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Other Good Books

Six Degrees by Mark Lynas

Alternative Energy Without All the Hot Air
David MacKay
available for free pdf download



Energy Balance of a Bare Rock
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A Planet with an Atmosphere
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What Makes a Greenhouse Gas?
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m2 wavenumber

Earth’s outgoing
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m< wavenumber

The band saturation effect
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Infrared energy flux to space, W/m2
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Infrared energy flux to space, W/m2
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Fig. 1. Observed temperatures (42) through 2009 and projected temperatures thereafter under various
scenarios, all relative to the 18901910 mean. Results for future scenarios are the central values from
analytic equations estimating the response to forcings calculated from composition-climate modeling
and literature assessments (7). The rightmost bars give 2070 ranges, including uncertainty in radiative
forcing and climate sensitivity. A portion of the uncertainty is systematic, so that overlapping ranges do
not mean there is no significant difference (for example, if climate sensitivity is large, it is large
regardless of the scenario, so all temperatures would be toward the high end of their ranges; see www.
giss.nasa.gov/staff/dshindell/Sci2012).

Shindell et al 2012



What Happens to Methane
In the Atmosphere

~ 10 years




Methane Dynamics in the Atmosphere

Catastrophic Release Chronic Release
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Time scale for Earth’s
Temperature Response

Surface Ocn.
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Airborne Fraction of Carbon Released

What Happens to Fossil Fuel CO,
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Stage I: CO, dissolves in the oceans
CO, + CO,” + H,0 <--> 2 HCO;

Atmospheric CO,
~600 Gton C

Ocean CO5~
~1800 Gton C
We expect a partitioning

of ~1:3 between air and
ocean

Time scale = 100’s - 1000 yrs Gton C = 10%5 g



Stage Il: CO, Is neutralized by CaCO,

CO, + CaCO, + H,0 ==> Ca2* + 2 HCO;

Weathering, function of climate

CaCO,-> Ca?* + CO,~

—

Ca%* + CO,= -> CaCO,

Pulls the airborne fraction
down to ~10%

Time scale = 1000 - 10,000 yrs

Burial, function of pH



Stage Ill: The CO, thermostat from
silicate weathering

CO, degassing
from the Earth

1‘ Igneous weathering = function of fresh water (hydrologic cycle)

CaS|03 + C02 -> Ca2+ + C03: + S|02

T

Metamorphic

decarbonation Ca?* + CO;” -> CaCO,

Subduction

Burial of CaCO,




Stage Ill: The CO, thermostat from
silicate weathering

CO, concentration J\

weathering

CO, flux degassing

100,000 years

Stabilizes Earth’s climate on time scales of ~100,000 years
Helps solve Sagan’s “faint young sun” paradox

Will determine the longevity of the climate impact from
fossil fuel CO, release to the atmosphere.



Long Tail Model Intercomparison Project
LTMIP
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Band saturation emphasizes the talil
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A geochemical joke

One gallon of gasoline

Usable energy: 2500 kcal

Unwanted greenhouse energy
over CO, lifetime:



A geochemical joke

One gallon of gasoline

Usable energy: 2500 kcal

Unwanted greenhouse energy
over CO, lifetime: 100,000,000,000 kcal

Hahahaha



SLUGULATOR Methane vs. CO» About this model  Other Models

Model Parameters Model Output over 10 years
CO,, spike size 1 IGtonC Energy Energy Warming
. . Yield Trapped Time
Chyspke size 1 | Gton C From Fossil Time Int. Rad. Integrated
Climate sensitivity 3 deg C for doubling CO, Fuel Forc. Deg.C*
21 21
Efficacy of CH, radiative forcing 1.2 10%" Joules  10%' Joules  Years
‘ from
CO, 0.038 2.398 0.038
fé%": 0.074 41.486 0.762
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SLUGULATOR Methane vs. CO»>

Model Parameters

CO, spike size 1
CHy, spike size 1
Climate sensitivity 3
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About this model Other Models

Model Output over 1000 years
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Sea Level
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Sea Level
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Other Slow Impacts

Melt permafrost (centuries), releasing
carbon

Warm the deep ocean (1000 yrs)
Thaw methane hydrate
Decreased O, solubllity
Whatever the Glacial / Interglacial CO,
trick was
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Orbital Forcing of Climate
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Ice Volume

Irsolation, W/m2
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CLIMBER Model Nucleates an Ice Sheet

190 Northern Hemisphere ice volume
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Critical Insolation Value, W/m?
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pCO,, patm

Global T Offset, °C
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pCO,, patm
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pCO,, patm

Global T Offset, °C
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CO, vs. CH,

CO, poses a “trap” for humanity
now vs. future
persists essentially forever.

CH, we emit will subside within our time
except for ocean “heat pollution”

CO, emissions are the main issue, CH, is frosting.



TOWARD A HYDROGEN ECONOMY

REVIEW

Stabilization Wedges: Solving the Climate Problem
for the Next 50 Years with Current Technologies
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Table 1. Potential wedges: Strategies available to reduce the carbon emission rate in 2054 by 1 GtC/year or to reduce carbon emissions from
2004 to 2054 by 25 GtC.

