Stickney WRP Plant Upset – October 25, 2013

Process Control Observations

Stickney Water Reclamation Plant October 26-31, 2013

October 25, 2013 (Permit NH₃ – 1.02 mg/L)

- Plant flow was 450 MGD, Batt. B was o/s from 9am to 3pm
- At ~10am NH_3 begins to rise in aeration tanks
 - Battery B placed in service at 3pm
 - At 3:53pm blower output increased due to rising plant NH₃ (Outfall @1.06 mg/L)
 - Outfall ammonia continues to rise to 2.53 mg/L by 9pm

October 26, 2013 (Permit NH₃ – 9.44 mg/L)

• At 4:15am, SW pumps o/s and all flow sent to Batts A&B, believing that high NH_3 coming in through SW (outfall – 9.90 mg/L) Third blower i/s at 6:30am (outfall – 11.9 mg/L) WD contacted to sample for toxic waste at 8:30am At~6pm M&R takes MLSS samples and determines that nitrifiers are compromised. At 11:20pm OEs test North Side Sludge line for reseeding, leak discovered

Reseeding from the North Side Sludge Line

North Side Sludge Line Leak at Concentration

October 27, 2013 (Permit NH₃ – 18.10 mg/L)

At 2:25am, "WAS only" solids leave North Side WRP plant- travel time is ~16 hours At 4am, outfall is 26.36 mg/L Trades mobilized to work on North Side sludge line overflow 5pm, reseeding starts at a rate of 1.4 MGD, 0.8 MGD to concentration d 1pm, outfall NH₃ is 20 mg/L

October 28, 2013 (Permit NH₃ – 14.43 mg/L)

Microbiology recommends minimal wasting to rid zooglea masses while reintroducing nitrifiers 11am, 50 lbs of powdered bacteria introduced into Battery A aeration tanks • At 11:45am TARP pumpback begins and is directed to Batts C&D, WS flows isolated to Batts A&B Battery NH₃ effluents at noon A-10.32, B-10,93, C-19.42, D-19.18 mg/L

October 29, 2013 (Permit NH₃ – 9.24 mg/L)

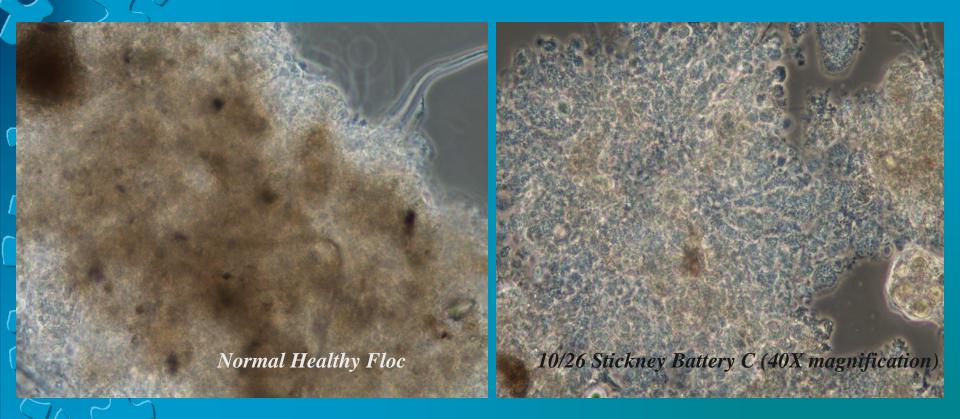
12:55pm Battery A RAS sent to Battery D for reseeding 5:35pm reseeding of D ceased Draining of two Battery C aeration tanks for reseeding on Oct 30th Battery NH₃ effluents at noon A-0.53, B-5.70, C-24.70, D-29.00 mg/L

