Generating Energy Through Co-Digestion

City of Fort Worth Village Creek Water Reclamation Facility

Ana J. Pena-Tijerina, Ph.D., P.E., BCEE VCWRF Technical Services April 25, 2014 Metropolitan Water Reclamation District of Greater Chicago

Outline

- VCWRF Description
- Journey to Achieve Energy Independence
 - Gas Turbines
 - JCI Energy Performance Contract
- Co-Digestion Phases
 - Planning
 - Implementation
 - Operation
- Lessons Learned

Water Reclamation Facility Treatment, Recovery and Reuse

Journey to Achieve Energy Independence

Electrical Utilization

Energy Production...

Operational Parameters

PARAMETER	RANGE OR TARGET
pH Range	6.8 - 7.4
Temperature	95°-99°
Detention Time	≥15 Days
Volatile Acids	<500 mg/L
Alkalinity	~3000 mg/L
Feed Total Solids %	>2.5%
% Volatile Solids Destruction	≥38%

Operational Challenges

No efficient mixing with gas compression

Operational Challenges

Grit accumulation & loss of treatment volume

Energy Conservation & Recovery

Achieved with the JCI Energy Savings Performance Contract which goals were:

- To improve energy efficiency and enhance energy reduction
- Total project cost of \$36,756,399
- Guarantees an annual O&M and electrical savings of \$3,184,757
- 12 year payback
- No rate impact

JCI Energy Savings Performance Contract Projects

Facility Improvement Measures (FIMs):

- 1. Diffuser Replacement
- 2. Heat Recovery Steam Generation
- 3. Digester Mixing & Co-Generation Facility
- 4. SCADA replacement
- 5. Anoxic zones
- 6. HVAC, Power Factor Correction, pump efficiency

Estimated Electrical Savings

Energy Recovery & Production Schematic

Planning Phase

- 1. Why consider it?
- 2. Type of substrate
- 3. Screening sources
- 4. Financial and contract considerations

Leveraging The Opportunity

Numerous industries in or near Fort Worth with High Strength Wastes (HSW)

Delek

US

 Batter dumps & DAF float from food processors

 Glycerin and organic acids from biodiesel facility

City's Objective

- City's main objective was to assure reliable, long-term, low-risk supply of HSW to increase biogas production.
- Potential HSW suppliers identified through pretreatment program
 - Contacted with waste characterization surveys
 - Evaluated/accepted on a case by case basis

HSW Hauler's Requirements

- COD > 50,000 mg/L, prefer > 100,000 mg/L
- Pumpable at ambient temperature
- Minimal suspended solids, especially inert solids
- High volatile solids
- No pH adjustment necessary
- No pollutants that threaten digester performance or sludge quality (i.e. heavy metals, sanitizers, sulfates)

HSW Contracting Process

- Conducted by Pre-treatment Services
- Solicit interest from interested parties
- Receive/evaluate potential waste streams
- Procure agreements
 - Accountability, key contact info
 - Contract period
 - Fees
 - Indemnification/liability
 - Delivery mechanisms and time frames (customers arrange for delivery – at their expense – and at prescribed schedule)

Implementation Phase

- 1. HSW fed to six digesters
- 2. Improvements to mixing systems
- 3. Design considerations
- 4. Design build type project

Based on Dr. Leonard Ripley's Slides

Why Implement Co-Digestion?

47

%

1 MG sludge digester:

- 200 lb VSS/kft³-day,
- 75% VSS destruction,
- 10 ft³ CH₄ /lb Δ VSS,
- Methane yield =
 - 8,360 SCF/hr
- Energy yield =
 - 8.0 MM BTU/hr

1 MG co-digestion:

- 2.0 kg COD/m³-day,
 - 90% COD destruction
- 6.3 ft³ CH₄ /lb \triangle COD,
- CH₄ yield =
 - 3,940 SCF/hr
- Energy yield =
 - 3.8 MM BTU/hr

Energy Recovery & Production Chart

Feed Distribution Options

Feed Selected Option

Digester Modifications

Mixing: Linear Motion Mixers

Feed: PVC header and valves, open to pulse-feed cycles

Receiving Station

- Dedicated truck ramp, with containment curbs, drain, and wash-down sump
- 30,000-gal mix tank, with chopper pumps, jet mixing and heat exchanger

Metering System

- Two 6,000-gal batch tanks, each with recirculation mixer, and heat exchanger
- PLC to feed operator-specified volume to digesters in pulses.

Operational Phase

- 1. Receiving station
- 2. Scheduling deliveries
- 3. Monitor gas production
- 4. Monitor performance

Receiving HSW

- Clear through security
- Installation of cameras and good lighting
- Operator/supplier offload to complete manifests
- Offloading takes approximately 30 minutes
- Limited storage (ensure tank capacity to offload)

Scheduling Deliveries

- Started slowly in Sept 2012, with filtrate from Liquid Environmental System's grease processing facility
- Gradually added other wastes:
 - South Waste
 - Delek biodiesel
 - Coca-Cola
- Others pending

Gradually Increase of Deliveries

Monitor Performance

- Set feed-rate to match expected deliveries (for consistent, effective gas production)
- Sufficient waste to get through the night/weekend
- Monitor (feed rates, waste characteristics, temperature, digester performance, etc.)

Courtesy of Dr. Leonard Ripley

Overall Gas Utilization

Performance Monitoring

	-			011000	Service and a service of the service	v			*****	1010100
DIG#	TEMP.	TS%	TS %VOL	РН	TOT.ALK.	VOL. ACID	VA/ALK ratio		TSS(MG/L)	%Vol.
1	96	2.60	58.04	7.09 β1	25	887	0.28	BLEND TANK	34525	64.2
2	93	2.36	57.84	7.1029	50	717	0.24	DS1 (1-6)	22425	55.3
3	97	2.46	56.05	7.14B	25	687	0.22	DS2 (7-10)	26625	56.3
4	96	2.28	56.69	7.2480	00	729	0.24	DS3 (11-14)		
5	98	2.69	55.58	7.1129	50	620	0.21	DS4 (ALL)	22800	53.7
6	95	2.42	55.01	7.14B	00	711	0.23			
7	95	2.33	55.26	7.243	50	848	0.27			
8	97	2.59	57.10	7.213	75	790	0.25			
9	98	2.34	57.48	7.2333	00	826	0.25			
10	97	2.34	56.41	7.218	50	665	0.20			
11	97	2.56	54.49	7.2834	25	975	0.28			
12	99	2.78	54.41	7.2383	75	814	0.24			
13	99	3.05	57.34	7.258	00	845	0.23			
14	98	3.05	55.91	7.29β	00	668	0.19			

Lessons Learned

- 1. Planning is critical
- 2. Efficient mixing system
- 3. Balancing sink/sources

Lessons Learned

- HSW planning is critical ... know what you're getting.
 Village Creek has chosen to be very "picky" about its suppliers to reduce risk of upsets
- Efficient mixing is critical for Co-Digestion
- Balancing financial drivers:
 - Steady, reliable biogas production
 - Divert organic loading from liquid treatment
 - Tipping fee revenue

Challenges

- Equalizing HSW loading from weekdays to weekends
 - High temperature of HSW from grease processors greater than 130°F
 - Odors from truck unloading
 - Balancing heat sink/sources

3

VCWRF Flying Towards Energy Neutrality... The Sky's the Limit