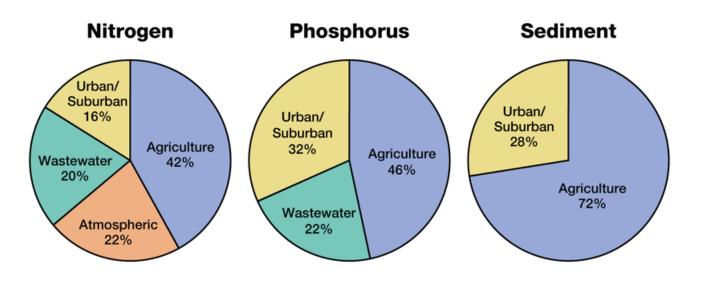

Nitrogen Removal Technology: Past, Present and Future-Blue Plains Advanced Wastewater Treatment Plant's Current Nutrient Regulation and Nitrogen Removal Processes

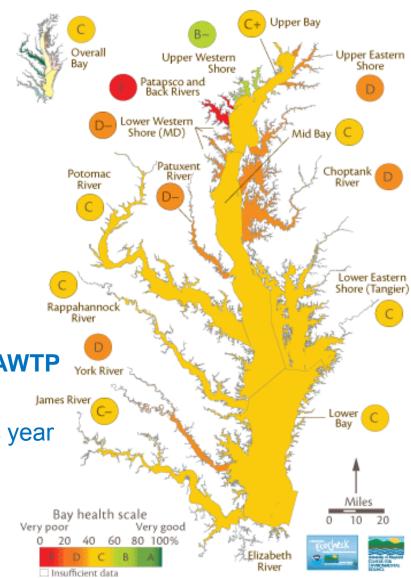
May 20th, 2011

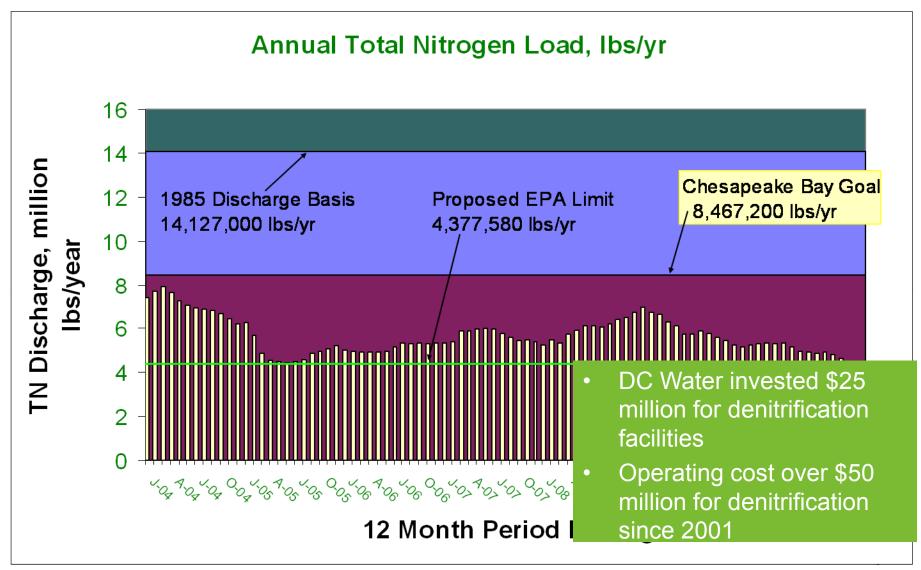
Sudhir N. Murthy, PhD, PE


Discussion Topics

- History and Basis of Nitrogen Removal at Blue Plains
- Nitrogen Removal Program Elements
 - Integration of evolving science within the nitrogen program
- New Frontiers

Relative Responsibility for water is life Pollution Loads to the Bay (2007)


Wastewater loads based on measured discharges; the rest are based on an average-hydrology year. Does not include loads from direct deposition to tidal waters, tidal shoreline erosion or the ocean. Data and Methods: www.chesapeakebay.net/status_reducingpollution.aspx


History of Nitrogen Removal at Blue Plains

- 1999 Full scale operation of denitrification in same basins as nitrification
 - Met Chesapeake Bay goal of 40% reduction by 2000 from 1985 levels
 - Goal is 8.4672 million lbs/yr or 7.5 mg/L at 370 mgd
- Chesapeake 2000 Tributary Strategies to lower TN load to the Bay by 2010.
 EPA and states agree to include annual cap load in NPDES permits
- 2011 TMDL requirements for Blue Plains AWTP
 - 4.689 million lb TN limit for 001 and 002
 - 3.87 mg/L at 370 mgd average climatic year
 - 3.44 mg/l at 435 mgd wet climatic year

Bay Health Index 2009

C Exceeding Chesapeake Bay Nitrogen Reduction Goal

Blue Plains AWTP

- 370 mgd (AA) to 518 mgd (Max Day)
- TN < 7.5 mg/l & TP < 0.18 mg/l
- Future TN ~ 3 mg/l peak annual flow