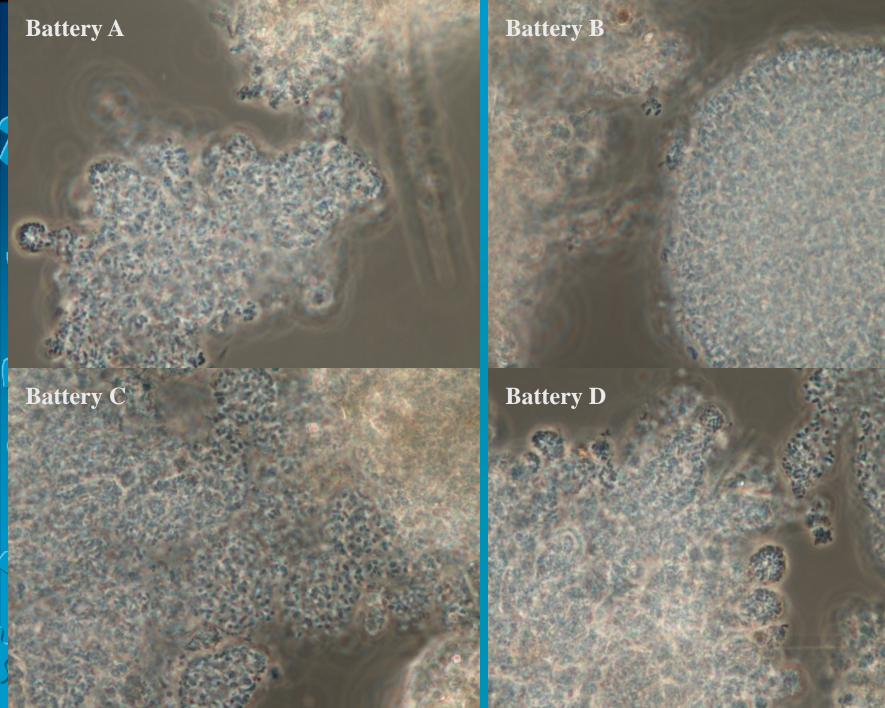
October 30, 2013 (Permit NH₃ – 4.72 mg/L)

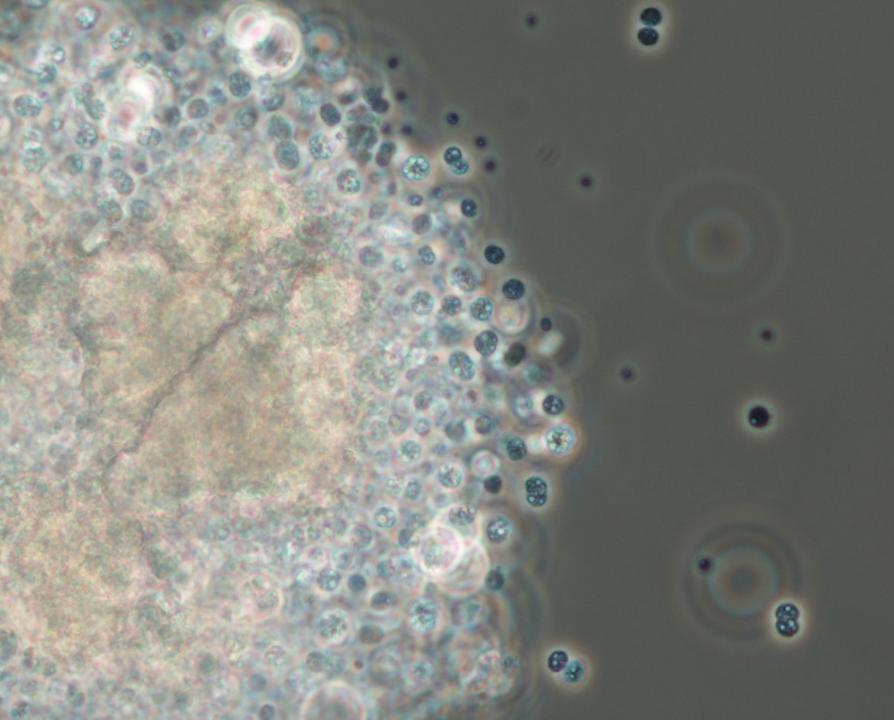
Reseeding of Battery C starts at 7:50am
By midnight the plant receives 0.47" of precipitation w/forecast of an EPE
Battery effluents at noon A-0.25, B-4.16, C-19.54, D-13.71 mg/L

