12.4*
Energy recovery as CH ₄ from AD	1.2	2.9-5.1
Energy usage (Reference 2)	2^{**}	1.1
Net energy recovery as CH ₄	-0.8	1.8-4.0

ASP: activated sludge process; ASG: algal-sludge granule process; AD: Anaerobic digestion; *) 12.4: more recovery than the native energy due to the fixation of CO_2 in wastewater **) 60% of this is for aeration.

Conclusions

- Demonstrated the formation of oxygenic biogranules in different geography (7 WWTPs)
- The biogranules were oxygenic and degrade COD in the presence of light
- All chemical energy in wastewater was conserved in the biogranules
- Granules also digest better than activated sludge

Where are we going?

- Implementing in developing countries
 - Collaboration in Kenya
- The first pilot in USA
 - Amherst WWTP
 - Launch in July, 2015
 - Plan to go through winter in Massachusetts
- Investigation on several others
 - Pathogens
 - Heavy metals
 - Trace organics

I MassAmherst

Acknowledgement

- Dr. Sona Dolan
- Camilla Kuo-Dahab, Chris Watt, Krstie Stauch-White, Laurine Sauvenheav
- Drs. Kim Milferstedt, Jérôme Hamelin, Bruno Sialve, Hélène Carrère at INRA-LBE, France
- Dr. Caitlyn Butler

NSF CBET National Science Foundation

Paul Busch Award, WERF

Conclusions

Melting glaciers

Source: http://www.weather.com (USGS photos by Bruce Molnia)