Metropolitan Water Reclamation District of Greater Chicago 10/19/201

# MECHANISMS OF CORROSION

Mark Joyce Senior Mechanical Engineer Engineering Department

#### **Definition of Corrosion**

Corrosion is the deterioration of a substance (usually a metal) or its properties because of a reaction with its environment

## **Significance of Corrosion**

- A 2002 study by the Federal Highway Authority (FHWA) showed direct losses due to corrosion at \$276 billion annually in the United States, or 3% of the GDP
- The US could save about \$100 billion a year through corrosion control
- It is usually more economical to control corrosion rather than eliminate it

#### **Annual U.S. Corrosion Cost**

#### www.corrosiondirectassessment.com



4

## **Drinking Water and Sewer System**

- Cost of replacing aging infrastructure
- Cost of unaccounted-for water lost through leaks
- Cleanup of spills
- Cost of accidents
- Cost of external coatings
- Cost of cathodic protection

## **Most Common Forms of Corrosion**

- Uniform Corrosion
- Galvanic Corrosion (Dissimilar Metals)
- Localized Corrosion
  - Pitting Corrosion
  - Crevice Corrosion
- Microbiologically Induced Corrosion (MIC)

## **Uniform Corrosion**

- Corrosion is uniformly distributed across the surface
- Is unsightly but typically takes a long time to progress to failure due to its non-localized nature
- Because of its high visibility and slow progress, it is the easiest to mitigate

#### **Uniform Corrosion**



#### **Galvanic Corrosion**

**Dissimilar Metals** 

- Occurs when two materials of different electrical potential are coupled together (e.g. bronze valve with a steel pipe fitting)
- One material will experience accelerated corrosion while the other experiences reduced, or zero, corrosion
- The majority of corrosion occurs at the interface of the two materials
- Can be very destructive due to its localized nature

#### **Galvanic Corrosion**

#### **Dissimilar Metals**



#### Pitting Corrosion Localized Corrosion

- Pitting corrosion is characterized by rapid deterioration of a small area of material
- Very destructive due to the depth of corrosion and its tendency to go unnoticed
- Thru-wall penetration of piping is common
- Can be caused by:
  - Flaws in a protective coating
  - Microbiologically Induced Corrosion
  - Wet thermal insulation
  - Stray current from a cathodic protection system

# Pitting Corrosion





#### Crevice Corrosion Localized Corrosion

- Like pitting corrosion, it is a localized corrosion that affects a small area
- Also like pitting corrosion, it is destructive due to its ability to quietly cause damage deep inside a material, usually out of sight
- Can be caused by gaskets, bolt heads, riveted lap joints, weld splatter, tape or paint
- More likely to be seen on metals that use a passive oxide film for protection, like stainless steel or aluminum

#### Crevice Corrosion Localized Corrosion



# Microbiologically Induced Corrosion

- Is caused by bacteria colonies (biofilm) parking themselves on a metal surface, like the inside of a pipe
- As part of their natural life process some of these bacteria produce sulfuric acid, others oxidize iron, leading to pitting corrosion
- Some bacteria do not damage the pipe directly but the biofilm can lead to crevice corrosion
- Bacteria love warm slow moving or stagnant water, like inside an out of service pipe leg

# Microbiologically Induced Corrosion MIC

#### **Biofilm inside pipe**

#### After cleaning of biofilm





#### **The Corrosion Cell**

The electrochemical process leading to corrosion requires four elements. When these four elements are connected, a circuit is formed and corrosion proceeds. *Removing any of these elements breaks the circuit and stops the process.* 

Anode
 Cathode
 Metallic Path
 Electrolyte



## **Corrosion Cell Elements**

- Anode the site from where electrons are removed and corrosion takes place. It is an area or material that is more electronegative than the cathode
- Cathode the site where electrons removed from the anode are consumed. It is an area or material that is more electropositive than the anode
- Metallic Path the metallic path carries electrons from the anode to the cathode
- Electrolyte the electrolyte allows ions to flow between the anode to the cathode

#### **The Corrosion Cell**

The electrochemical process leading to corrosion requires four elements. When these four elements are connected, a circuit is formed. *Removing any of these elements breaks the circuit and stops the process.* 