Option

Economy-wide carbon-intensity
reduction {emissions/$GDP)

1l

10.

11.

12.

13.

14.

15.

Efficient vehicles

. Reduced use of vehicles
. Efficient buildings

. Efficient baseload coal plants

. Gas baseload power for coal

baseload power

. Capture CO, at baseload power

plant

. Capture CO, at H, plant

. Capture CO, at coal-to-synfuels

plant

Geological storage

. Nuclear power for coal power

Wind power for coal power

PV power for coal power

Wind H, in fuel-cell car for
gasoline in hybrid car
Biomass fuel for fossil fuel

Reduced deforestation, plus
reforestation, afforestation, and
new plantations.

Conservation tillage

Effort by 2054 for one wedge, relative to 14
GtC/year BAU

Energy efficiency and conservation

Increase reduction by additional 0.15% per year
{e.g, increase U.S. goal of 1.96% reduction per
year to 2.11% per year)

Increase fuel economy for 2 billion cars from 30 to
60 mpg

Decrease car travel for 2 billion 30-mpg cars from
10,000 to 5000 miles per year

Cut carbon emissions by one-fourth in buildings
and appliances projected for 2054

Produce twice today's coal power output at 60%
instead of 40% efficiency (compared with 32%
today)

Fuel shift
Replace 1400 GW 50%-efficient coal plants with
gas plants (four times the current production of
gas-based power)

CO, Capture and Storage (CCS)

Introduce CCS at 800 GW coal or 1600 GW natural
gas {compared with 1060 GW coal in 1999)

Introduce CCS at plants producing 250 MtH,/year
from coal or 500 MtH,/year from natural gas
(compared with 40 MtH,/year taday from all
sources)

Introduce CCS at synfuels plants producing 30
million barrels a day from coal (200 times Sasol),
if half of feedstock carbon is available for
capture

Create 3500 Sleipners

Nuclear fission
Add 700 GW (twice the current capacity)

Renewable electricity and fuels

Add 2 million 1-MW-peak windmills (50 times the
current capacity) “occupying” 30 X 10¢ ha, on
land or offshore

Add 2000 GW-peak PV (700 times the current
capacity) on 2 X 10° ha

Add 4 million 1-MW-peak windmills (100 times the
current capacity)

Add 100 times the current Brazil or U.S. ethanol
production, with the use of 250 X 10° ha
{one-sixth of world cropland)

Forests and agricultural soils
Decrease tropical deforestation to zero instead of
0.5 GtC/year, and establish 300 Mha of new tree
plantations (twice the current rate)
Apply to all cropland (10 times the current usage)

Comments, issues

Can be tuned by carbon policy

Car size, power
Urban design, mass transit, telecommuting
Weak incentives

Advanced high-temperature materials

Competing demands for natural gas

Technology already in use for H, production

H, safety, infrastructure

Increased CO, emissions, if synfuels are
produced without CCS

Durable storage, successful permitting
Nuclear proliferation, terrorism, waste

Multiple uses of land because windmills are
widely spaced

PV production cost
H, safety, infrastructure

Biodiversity, competing land use

Land demands of agriculture, benefits to
biodiversity from reduced deforestation

Reversibility, verification



1 Trillion tons of C => 2 °C peak warming

a |dealized CO, emission profiles

b Composition response to benchmark

€ Temperature response to benchmark
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Figure 1| Idealized carbon dioxide emission scenarios and response to
benchmark scenario. a, Emissions, including zero emissions after 2000
(dotted black line). Solid red and orange lines show scenarios with
cumulative emissions 1750-2500 within 1% of 1 Tt C. Solid red line shows
benchmark case and dotted red line shows the ‘490 p.p.m. stabilization’
scenario. b, CO, concentration response to benchmark scenario with best-fit
combination of simple climate model parameters (solid red line) and with
random parameter combinations shaded by likelihood (grey plume). The
vertical scale bar shows the corresponding likelihood profile for a normally

2200 2300 2400 2500
Year

0 L 1 . ! 1 !
1900 2000 2100 2200 2300 2400 2500
Year

distributed quantity, with black line showing 5-95% (horizontal tickmarks:
17-83%) confidence interval. The dotted red line shows best-fit response to
stabilization scenario. ¢, Temperature response to benchmark scenario from
simple model: best fitin red and likelihood profile in grey. Bar on right shows
likelihood profile for peak warming response to ‘490 p.p.m. stabilization’
emissions scenario: in cases where temperatures are still rising in 2500,
equilibrium warming response to 2500 CO, concentration is plotted.
Diamonds in b and ¢ show observed CO, concentrations and temperatures
(relative to 1900-1920), respectively.

Allen et al 2009



Gton C / yr
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Already released: 1/2 trillion tons
0.3 from fuels
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Costs (cuts / year) go up if we wait



Fossil fuels are mostly coal
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Conclusions

The impacts of global warming will last for millennia
(not just a few centuries).

Lesson from the past: Sea level is 100x more sensitive to
Earth’s temperature on thousand-plus year timescales
than the forecast for the year 2100.

Forget methane: Keep your eye on the ball, which is CO,