Bar Screens

and Gr

Chambe

Primar

Nitrification Secondary

Denitrification Clarifiers

AD readior

ification

Denitrification

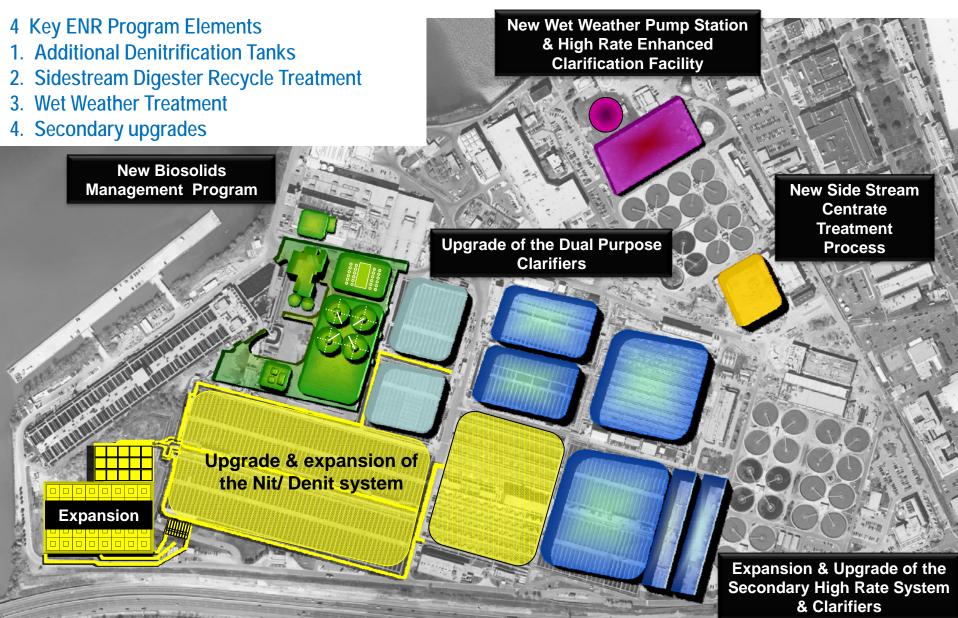
Clarifiers

• 12 C winter monthly average

Potomac River

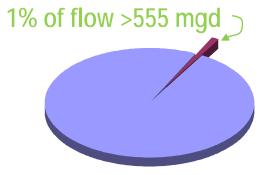
> Final Dualmedia Filters

Discussion Topics



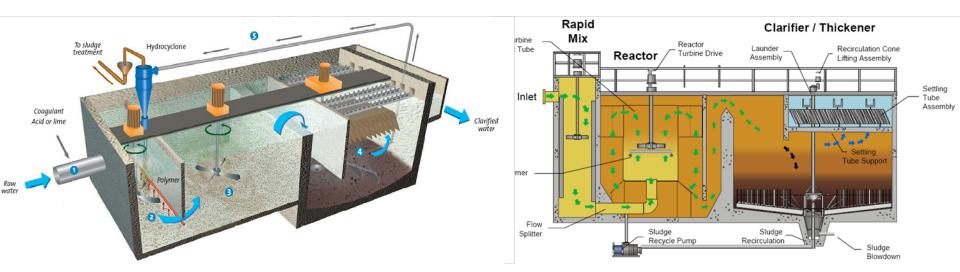
- Nitrogen Removal Program Elements
 - Integration of evolving science within the nitrogen program

Several Major Capital Programs Currently in Design



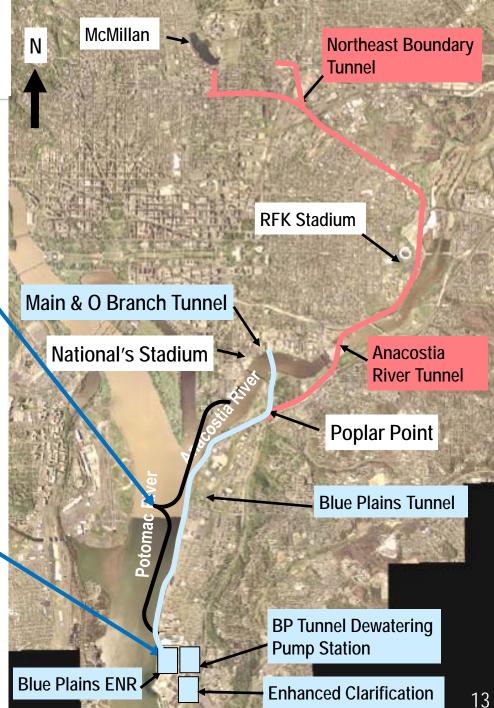
Wet Weather Management Plan

- Storm flows impact entire plant operation
 - Primary tanks are overloaded
 - Secondary and BNR sedimentation basins overloaded
 - Operators intervene to protect bio-processes
 - Reduced biological treatment capacity
 - Return to normal mode takes up to 5 days
 - 1% of annual BNR flow volume (flows > 555 mgd) causes ENR problems
- Site constraints
 - Land area is limited
 - Most of land is built-out
 - Limited space for new process trains



Must continue permit compliance while construction is underway

- By Coordinating the Nitrogen Removal and Wet Weather Treatment planning, WASA could:
 - Provide better water quality performance than original CSO plan (LTCP), as required by EPA
 - Increase reliability of both TN & CSO controls
 - Achieve TN and CSO reductions earlier
 - Less impact on rate payers than conventional approach


