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Recent Progress in  
Mainstream Deammonification 

A Potential Low-Energy Option for Nitrogen Removal 
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The N Cycle: Too Much of a Good Thing 

Fields, S. 2004 “Global Nitrogen: Cycling out of Control.” Environmental Health Perspectives.  112 (10): A556-A563. 

1913: Haber-Bosch 
process for synthetic 
N fixation  

Present: Human alterations have more than 
doubled the rate of input to the terrestrial N 
cycle.    



Why control ammonia & 
reactive N levels? 

•  Ammonia toxicity to aquatic life 
•  High oxygen demand 

•  Eutrophication and resulting 
hypoxia in N-limited systems 

•  Emissions of the potent 
greenhouse gas N2O 

•  Public Health Concerns: 
–  Methemoglobinemia 
–  Cyanobacterial toxins 

Ferber. (2004) Science  
305 (5690): 1557  

www.nytimes.com, 8/3/14 



Make solar energy economical 
Provide energy from fusion 

Develop carbon sequestration technologies 

Manage the nitrogen cycle 
Provide access to clean water 

Restore and improve urban infrastructure 
Advance health informatics 
Engineer better medicines 
Reverse-engineer the brain 

Prevent nuclear terror 
Secure cyberspace 

Enhance virtual reality 
Advance personalized learning 

 
 

National Academy of Engineering. 
(2008) Grand Challenges for 
Engineering. 
www.engineeringchallenges.org 



Conventional biological wastewater treatment 
(particularly N removal bioprocesses) are highly energy 

intensive 

Source: Stinson et al. (2013); WEF (2009) 

Wastewater treatment accounts for ~3% of nationwide electricity use (~15 GW) 

Conversely, organic-rich domestic, industrial, and animal wastewater contains 
potential energy equivalent to ~17 GW of power (Logan et al. 2012) 
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Given that conventional nutrient removal processes are 
highly energy intensive, it is unlikely that energy 
positive wastewater treatment targeting resource 
recovery can be achieved without new innovations 
in N removal bioprocesses 
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Anammox Bioprocesses: A Critical Opportunity for 
Sustainable Wastewater Treatment 
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AOB: Ammonia-Oxidizing Bacteria 
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*Neglecting biomass growth and decay 
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Anammox Bioprocesses: A Critical Opportunity for 
Sustainable Wastewater Treatment 

Deammonification* 
 

*Neglecting biomass growth and decay 

Deammonification processes decouple C and N removal, thereby potentially 
enabling enhanced C removal as biogas or value-added products (bioplastics, 
platform chemicals, liquid biofuels, etc.) 

Deammonification processes decrease O2  
requirement for N removal by ~60% 
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Initial Development of Deammonification 
Processes has focussed on sidestream 
treatment of anaerobic digester supernatant 

Digester 
supernatant (can 
be ~20% of N 
load to secondary 
treatment) 

Sidestreams are 
characterized by: 
•  High temperature 

(~30oC) 
•  High NH4

+  
(~500-1000 mgN/L) 



While challenges remain to be addressed, particularly 
regarding process stability, sidestream deammonification 
is a rapidly maturing technology 

Source: Lackner et al. 2014. Water Research, 55 (2014) 292-303.   



Pushing the envelope: 
Can we apply deammonification bioprocesses in 

the mainstream? 

Source: Gao, Scherson, & Wells (2014) ES:P&I. 16: 1223-1246 
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The holy grail of 
anammox 
environmental 
biotechnology 

The mainstream is 
characterized by: 
•  Low temperatures 
•  Low NH4

+ 



 

1.  Process stability and reliability under dynamic 
conditions expected in the mainstream 

2.  Robust and stable outcompetition of NOB 

3.  Maintenance of high levels of anammox biomass 
and activity under low temperature, low substrate 
conditions  

4.  Coupled deammonification and biological P 
removal 

 



Impact of Aggregate Architecture on 
Deammonification Process Stability 

Eberhard 
Morgenroth 

Adriano  
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Rosenthal 



Granules Flocs 

Suspended Growth Biomass 

Our Hypothesis 

Mass transport limitations and aggregate structure 
in deammonification processes impact process 

performance and stability  
 

Approach: Side-by-side comparison between two common 
process variations employing different aggregate types: 

Biofilm Carriers 
(MBBR) 



Process Performance and Stability in 
Replicated Lab-Scale Reactors 



3x Suspended 
Growth  

(Reactors R4, R5, R6) 

3x MBBRs 
(Reactors R1, R2, R3) 

Process Performance and Stability in 
Replicated Lab-Scale Reactors 



Phases of Operation 
1. Baseline 2. Transient Perturbation 

Scenarios 

 Baseline Stable 
Operation 
(6 months) 

