

TO THE JULY EDITION OF THE 2011 M&R SEMINAR SERIES

WELCOME

The Metropolitan Water Reclamation District of Greater Chicago

BEFORE WE BEGIN

- SILENCE CELL PHONES & PAGERS
- QUESTION AND ANSWER SESSION WILL FOLLOW PRESENTATION
- SEMINAR SLIDES WILL BE POSTED ON MWRD WEBSITE AT (www. MWRD.org)
- Home Page ⇒ (Public Interest) ⇒ more public interest
 ⇒ M&R Seminar Series ⇒ 2011 Seminar Series

Professor Kartik Chandran

Ph.D. (Environmental Engineering) B.S. (Chemical Engineering) University of Connecticut Indian Institute of Technology

Present Associate Professor, Department of Earth and Environmental Engineering, Columbia University

2005- 2010 Assistant Professor, Department of Earth and Environmental Engineering, Columbia University

2004 Research Associate, Virginia Polytechnic Institute and State University

2001- 2004 Research Technical Associate, Chief Engineer's Research Group, Metcalf & Eddy

Research Interests

- Environmental microbiology, microbial N- cycling,
- sustainable sanitation and wastewater treatment,
- global climate impacts of engineered wastewater treatment practice
- microbial ecology of engineered biological waste and water treatment reactors
- elucidation of microbial biochemical degradation pathways

Selected activities and honors

- Water Environment Research Foundation Paul L. Busch Award (2010)
- AEESP accompanying keynote lecture at WEFTEC, New Orleans, LA (2010)
- Nominated to the Board of Trustees, Water Environment Federation (2010)
- National Science Foundation Early Faculty Career Development Award, CAREER (2009)
- Visiting Professor, Delft University of Technology, hosted by Prof. Mark van Loosdrecht,
- National Research Council, National Academies of Science Summer Faculty Fellowship award, hosted by the United States Environmental Protection Agency Headquarters, Cincinnati, OH, (Summer 2007).

Wastewater treatment and climate change Inventories and mechanisms of biogenic nitrous oxide

Kartik Chandran

Columbia University

Metropolitan Water Reclamation District of Greater Chicago July 29th, 2011

Wastewater tmt. derived GHG

Table 8-1: Emissions from Waste (Tg CO₂ Eq.)

Gas/Source	1990	1995	2000	2001	2002	2003	2004	2005	2006
CH ₄	172.9	169.1	146.7	143.0	145.5	151.0	148.1	149.0	151.1
Landfills	149.6	144.0	120.8	117.6	120.1	125.6	122.6	123.7	125.7
Wastewater Treatment	23.0	24.3	24.6	24.2	24.1	23.9	24.0	23.8	23.9
Composting	0.3	0.7	1.3	1.3	1.3	1.5	1.6	1.6	1.6
N ₂ O	6.6	7.7	8.9	9.2	9.0	9.3	9.6	9.7	9.9
Domestic Wastewater	6.3	6.9	7.6	7.8	7.6	7.7	7.8	8.0	8.1
Treatment	_								and the second second
Composting	0.4	0.8	1.4	1.4	1.4	1.6	1.7	1.7	1.8
Total	179.6	176.8	155.6	152.1	154.5	160.3	157.7	158.7	161.0

Note: Totals may not sum due to independent rounding.

From denitrification in anoxic or nonaerated zones

This is equivalent to 900,000 passenger cars added each year

Source: USEPA GHG Sources and Sinks Inventory, 2008

Domestic wastewater N₂O emission estimates

 $N_2O_{\text{total}} = N_2O_{\text{plant}} + N_2O_{\text{effluent}}$

 $N_2O_{\text{plant}} = N_2O_{\text{nit/denit}} + N_2O_{\text{wout nit/denit}}$

 $N_2O_{\text{NIT/DENIT}} \text{=} \left[(US_{\text{popND}}) \times EF_2 \times F_{\text{ind-com}} \right] \times 1/10^{\wedge}9$

 $N_2O_{\text{wout nit/denit}} = \{[(US_{\text{pop}} \times WWTP) - US_{\text{popnd}} \times F_{\text{ind-com}}] \times EF_1\} \times 1/10^{6}$

 $N_2O_{\texttt{EFFLUENT}} = \{[(US_{\texttt{pop}} \times Protein \times F_{\texttt{NPR}} \times F_{\texttt{NON-CON}} \times F_{\texttt{IND-COM}}) \text{ - } N_{\texttt{SLUDGE}}] \times EF_3 \times 44/28\} \times 1/10^{\circ}6$

- EF1=3.2 g $N_2O/PE/year$
- EF2=7.0 g $N_2O/PE/year$
- EF3= 0.005 kg N_2O -N/kg sewage-N produced

Source: USEPA GHG Sources and Sinks Inventory, 2008

This presentation focuses on

• N₂O emissions from different wastewater treatment process configurations

• Insights to molecular phenomena linked with N_2O and NO production in *N. europaea*

• Impact of partial nitrification OR organic carbon source on N_2O production via denitrification

Role of nitrification and denitrification in N_2O emissions

N₂O production mainly High N₂O emission expected N_2O production and consumption Low N_2O emission expected

Influent

Aerobic

Anoxic

• Based on known mechanisms, significantly higher emissions from aerated zones expected

• How does this influence the way we have been thinking about N₂O emissions from WWTPs?