October 31, 2013 (Permit NH₃ – 1.78 mg/L)

Plant receives an addition 3.09" of precipitation, TARP full
Battery effluents at 7:45am A-2.42, B-1.72, C-


4.10, D-3.10 mg/L


Battery effluents at 1pm A-0.33, B-0.46, C-0.28, D-0.13 mg/L


Microscopic Observations

Stickney Water Reclamation Plant October 26-November 1, 2013

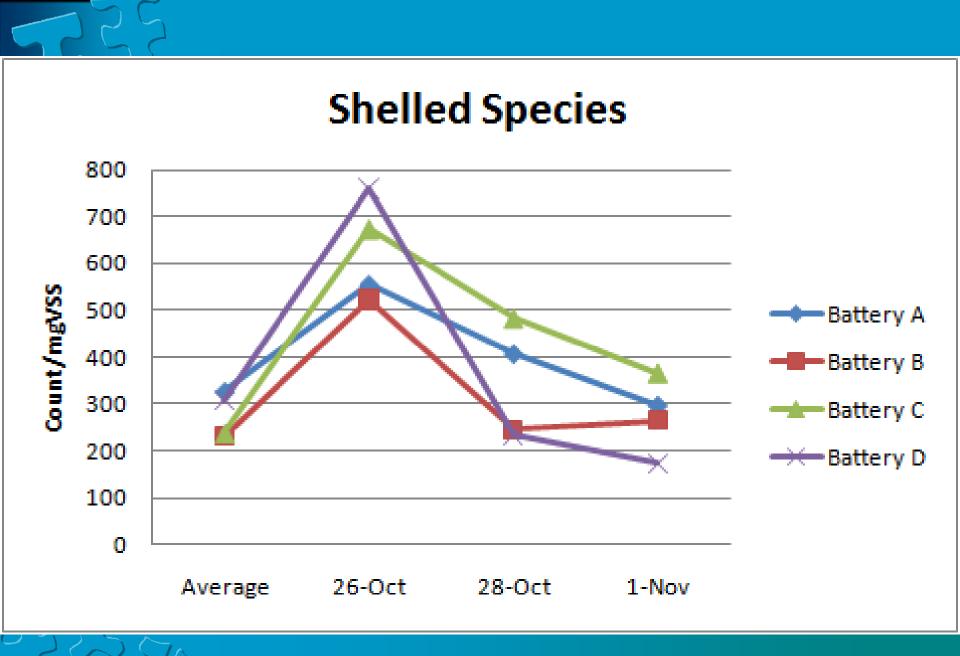
Zoogleal Mass Index



222

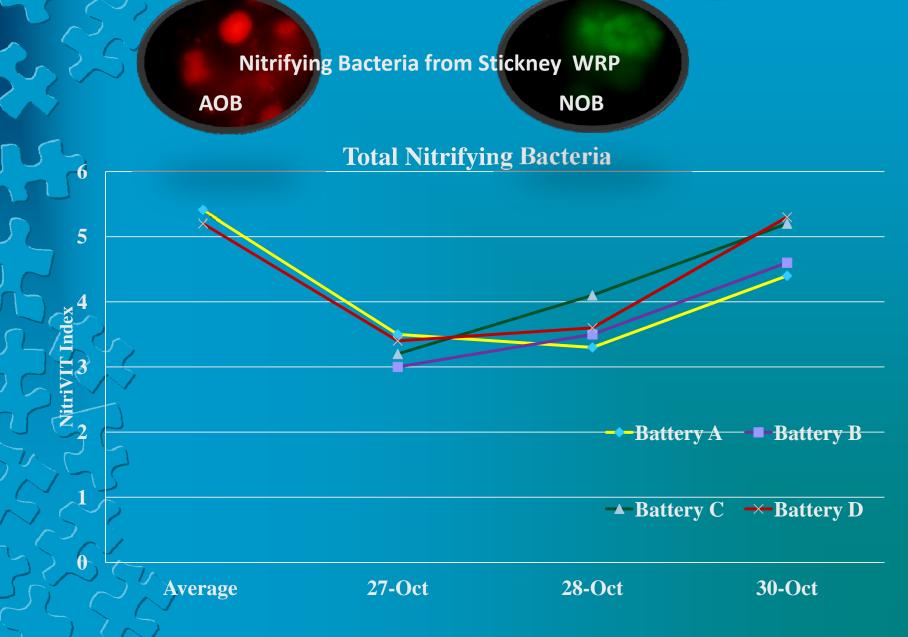
Zooglea Mass Index

Zoogleal Mass Index


	Average	10/26	Maximum prior to 10/26
Battery A	136	575	195
Battery B	230	650	354
Battery C	102	892	134
Battery D	196	729	328

Protozoa and Metazoa

Shelled Protozoa & Metazoa


Additional Observations

Additional Observations

VIT Gene Probe Technique

Toxic Effects*

Cadmium is the most highly toxic metal for the microbial communities present in the activated sludge process, followed by copper, and lastly zinc.

*MaD. COELLO OVIEDO et al., Toxic Effects of Metals on Microbial Activity ..., *Chem. Biochem. Eng. Q. 16 (3) 139–144* (2002)

Conclusions

- Microscopic evidence of acute stress to the microorganisms.
- Impact large enough to affect all major microbiological populations.

Wastewater Treatment & Process Research Observations Stickney Water Reclamation Plant

October 26-31, 2013

M&R WTPR section Actions

- Biological health in the aeration tank
- Eight (8) field OUR tests of aeration tank ML
- Nitrification activity
 - Sixty six (66) lab OUR tests of aeration tank ML and thickened WAS from Calumet and Egan WRP w/ and w/o NH₄ spike
