

Gordon Research Conference Environmental Nanotechnology

http://www.grc.org/programs.aspx?id=14914 June 21-26, 2015 Mount Snow Resort West Dover, VT

Fate of Engineered Nanomaterials in Wastewater Biosolids, Land Application and Incineration (WERF #U1R10)

Paul Westerhoff, Ph.D., PE

Professor of Environmental Engineering & Associate Dean For Research

Arizona State University (Tempe, AZ)

Contributors:

K. Hristovski, Yu Yang, P. Herckes

Should we be concerned?

Should the public be concerned? History of Emerging Pollutants in Water

Level of Concern

All nano is

US Invests ~ \$1.5B/year in Nano R&

BAD nano

Nanoparticles operationally defined as < 100 nm in at least one-dimension

Where is Nano being Used in Society?

Figure 1. Estimated global mass flow of ENMs (in metric tons per year) from production to disposal or release, considering high production and release estimates as of 2010. Production data are from ref 14, without modification.

Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local Arturo A. Keller* and Anastasiva Lazareva

Westerhoff Lab Focus

Presentation Outline & Goals

- Understand sources & fate of engineered nanomaterials in sewage systems
- Demonstrate analytical techniques required to assess nanomaterial exposures
- Begin dialog on a national nanomaterial monitoring program

Exposure Assessments for Nanomaterials Requires Rethinking Analytical Methods

- Metalic NPs: TiO₂, Ag, SiO₂, CeO, Au
 - Single-Particle ICP-MS
 - FFF/SEC-ICP-MS
 - TEM / SEM
- Carbonaceous: fullerenes (C₆₀) & nanotubes & graphene
 - LC/MS
 - HPLC
 - Thermal combustion
 - Raman

W Nanoprospecting across urban water gradient using Single Particle-ICP-MS River Tap WW Effluent

seconds

(g)

(h)

seconds

(i)

Lee et al. (in-prep)

seconds

Cloud-point Extraction of Waters

Ojeda.,et.al., Microchimica Acta, 2012 Hartmann et al., Anal. Chem, 2014

TEM on Cloud-Point Extracted water sample from Salt River, AZ

Where did they come from?

Sources of Nano Into Sewers

Product Line A – Polishing Agents

Chemical-Mechanical Polishing (CMP) fluids

са

Silica

 CMP Use is ~100 mL / wafer: 0.2 mg/L in sewage (5%NP @ 100 galCMP/d into 25 MGD)

- On-site industrial treatment designed to remove Cu, As, F, etc in wastestreams & NOT CMP nanoparticles
- Release Potential: One fullscale system removed >98% of Al and Ce, but only 50% of Si
- NPs accumulate in settled solids which are landfilled
- NPs in treated effluent enter municipal sewer system

Product Line C Example: LED lighting

HF and HNO3(1:4 v/v). 0.041g substrate was used, the sample was diluted into 25.25mL.

Product Line D

Example: Silver from fabrics

- Tremendous press
- Assessed removal by activated sludge at wastewater facility
- Others developed standardized approaches using soap, heat, mixing
- Others have looked at LCA views
- Data used to estimate potential exposure levels and loading

Benn & Westerhoff, ES&T 42:11:4133-4139 (2008)

Leached Material

washwater. Inset: EDX confirmation that the dark particles within th FIGURE 4. TEM image of colloidal circle are predominantly silver.

Silver from other fabrics

Product	Silver content (ug Ag per	Size Frac	into 500 mL tap		
	gram product)	Total	< 100 nm	< 20 nm	Total silver released per product mass [µg-Ag/g- product]
Athletic Shirt	30	27 ± 1.4	20 ± 0.5	11 ± 1.2	0.56 ± 0.01
Unfinished Cloth	44	22 and 47	12 and	12 and 13	0.5 and 1.1
Fabric	and the second se		16		
Medical Mask	270,000	15.8	14.8	14.8	11
Medical Cloth	230,000	13.8	13.3	13.3	46
Yellow Cloth (towel)	270	< 5	< 5	< 5	< 1.0
Teddy Bear	70 (foam)	< 5	< 5	< 5	< 0.2

2

Spot Magn

Magn Det WD H

Acc.V

0.00 kV 3.0

Only some fabrics leached nano-sized silver

Benn et al., J. Environmental Quality, 39:1-8 (2010)