UCON Wet Weather Plan: Submitted 2007

Extend tunnel by 3.5 miles:

- 23 feet diameter
- Added 31 million gallons to 126 million gallons of LTCP tunnels for total of 157 million gallons
- Increases storage capacity by about 25%

Construct at Blue Plains:

- Nitrogen removal facilities
- Enhanced Clarification Facility (ECF)
- Tunnel Dewatering pumping station

Wet Weather Management Plan

New Wet Weather Pump Station & High Rate Enhanced Clarification Facility

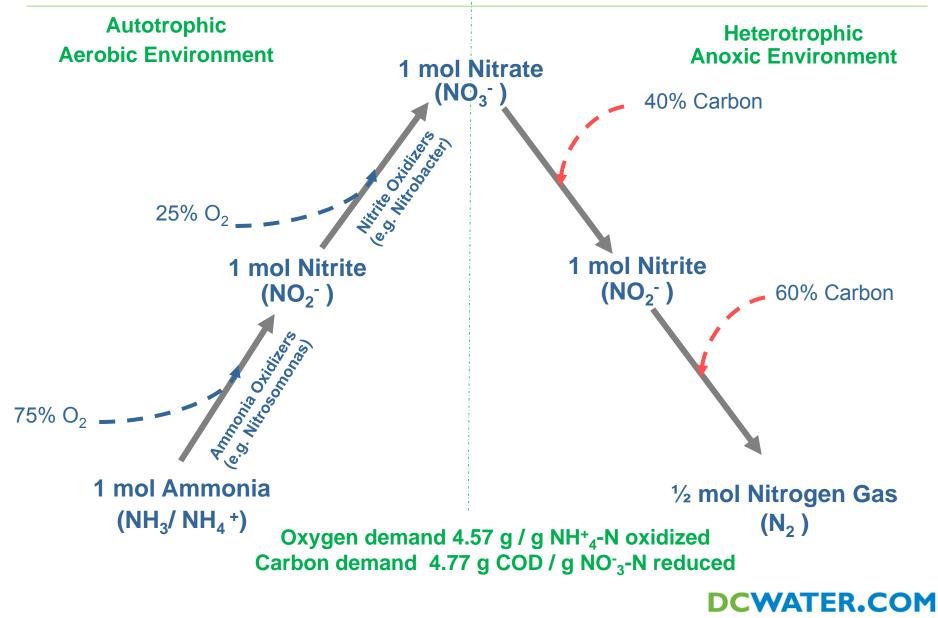
Components of Wet Weather Treatment Plan

and the second	Item	Description		
		New tunnel from Poplar Point to Blue Plains		
(B. 16)	Tunnel Blue Plains and System Storage Volume	 Requires increase in tunnels system storage volume of 31 mg (from 126 mg in LTCP to 157 mg) 		
3.86	Outfall Sewer Overflow to Blue Plains Tunnel	 Allow flows that exceed treatment capacity to overflow to tunnel (521 mgd min) 		
	Tunnel Dewatering Pumping Station	 225 mgd capacity at Blue Plains 		
		 225 mgd capacity constructed at Blue Plains 		
1	Enhanced Clarification Facility	WASA will pilot test		

Meeting the New Chesapeake Bay Nitrogen Load Reduction Challenge

No	Item	Average Climatic Year	Wet Climatic Year (2003)	Notes
1	Rainfall (in)	40.97	59.3	
2	Base 002 Discharge in avg year (mgd)	370	370	
3	Est. 002 increment for wet weather (mgd)	0	65	From experience in 2003
4	Total 002 Flow (mgd)	370	435	(2)+(3)
5	001 Discharge (mgd)	7.3	17	From model
6	Bubble Permit (EPA Approach)			001 + 002 must meet permit
7	TN Permit Limit (Ibs/yr)	4,689,000		Per permit
8	001 Effluent TN Allowance (lbs/yr)	311,420		Est. ECF performance
9	TN left for 002 (lbs/yr)	4,377,580		(7)-(8)
10	Effluent TN required at 002 (mg/L)	3.87	3.44	(10)/(4) x conversions factors

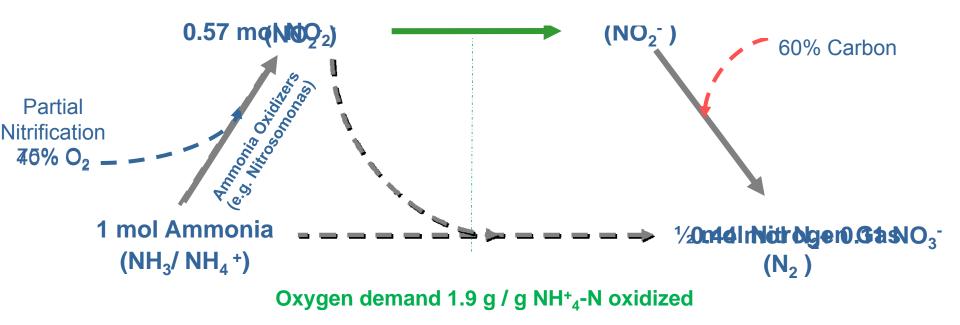
New Effluent TN Limit is very challenging especially in a wet year when the plant is most vulnerable to process upsets