2A. Temperature 
Disturbance 

2B. ATU 
pulses 

Deammonification Bioprocesses 

Feed: anaerobic digester centrate 
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Scenarios 
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o  MBBRs: Strong decline in performance (NH4
+ depletion rate), no 

accumulation of the key intermediate NO2
- 

o  Suspended Growth: Moderate decline in performance (NH4
+ depletion 

rate), with substantial NO2
- accumulation 
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Phases of Operation 
1. Baseline 2. Transient Perturbation 

Scenarios 

 Baseline Stable 
Operation 
(6 months) 

2A. Temperature 
Disturbance 

2B. ATU 
pulses 

o  ATU (Allylthiourea): specific inhibitor of aerobic ammonia oxidation 
(AOB and AOA) 

o  Dose: 500-1100 µg/L, expected to only partially inhibit activity 

Deammonification Bioprocesses 



Response to Pulse of Inhibitor of Aerobic Ammonia Oxidation 
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The Amplification Envelope: Borrowing 
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The Amplification Envelope: Borrowing 
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Stability Parameter= Area of 
Amplification Envelope 
Higher stability parameter 

means greater response to 
perturbation (e.g. less stability) 



Response to Pulse of Inhibitor of Aerobic Ammonia Oxidation 
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Response to Pulse of Inhibitor of Aerobic Ammonia Oxidation 
500 µg/L ATU Pulse 

o  MBBRs (biofilm systems) displayed significantly increased response to 
perturbation (higher stability parameter, p<0.05) relative to suspended 
growth reactors. 

Reactor( Resilience((d)( Resistance(
(%)(

Stability(Parameter(
(d6%)(

Number(of(
cycles(to(
recovery(

R1( 0.67% 0.86% 0.41% 2%
R2( 0.77% 0.92% 0.39% 2%

R3( 0.66% 0.96% 0.35% 2%
R4( 0.54% 0.68% 0.17% 1%

R5( 0.48% 1.00% 0.30% 1%

R6( 0.49% 0.94% 0.12% 1%
!

Deammonification Bioprocesses 
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o  In response to transient temperature and ATU disturbances, we observed: 

 
o  Our results suggest that the MBBRs in this study may be strongly limited 

by AOB activity– and thus may maintain an excess anammox capacity… 
o  While suspended growth systems exhibited an apparent excess AOB 

capacity that muted the impact of variations in nitrification activity 
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Suspended growth systems may be more resistant to 
fluctuations in aerobic ammonia oxidation activity, while 
MBBR systems may be more resistant to perturbations that 
predominantly impact anammox activity. 
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Ongoing Work: Enrichment of Deammonification 
Biofilms under Mainstream Conditions- Linking 

Mesoscale Aggregate Structure to Emergent Function 
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3D rendering of RAR biofilm on day 77 
by optical coherence tomography 



Ongoing Work: Enrichment of Deammonification Biofilms 
under Mainstream Conditions: Linking Mesoscale 

Aggregate Structure to Emergent Function 
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Sustained NOB outcompetition and putative (but low) 
anammox activity under mainstream conditions 



Ongoing Work: Can deammonification be coupled to C 
removal in mainstream MBBRs?  
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MBBR: 
3 Compartments in Series 
Loaded with real primary 
effluent from the O’Brien 
WRP 
 
Initial Target: 
•  Sustained partial 

nitritation (NOB 
outcompetition) 

 
Final Target: 
•   COD removal/ 

Nitritation in Tank 1 
•  Full deammonification 

in Tank 2 
•  Anammox in Tank 3 
 M1 M2 M3 



Compartment 1 Compartment 2 Compartment 3 

Ongoing Work: Can deammonification be coupled to C 
removal in mainstream MBBRs with real wastewater?  



Ongoing Work: Can deammonification be coupled to C 
removal in mainstream MBBRs with real wastewater?  

MBBR Performance Snapshot 7/28/2015-7/29/2015 
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Initial results suggest successful NOB outcompetition in a biofilm system 
(compartments M1 and M2) under mainstream conditions 



Take Away Points 
•  New understanding of N cycle microbial ecology is leading to 

emerging sustainable bioprocesses for nutrient removal and recovery 
of “misplaced resources” 

•  Mainstream deammonification has extraordinary promise, but is in its 
infancy, with key remaining challenges to be addressed 

•  Deammonification process variations harboring different aggregate 
types display starkly different patterns of performance and stability 

Microbial
Ecology

Bioprocess
Engineering

Sustainable Environmental ���
and Public Health Protection and 
Resource Recovery from Waste 
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