Product Line B – Dispersed in Products

Product	Size Frac	Size Fraction of Silver released (%)			
	< 100 nm	< 20 nm	Total silver released per product mass [µg-Ag/g- product]		
Toothpaste	40%	12%	18		
Shampoo	41%	32%	0.9		
Detergent	16%	4%	1.8		

Benn etial), J. Environmental Quality, 39:1-8 (2010)

Highly variable silver content observed because unequal distribution in products

Silver Nanoparticles in washwater from toothpaste (advertized to contain 100 pm Ag)

Benn et al., J. Environmental Quality, 39:1-8 (2010)

Fullerenes From Cosmetics

- Common cosmetic formulation disperses fullerenes using polyvinylpyrrolidone (C₆₀-PVP)
- LC/SMused to detect fullerenes (C₆₀ and C₇₀).
- C₆₀ was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C₇₀ was qualitatively detected in two samples.

 A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C₆₀ and demonstrates a pathway for human exposure to engineered fullerenes.
Benn et al., Environ. Poll. (2011)

Titanium in Food

Magically Disappears?

Titanium content of foods

TiO₂ from Candy Coating on Chewing Gum

Multi-phase products have un-even TiO₂ distribution

Figure SI.3 Comparison of titanium content in outer chewing gum shell versus inner gum base for two types of chewing gums

Human exposures to Nano is real

Sunscreens, Toothpaste, and Personal Care Products (titanium)

Normalized (ug/mg)

Orange: Sunscreen with Ti listed on label

But is there hazard?

Characterization of nanomaterials in metal colloid - containing dietary supplement drinks and assessment of their potential interactions after ingestion Robert B. Reed^{1*}, James J. Faust², Yu Yang¹, Kyle Doudrick¹, David G. Capco², Kiril Hristovski³, and Paul Westerhoff¹

Figure 1. Representative TEM images of NMs found in supplement drinks.

Figure 4. SEM images of microvilli exposed to $1 \ \mu g/cm^2$ NMs (3.5 $\mu g/mL$), except "A", which is an untreated control. After exposure to NMs from supplement drinks, both the normal organization and the number of microvilli changed compared to untreated controls. Large spherical particles (>250 nm) are membrane blebs.

Part I - Summary

- Products potential to release NMs into the environment can be grouped into 4 product lines
- NMs are released from commercial products into sewage wastewater

Raw Product

Part 2 – NM removal in Wastewater Treatment Processes

Titanium at Full Scale WWTPs

Kiser et al., EST 2010; Westerhoff et al., JEM 2011

Titanium at Full Scale WWTPs

Different Facilities	Titanium Content of water (ugTi/L)			
	Headworks	Effluent		
Activated sludge	615	5		
Act. Sludge + filter	180	7		
Activated sludge	363	3		
Activated sludge	141	2		
Activated sludge	581	18		
Activated sludge		8		
Activated sludge	233	2		
Trickling filter	549	13		
Membrane bioreactor	310	1		
(MBR)				
MBR	422	4		
Average	377	6		

Primary Settling

Removal of nanomaterials that are aggregated to clays, bacteria or other solids > 20 um in size

Removal of nanomaterials occurs when they interact with biofilms or biosolids

Batch Sorption Experiments

- Fresh wastewater biomass
- Mixing and settling times mimic hydraulic residence times at plant
- Analyze settled supernatant
- Can readily screen many properties
- Quick test
- Standard EPA method exists for organic pollutants using freeze-dried biomass too

NP + 400 mg TSS/L Biomass Sorbent

Nanoparticle Control (No Biomass Sorbent)

•••

NP + 800 mgTSS/L Biomass Sorbent

Nanomaterial Interaction with Wastewater biosolids

L**L** naño

Kiser et al (in prep); Kiser et al., WR, 2010

- OPPTS 835.1110 Activated Sludge Sorption Isotherm
- Uses freeze-dried biomass
- Validated for organics, and has been used for metals
- Data here shows fresh and freeze-dried biomass provide comparable removals when applied at similar mgTSS/L biomass

Does OPTT Test work for NPs?