Discussion Topics

- Nitrogen Removal Program Elements
 - Integration of evolving science within the nitrogen program

C Fundamentals of Nitrification - Denitrification

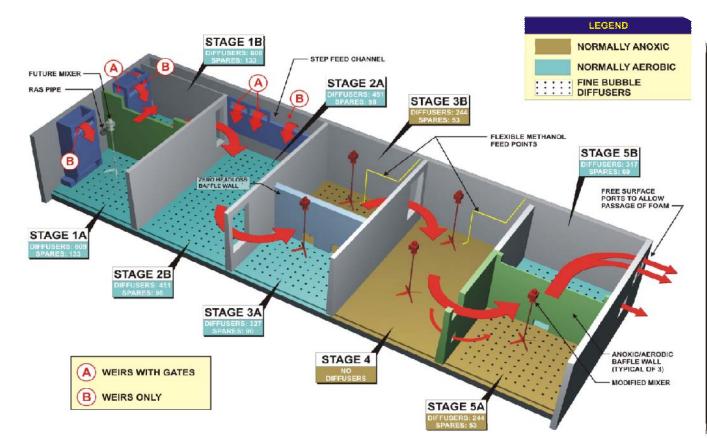


Autotrophic Aerobic Environment

ANAMINIOXophic Anaerobic Anaerobic Anaerobic Autotrophic Nitrite Reduction (New Planctomycete, Strous et. al. 1999)

DCWATER.COM

 $NH_4^+ + 1.32 NO_2^- + 0.066 HCO_3^- + 0.13 H^+$ $0.26 NO_3^- + 1.02N_2 + 0.066 CH_2O_{0.5}N_{0.15} + 2.03 H_2O$



dC The Nitrification/Denitrification Process

- Only 370 mgd facility in the world removing nitrogen and phosphorus to low levels
- Deep tank (33 ft) nit/denit system
- Twelve reactors were designed and optimized for equal flow split.

Nitrate In

ENR Research & Planning Program Defined Denitrification Kinetics

- Rate of Nitrogen removal defined by bacterial growth rates
- Industry standard denitrification rates assumed to be very fast

Nitrate profile for fast growth rate

Actual slow growth rate

- Only small tank volumes required
- Blue Plains observed much slower rates

✓ Required tank expansion, but reduced risk of permit noncompliance

Tank Inlet

Tank Outlet

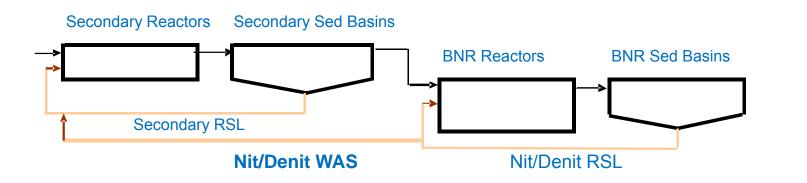
dc

Secondary Upgrade – Research & Planning

- 4 Key ENR Program Elements
- 1. Additional Denitrification Tanks
- 2. Sidestream Digester Recycle Treatment
- 3. Wet Weather Treatment
- 4. Secondary upgrades