- Heterotrophic activity
 - Ten (10) lab OUR tests of aeration tank ML w/ and w/o sugar spike to check if heterotrophs were affected
- -Nitrification rates
 - Twenty four (24) respirometer nitrification tests of ML and WAS samples
- Toxicity of upset sludge
 - Eight (8) lab OUR tests of seeded WAS and Battery A ML mixed with slow responding aeration tank ML w/ and w/o NH₄ spike
- Monitored on line ammonia probe in Battery D
- Used operational change information from control room to guide lab tests
- Provided action suggestions to M&O based on lab test results

M&R Suggestions North Side WAS: positive nitrifier activity therefore suggested to seed Battery A • Calumet thickened WAS: no nitrifier activity therefore not suggested to use as seed sludge Egan thickened WAS: positive nitrifier activity therefore suggested to seed Battery D Cross seed slow responding batteries (C&D) with recovered battery sludge (A&B) Don't feed a few digesters w/ the affected sludge

Field OUR tests (mg O_2/L -hr)-10/26/13

	Field OUR (mg O2/L-h)											
	Battery	A	Batte	ry B	Batt	ery C	Battery D					
/	P1 (middle of pass 1)	P4E (end of pass 4)	P1 (middle of pass 1)	P4E (end of pass 4)	P1 (middle of pass 1)	P4E (end of pass 4)	P1 (middle of pass 1)	P4E (end of pass 4)				
	23.3	11.2	28.1	14.5	20.3	8.7	34.2	11.1				

Normal field OUR in the middle of Pass 1 (P1): ~ 50 mg O_2/L -h; by the end of pass 4 (P4E): ~10 mg O_2/L -h.