Anode
 Cathode
 Metallic Path
 Electrolyte



#### **Uniform Corrosion**



#### Uniform Corrosion at a Microscopic Level



#### **Galvanic Corrosion**

#### **Dissimilar Metals**



#### **Galvanic Series**

Gold More Cathodic Graphite 304 Stainless Steel (passive) Nickel Copper Bronze 304 Stainless Steel (active) Tin Lead Steel Aluminum Zinc Magnesium More Anodic

The galvanic series is a relative ranking of metals and semi-metals based on their electropotential, which is a natural property like density

The further apart two materials are on the series, the greater the difference in electric potential will be if they are coupled

#### **Anodic Index**

#### Dissimilar metal coupling should be kept under 0.15V

| Metallurgy                                                     | Index (V) |          |
|----------------------------------------------------------------|-----------|----------|
| Gold, solid and plated, Gold-platinum alloy, Graphite          | 0.00      | Cathodic |
| 300 Series Stainless Steel (passive)                           | -0.10     |          |
| Silver, solid or plated; High nickel-copper alloys             | -0.15     |          |
| Nickel, solid or plated, titanium alloys, Monel                | -0.30     |          |
| Copper, solid or plated; low brasses or bronzes; silver solder | -0.35     |          |
| Brass and bronzes                                              | -0.40     |          |
| High brasses and bronzes                                       | -0.45     |          |
| 300 Series Stainless Steel (active)                            | -0.50     |          |
| Tin-plate; tin-lead solder                                     | -0.65     |          |
| Lead, solid or plated; high lead alloys                        | -0.70     |          |
| Aluminum, wrought alloys of the 2000 Series                    | -0.75     |          |
| Iron, wrought, gray or malleable, carbon and low alloy steels  | -0.85     |          |
| Aluminum, wrought alloys other than 2000 Series aluminum       | -0.90     |          |
| Aluminum, cast alloys                                          | -0.95     |          |
| Zinc; galvanized steel                                         | -1.20     |          |
| Magnesium & magnesium-base alloys, cast or wrought             | -1.75     | Anodic   |

24

## **Anode/Cathode Area Ratio**

- Corrosion always takes place at the anode
- The amount of corrosion current (electron flow from anode to cathode) is determined by relative positions on the galvanic series
- Current density is the amount of corrosion current per unit area of anode
- For a given current, the smaller the anode the higher the current density
- The higher the current density, the faster the anode corrodes

Translation....

Big anode + small cathode = OK

Small anode + big cathode = AVOID

#### **Carbon Zinc Battery**

| metal cap (+)                       | A STATE OF THE STA |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (positive electrode)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| zinc case<br>(negative electrode)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| manganese(IV) oxide                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| moist paste of<br>ammonium chloride |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| metal bottom (-)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Pitting Corrosion Due to Coating Flaw**



#### **Crevice Corrosion**

#### **Localized Corrosion**



#### **Crevice Corrosion Cell**



#### Lockport Powerhouse Wicket Gates



#### Uniform Corrosion

- Protective coatings
- Use materials that are resistant to corrosion in that environment (e.g., stainless steel, aluminum)
- If possible, modify the environment to make it less corrosive

#### Galvanic Corrosion

- Break the metallic path by isolating the two materials using rubber, plastic, or dielectric fittings
- Choose materials close to each other on the galvanic series
- Design for favorable anode/cathode area ratios

#### Pitting Corrosion

- Use protective coatings and maintain them
- Proper selection of materials for the environment
- Modification of the environment
- Avoid materials that can hold moisture in contact with the substrate

#### Crevice Corrosion

- Minimize crevices wherever possible
- Use butt-welded joints instead of lap-welded or bolted joints
- Sealing of lap joints where they cannot be avoided
- Use materials with higher pitting resistance
- Provide surfaces that can easily be kept clean and free of debris

- Microbiologically Induced Corrosion (MIC)
  - Protective coatings
  - Avoid low to zero flow velocities
  - Mechanical cleaning
  - Chemical cleaning, if possible

#### Sources

- National Association of Corrosion Engineers (NACE) <u>www.nace.org</u>
- www.corrosion-doctors.org
- Society for Protective Coatings (SSPC) <u>www.sspc.org</u>
- Nickel Institute <u>www.nickelinstitute.org</u>
- American Galvanizers Association (AGA) <u>www.galvanizeit.org</u>
- American Concrete Institute (ACI) <u>www.concrete.org</u>