Expansion & Upgrade of the Secondary High Rate System & Clarifiers

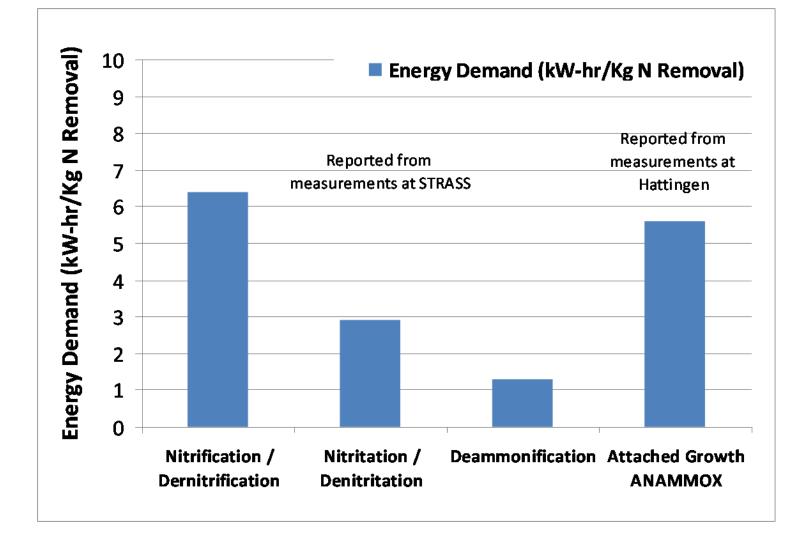
dc


ENR Research & Planning Program Bioaugmentation Patent

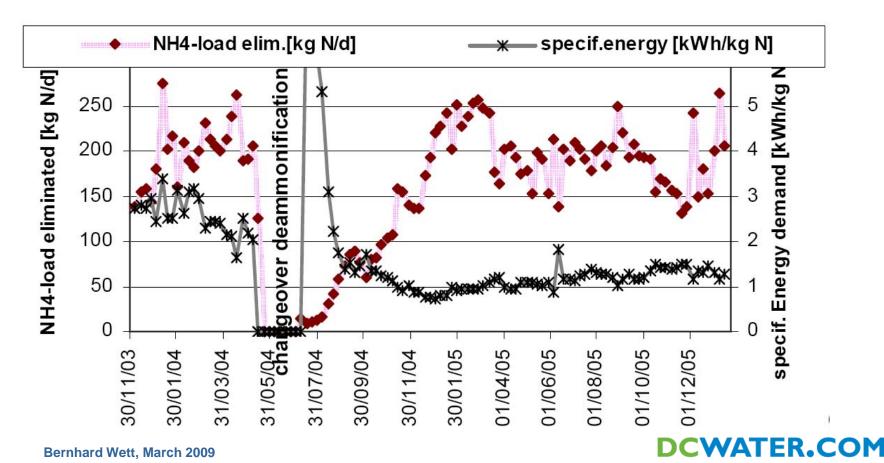
	Unite Bailey, J	d States Patent	(10) Patent No. (45) Date of P		
(54)	TREATM WATER I	D FOR NITROGEN REMOVAL AND IENT OF DIGESTER REJECT N WASTEWATER USING MENTATION		9/1995 Matsche et al. 1/1998 Haase 9/1998 Kos	0/605
(75)	Inventors:	Walter F. Bailey, Jr., Washington, DC (US); Sudhir N. Murthy, Washington, DC (US); Conorard Benson, Washington, DC (US); Timothy Constantine, Toronto (CA); Clen T. Daigger, Englewood, CO (US); Thomas E. Sadick, Newport News, VA (US); Dimitrios Katehis, Chalfont, PA (US)	6,190,554 B1 6,207,059 B1 6,426,004 B1* 6,602,417 B1* 2007/0119763 A1*	2/2001 Mandt 3/2001 Moore, III 7/2002 Hiatt et al	0/605
(73)	Assignee:	D.C. Water & Sewer Authority, Washington, DC (US)	CZ 2914	489 1/2002	
(*)	Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 92 days.	OTH	IER PUBLICATIONS	
(21)	Appl. No.	11/585,796		Augmentation by Nitrification with F h 37 (2003), pp. 1794-1804.	letun.
(22)	Filed:	Oct. 25, 2006	(Continued)		
(65)				or Firm-Dickstein Shapiro LLP	
			(57)	ABSTRACT	
(60)			An efficient system and process for removing nitrogen from wastewater while enriching seed sludge in the mainstream		
(51)	Int. Cl. C02F 3/0	9 (2006.01)	treatment process. Bioaugmentation of seed autotrop organisms facilitate the nitrification reactions by enhance		ncing
(52)	U.S. CL 210/607; 210/610; 210/625; 210/626 Field of Classification Search 210/607, 210/610, 625-626 See application file for complete search history.		the rates of reaction advantageously within a smaller volume or within a shorter activated ladge solids retention time. Läkewise, bioaugementation of seed denirification organisms will also enhance rate of reaction within a smaller volume or shorter activated sludge solids retention time. Separate treat- ment of high ammonia digester reject water is an efficient method to treat nitrogen in recycle streams as well as to earich the seed nitrifying and deniritying cultures.		
(58)					
(56)					
1. 01	U.S. PATENT DOCUMENTS				
	4,537,682 A	8/1985 Wong-Chong	16 Cla	aims, 4 Drawing Sheets	

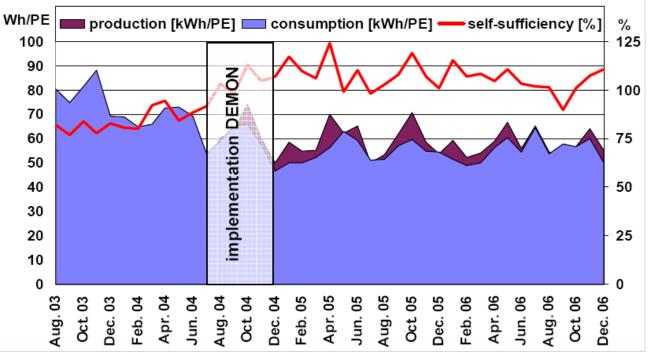
Bioaugmentation

- Maximizes use of free wastewater carbon
- 🐓 1/3 less methanol
- Seduces size of new tanks
- Process is currently in operation



Side Stream Centrate Research & Planning


Energy Demand



- 84% TN Removal at design loading rate of 0.7 kg/ m³ / day
- 1.3 kW hr / kg N removed
- However more sensitive to NO_2 -N accumulation < 5 mg/l

DEMON® Sequencing Batch Reactor water is life

- Plant undertook many energy efficiency activities
- With the introduction of DEMON it became a net energy producer

Bernhard Wett, March 2007

Suspended Growth Deammonification Experience: DEMON® Process

Suspended growth SBR systems:

- Strass, Austria
- Glarnerland, Switzerland
- Thun, Switzerland
- Plettenberg, Germany
- Heidelberg, Germany
- Apeldoorn, Netherlands
- Zalaegerszeg WWTP, Hungary

Several under construction;

- Croatia
- Austria
- Germany
- By 2012 project > 20 Demon facilities on-line

Strass (A)