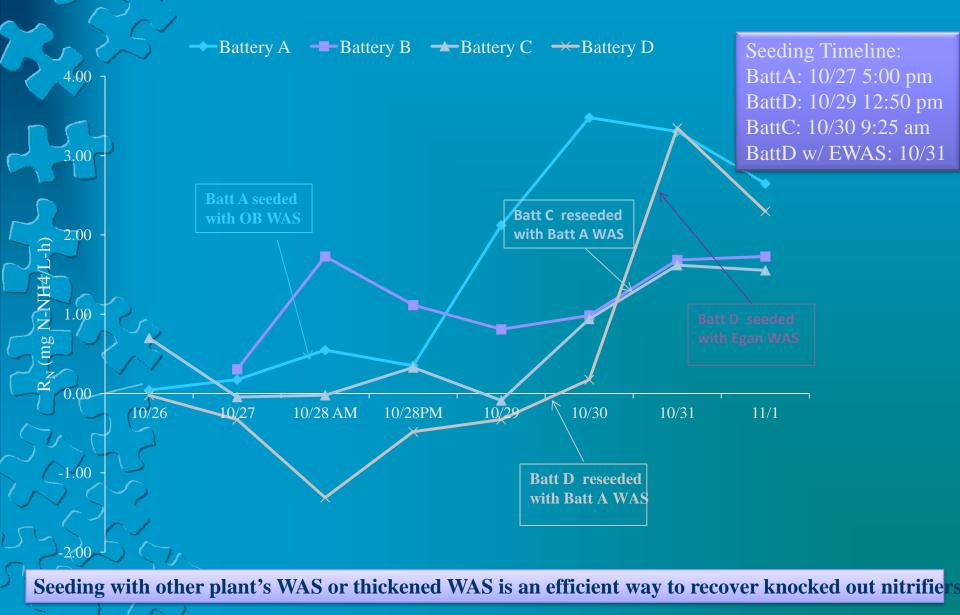
• OUR at P1 much lower than normal values.

The difference between P1 and P4E indicates some biological activity remained with elevated ammonia episode.

Lab OUR tests (mg O₂/L-hr)

		Battery A		Battery B			Battery C			Battery D		
Date		NH4	Carbon		NH4	Carbon		NH4	Carbon		NH4	Carbon
	control	Spike	spike	Control	Spike	Spike	Control	Spike	Spike	Control	Spike	Spike
10/26	11	11.2	nd	nd	nd	nd	5	8.2	11.5	13.8	13.7	15.2
10/27	12.7	13.5	15.3	11.5	12.9	15.6	13.6	13.4	18.6	21.3	19.8	25.2
10/28 AM	15.4	17.9	21.6	14.2	22.1	18.6	11	10.9	14.8	22	16	26.2
10/28 PM	17.4	19	nd	12.7	17.8	nd	8.9	10.4	nd	17.4	15.2	nd
10/29	14	23.7	nd	18.5	22.2	nd	14.8	14.4	nd	19.7	18.2	nd
10/30	11.7	27.6	nd	25	29.5	nd	11.1	15.4	nd	15.5	16.3	nd
10/31	13.7	28.8	nd	11.5	19.2	nd	11.8	19.2	nd	21.9	37.2	nd
11/17/	14.6	26.7	nd	17.8	25.7	nd	11.9	19	nd	11.6	22.1	nd

Recovered w/ higher nitrification rate (>1 mg NH4-N/L-h)


Highlighted area indicates recovery of nitrifier activity in the aeration tank.