 Fresh and rinsed biomass shows much more capacity for NMs than freeze-dried biomass

Effect of heating may inform important sorption mechanism

Graphene Oxide Initial Concentration = 25 mg/L

After mixing for 3 hrs and settled for 30 min

Biomass: 50 mg/L 100 mg/L 500 mg/L 1000 mg/L 2000 mg/L 3000 mg/L GO control

Supernatant after centrifuged at 1000 G for 5 min

Biomass: 50 mg/L 100 mg/L 500 mg/L 1000 mg/L 2000 mg/L 3000 mg/L

GO Association with Biomass

Application to FLG sorption to Biomass

- Fixed biomass concentration
 - 50 mg/L
 - Higher biomass concentrations are now capable with optimized digestion method
- Variable initial graphene concentration
 - 0.3 to 8.3 mg/L
 - Lower than with UV/VIS
 - Very small background PTA signal from 50 mg/L biomass
- Consistent removal (10±3%) of graphene by 50 mg/L biomass

Removal of nanomaterials occurs when they interact with biofilms or biosolids

2.5 L SRT = 6 to 10 days Influent COD: ~750 mg/L Influent NP: 0.07 to 2 mg/L

Modeling NP Removal

Hypothesis: Batch NP sorption experiments linked with dynamic bacterial growth models and reactor models can predict nanomaterial removal

Example:

Isotherm in batch reactor Fresh biomass 10 nm diameter citrate functionalized nano Silver Linear Partition Coefficient for : K = 0.0144 L/g

Model Predictions

Conclusion: Preliminary confirmation exists that we can go from batch experiments to simulations of continuous flow performance. Difference in NP effluent concentration probably related to NP association with non-settlable colloids

Under typical TSS levels (1500-3000 mg/L) greater than 90% of even highly negatively charged NMs will *distribute* into biomass

Big Picture – EPA Composite Biosolids

TiO₂ in commercial products are similar to TiO₂ extracted from biosolids

TiO₂ in Toothpaste

TiO₂ in Biosolids

Nano-scale objects found in Biosolids

Frequent Nano-structures

Nanomaterial Composition (likely material)	Approximate size
Au+ Pd (catalyst)	200 to 500 nm
Au	200 nm
Al+Pt (catalyst)	1000 nm
Ag+S (silver sulfide)	200 nm
Fe+Ti+Si+O (clay)	500 nm
Bi	400-500 nm
Ba+S+O (barium sulfate)	500 nm
Fe + O (iron (hydr)oxide)	400 nm
Zn+O (zinc oxide)	250-400 nm
Ca+O (calcium carbonate)	300-600 nm
Ca+P+O (calcium phosphate)	600 nm
Sb+O+Na	250 nm
Ti+O (titanium dioxide)	100-300 nm
Ti+O+P (phosphate covered TiO2)	300 nm
Pb + O (lead oxide)	100-300 nm
Ta+Na+O (sodium tantalate – catalyst)	<100 nm to 300 nm

LC

Where do Biosolids Go?

Value of metals in Biosolids 26 kg/year-capita & 1,000,000 people (2863 tons dry biosolid per year)

Total Value = \$12Million / year

USDA Field Site Near Austin, TX Long-term Biosolid Applications

- Composite depth profile samples
 - 0 30 cm
 - 30 70 cm
 - 70 100 cm
- HNO₃/HF digestion
- ICP-OES for Ti, Ce, and Ag
- HR-TEM and EDS analysis

Titanium in Land Applied Fields

TiO₂ Nanomaterials are present in Biosolid Ammended Fields

Silver Results

Soil-Sand Partitioning of NMs

Concentration of fn-Ag (mgAg/L)

Unpublished work by ASU Cornelis et al., Solubility and Batch Retention of CeO2 Nanoparticles in Soils, EST, 2011

Substrate Induced Respiration (28 day)

Basal Respiration Tests CeO₂ increases CO₂ production

Key Points

- Nano can be "good" or "Bad" & are emerging contaminants
- Nanomaterials are already in use & entering sewage systems
- Nanomaterials generally accumulate in biosolids, but some can be detected in effluents
- New analytical techniques are being applied and needed to track nanomaterials
- Nanomaterials accumulate at interfaces
- Nanomaterials have unique properties that require new fate & transport paradigms

Behaves more like a

LC

Behaves more like a colloid

A Matter of Perceptive

when do ENMs behave more like classical colloids rather than dissolved macromolecules?

Acknowledgements

- Water Environment Research Foundation (WERF)
 - Paul L. Busch Award 2006
 - Project U1R10
- Water Research Foundation (formerly AwwaRF) Project 4334
- NIH/NIEHS NIH/NIEHS Nano-Go Funding: RES018801Z
- NSF *(CBET 1336542)*
- Contact: p.westerhoff@asu.edu