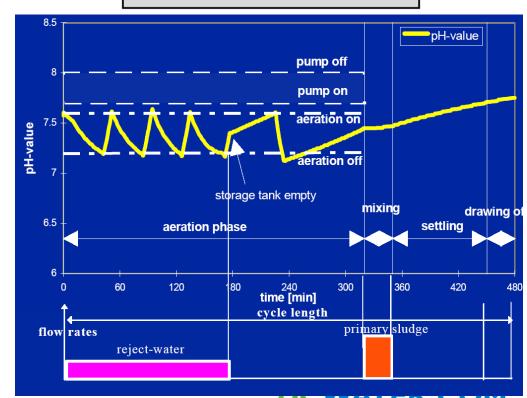
Apeldoorn (NL)

Heidelberg (D)

Thun (CH)

dcó water is life

Process Control


Need Long Solids Residence Time

Need to control nitrite toxicity

Need to inhibit competing NOB

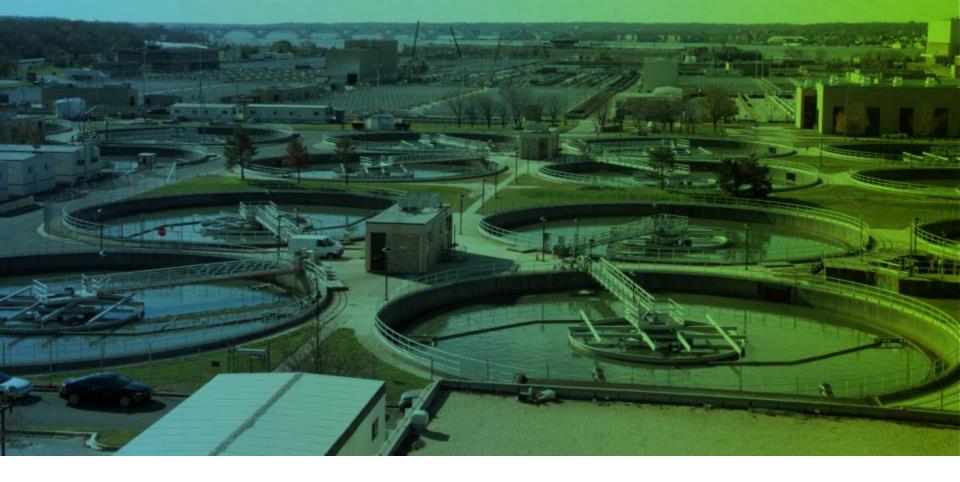
Signals		Activation		
Time	Processes	Parameters	Impacts	Blower
pH-value	Nitritation	DO set-point	Ammonia	Stirrer
DO concentration	Anammox	DO sel-point	inhibition	Feed pump
Water level SBR	CO2-stripping	pH-level	Nitrite toxicity	Effluent valve
Air flow rate	Alkalinity feed	pH-band width	Inorganic	Sludge wastage
Temperature	Ammonia feed		carbon	Heater
Storage volume	Aeration	Feed rate		

Bernhard Wett, Water Science & Technology Vol 56 No 7 pp 81-88 Q IWA Publishing 2007

General Overview of DEMON the Site Visits & Design Criteria

Facility	Load (Ibs/day)	Tank Vol. (MG)	Design Loading Rate (Kg N / m ³ / d	Performance % TN Removal % NH ₃ -N Removal
Apeldoorn	4,180	0.77	0.66	> 80% TN > 90% NH ₃ -N
Thun	880	0.16	0.67	> 90% TN > 90% NH ₃ -N
Glarnerland	550	0.1	0.69	> 90% TN (80 mg/l) > 90% NH ₃ -N (40mg/l)
Strass	1320	0.13	1.2	> 80% TN > 90% NH ₃ -N
Blue Plains	20,000	5.8	0.58	>80% NH ₃ -N
Alexandria	2831	0.8	0.42	> 90% TN

- Typical Volumetric Design Criteria = 0.7 Kg / m³ / day
- Typically > 80% TN
- Effluent NO_3 -N < 10% or less if biodegradable COD available