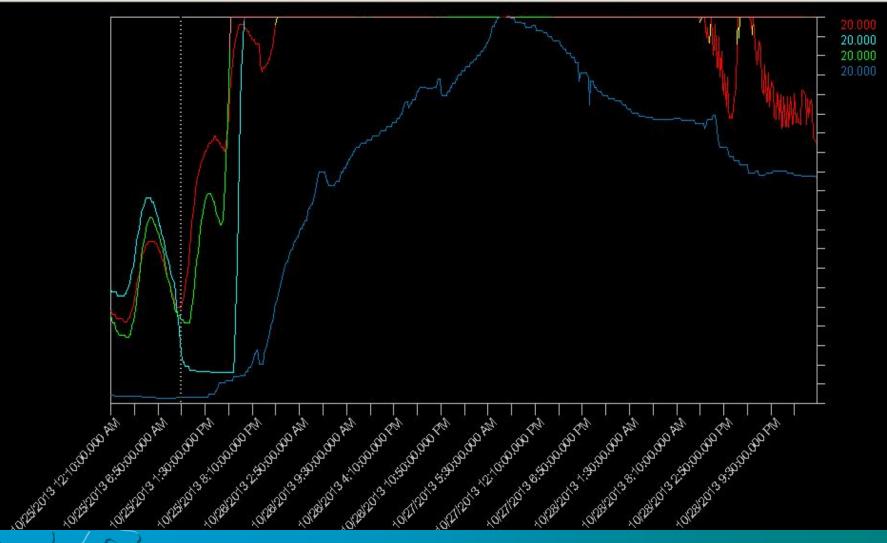
Lab OUR tests (mg O₂/L-hr) continued

hos	10/2	9/2013		10/30/2013					
BatC M	L+OB WAS	BatD ML	-+OB WAS	BatC ML	.+BatA ML	BatD ML+BatA ML			
control NH4 Spike		Control	NH4 Spike	control	NH4 Spike	Control	NH4 Spike		
40,1	43.6	42.4	46.0	17.8	21.1	19.4	20.9		

Batteries C&D activated sludge didn't show toxicity with reseed sludge because of increased OUR response.

Nitrification Rates Calculated from OUR

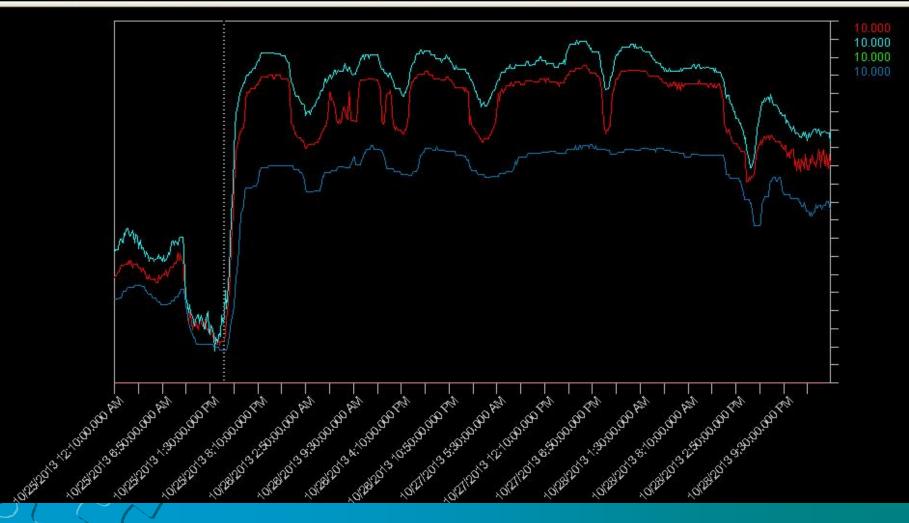
Lessons Learned •Plant Specific Emergency Reseeding •Real Time Monitoring of NH₃ Interceptor Discrete Sampling Change Early Warning Probe to End of 1st Pass


Sewer was blocked by large Pooh

Last updated 17 Feb 2014 00:03 GMT

Battery A, B, & C (end of pass 2) and Plant Outfall NH₃

HAI4225000A.UNIT0@NETC_OUTFALL_BLDG_NH3	0.318 T	PPM	Scale:	20.000	0.000 Actual Value
HAI4232000A.UNITO@NETC_BATTERY_C_AMMONIA_A	4.352	PPM	Scale:	20.000	0.000 Actual Value
HAI4222000A.UNITO@NETC_BATTERY_B_AMMONIA_A	2.541	PPM	Scale:	20.000	0.000 Actual Value
HAI4244000A.UNITO@NETC BATTERY A AMMONIA A	4.976	PPM		20,000	0.000 Actual Value
10/25/2013 10:10:00.000 AM					



Battery A End of Pass 2 DO probes

HAI27302020 UNITO@NETC BATA TANK 2 PASS 2 DO HAI27302040 UNITO@NETC BATA TANK 4 PASS 2 DO HAI27302060 UNITO@NETC BATA TANK 6 PASS 2 DO HAI27302080 UNITO@NETC BATA TANK 8 PASS 2 DO

1.150	PPM	Scale:	10.0
1.827	PPM	Scale:	10.0
0.000 🖯	PPM	Scale:	10.0
0.899	PPM	Scale:	10.0

0.000 Actual Value 0.000 Actual Value 0.000 Actual Value 0.000 Actual Value