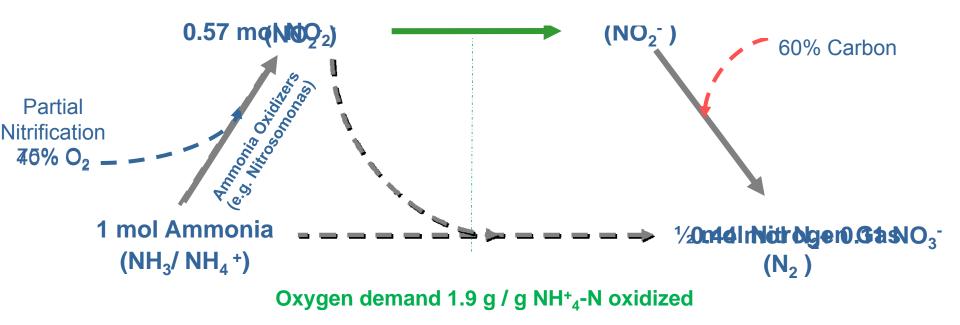
Ongoing

New Frontiers for Nutrient Removal

CALCA What's Next? – Research & Planning

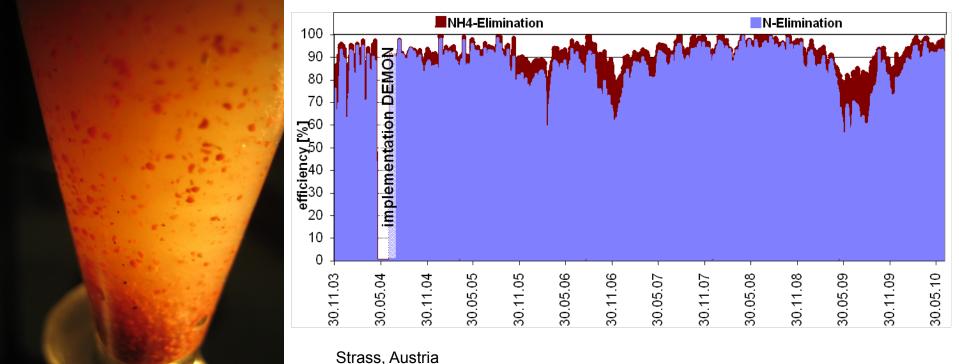
Upgrade & expansion of the Nit/ Denit system

Expansion



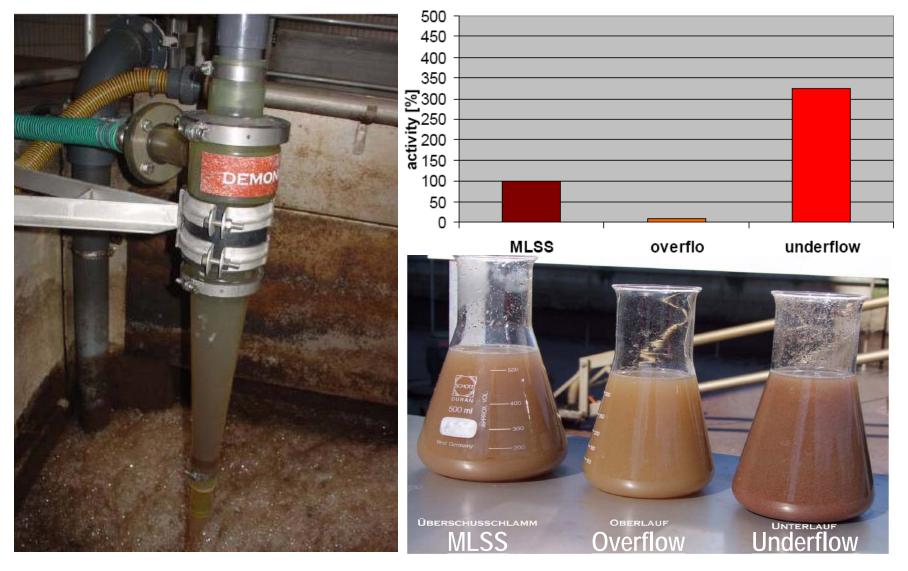
Autotrophic Aerobic Environment

ANAMINIOXophic Anaerobic Anaerobic Anaerobic Autotrophic Nitrite Reduction (New Planctomycete, Strous et. al. 1999)


DCWATER.COM

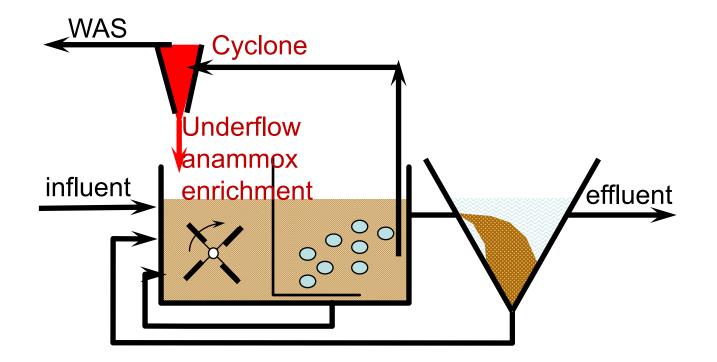
 $NH_4^+ + 1.32 NO_2^- + 0.066 HCO_3^- + 0.13 H^+$ $0.26 NO_3^- + 1.02N_2 + 0.066 CH_2O_{0.5}N_{0.15} + 2.03 H_2O$

Can we apply Deammonification to Mainstream TN removal?



Source: Bernhard Wett

Sidestream characteristics – high temperature, higher NH₄⁺ and N/C ratio and adequate SRT


- What about mainstream??
- lower temperature, low N/C ratio and limited SRT

Selector

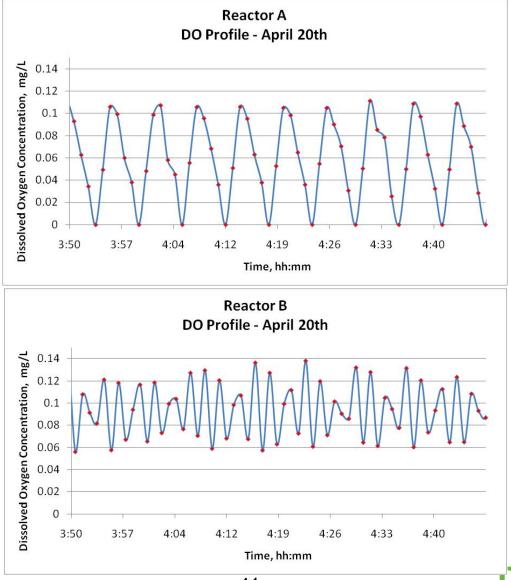
Source: Bernhard Wett, ARA Consult

DCWATER.COM

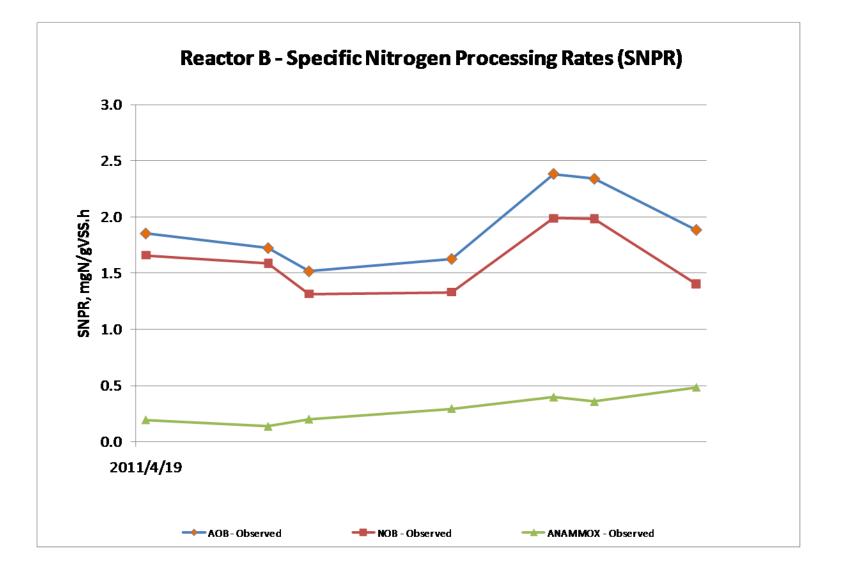
- WERF Project: INFR6R11
- Full-Plant Deammonification For Energy-Positive Nitrogen Removal
 - Principal Investigators: Maureen O'Shaughnessy and Bernhard Wett
 - Several utilities jointly investigating in Europe & USA
 - Full-scale, pilot-scale, bench-scale
 - Kartik Chandran, Columbia University

Can we apply Deammonification to Mainstream TN removal?

- International Collaboration
 - Maureen O'Shaughnessy & Bernhard Wett / WERF & EPA
 - Blue Plains bench scale SBRs started January 2011
 - HRSD Chez-Liz pilot starting Summer 2011
 - Strass WWTP, Austria started April 2011
 - Glarnerland WWTP, Austria started to look at this 2010
 - Initial concept:
 - Operate low C/N ratio
 - Optimize ammonia oxidizing autotrophs
 - Bioaugment and retain anammox
 - Out-compete nitrite oxidizing bacteria

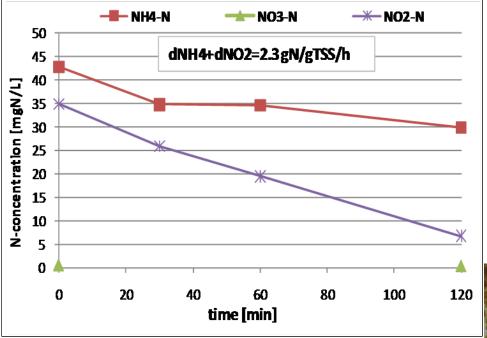

Glarnarland WWTP, Austria

DCWATER.COM


Deammonification pilot at Blue Plains

CWATER.COM

-41-


Reactor B – Profiling water is life Specific Nitrogen Processing Rate

-42-

DCWATER.COM

dCó water is life

- Preliminary and promising data
- Three months of seeding
- Could take a year for steady state
- Nitrate concentration is significantly lower in deammonification lane

Anammox-granules visible in mainstream activated sludge

dcó water is life

DEMON-cyclone installed for mainstream (left) and sidestream process (right)



Potential Operating Cost Savings		
Wastewater Plant	Annual Energy Savings [*]	Annual External Carbon Savings
Blue Plains (DC Water) (330 mgd)	\$4.0 - \$6.0 million	\$7.0 million
8 WWTPs (HRSD) (125 mgd)	\$2.0 - \$4.0 million	\$2.0 million

- New technologies for nitrogen removal are in development
 - Could considerably help reduce energy and carbon requirements for nitrogen removal
 - Could go a long way towards energy positive wastewater treatment
 - Compatible with existing infrastructure

Geow does the Program work?

- Collaboration (Teams)
 - Within DC Water (DWT, Program Management)
 - Other Utilities (ASA, WSSC, Fairfax County, HRSD)
 - Universities
 - Modeling Experts
 - External Research Agencies (primarily WERF)

Approximately 200 publications and presentations in the past 8 years

Geow does this Program work?

• Example Universities

- Howard University
- George Washington University
- University of Maryland
- Virginia Tech
- Virginia Military Institute
- Bucknell University
- University of Innsbruck
- University of Waterloo
- Laurier University

Approximately 30 MS and PhDs in 8 years

Contact: Sudhir N. Murthy, PhD, PE DC Water