Development of a standardized protocol for measurement

Methods in ENZYMOLOGY

Volume 486

Research on Nitrification and Related Processes, Part A

Edited by

Martin G. Klotz

- Protocol has been reviewed by US EPA and is now being implemented nationwide
- Shared with other teams
 around the globe via GWRC

Chandran, 2011

Summary of emissions

Plant Configuration	Temp(°C)	Avg. reactor influent TK N load (g-N/day)	Avg. reactor effluent TN load (g-N/day)	Q (MGD)	% influent TKN emitted as N ₂ O	% removed TKN emitted as N ₂ O	Emission factor (g N ₂ O/PE/yr)
Sanarata-staga BND	15 ± 0.48	1.8 x 10 ⁶	3.6 x 10 ⁵	23	0.03 ± 0.00	0.03 ± 0.01	1.2 ± 0.18
Separate-stage DIVK	23 ± 0.28	2.3 x 10 ⁶	4.3 x 10 ⁵	27	0.01 ± 0.00	0.01 ± 0.00	0.28 ± 0.13
Four-stage Bardenpho	14 ± 0.26	8.6 x 10 ⁵	1.7 x 10 ⁵	7.8	0.16 ± 0.10	0.19 ± 0.12	9.8 ± 6.1
	23 ± 0.20	7.4 x 10 ⁵	7.6 x 10 ⁴	8.1	0.60 ± 0.29	0.66 ± 0.32	33 ± 16
Step-feed BNR 1	19 ± 0.22	3.1 x 10 ⁶	1.4 x 10 ⁶	29	1.6 ± 0.83	2.9 ± 1.5	92 ± 47
	25 ± 0.28	2.9 x 10 ⁶	9.4 10 ⁵	30	0.62 ± 0.27	0.90 ± 0.39	33 ± 14
Step-feed non-BNR	17 ± 0.12	8.6 x 10 ⁶	4.4 x 10 ⁶	71	0.18 ± 0.18	0.37 ± 0.36	13 ± 13
	26 ± 0.81	8.9 x 10 ⁶	4.2 x 10 ⁶	93	1.8 ± 0.79	3.3 ± 1.5	97 ± 43
Separate centrate	30 ± 2.3	8.8 x 10 ⁶	5.5 x 10 ⁶	2.0	0.24 ± 0.02	0.63 ± 0.06	590 ± 53
	34 ± 0.32	8.5 x 10 ⁶	4.2 x 10 ⁶	1.6	0.54 ± 0.16	0.96 ± 0.32	1600 ± 500
Plug-flow 1	11 ± 0.20	1.8 x 10 ⁶	$1.0 \ge 10^{6}$	18	0.40 ± 0.14	0.92 ± 0.32	23 ± 7.9
	23 ± 0.46	1.8 x 10 ⁶	7.3 x 10 ⁵	15	0.41 ± 0.14	0.70 ± 0.24	28 ± 9.6
Plug-flow 2	11 ± 0.41	6.3 x 10 ⁵	4.0 x 10 ⁵	8.7	0.62 ± 0.15	1.7 ± 0.41	26 ± 6.4
	22 ± 0.58	6.6 x 10 ⁵	4.0 x 10 ⁵	6.6	0.09 ± 0.03	0.22 ± 0.06	5.0 ± 1.4
MLE 1	22 ± 0.28	7.3 x 10 ⁵	1.3 x 10 ⁵	4.0	0.44 ± 0.37	0.54 ± 0.45	47 ± 39
	26 ± 1.8	6.8 x 10 ⁵	1.9 x 10 ⁵	4.0	0.07 ± 0.04	0.09 ± 0.05	6.8 ± 3.5
MLE 2	21 ± 0.72	5.9 x 10 ⁵	1.2 x 10 ⁵	3.3	0.07 ± 0.02	0.09 ± 0.02	7.4 ± 1.7
	26 ± 0.17	6.9 x 10 ⁵	1.5 x 10 ⁵	4.1	0.06 ± 0.02	0.07 ± 0.03	5.4 ± 2.0
Step-feed BNR 2	29 ± 0.18	2.2 x 10 ⁶	2.9 x 10 ⁵	14	1.5 ± 0.02	1.7 ± 0.02	140 ± 1.2
Oxidation ditch	14 ± 0.58	3.7 x 10 ⁵	1.8 x 10 ⁵	3.3	0.10 ± 0.03	0.19 ± 0.06	6.1 ± 1.9
	19 ± 0.58	3.9 x 10 ⁵	4.3 x 10 ⁴	3.4	0.03 ± 0.01	0.03 ± 0.01	1.8 ± 0.77
Step-feed BNR 3	20 ± 1.8	4.5×10^{6}	7.3 x 10 ⁵	40	0.14 ± 0.02	0.17 ± 0.03	9.3 ± 1.5
	24 ± 0.78	7.8 x 10 ⁶	8.6 x 10 ⁵	57	0.05 ± 0.03	0.06 ± 0.03	4.1 ± 2.2

However, these do not convey the complete picture

Relative emissions from aerated and non-aerated zones

• Aerated zones contributed more to emissions than non-aerated zones 11

Spatial variability in N_2O emissions

	Zone3 (Aerobic)	Zone2 (Aerobic)	Zone1 (Anoxic)
Ammonia(ppm-N)	1.5 ±0.71	11.5 ±4.95	14
Nitrite (ppm-N)	0	0.003 ±0.001	0.002 ± 0.003
Nitrate (ppm-N)	10.15 ±0.21	2.65 ± 0.35	0.85 ± 0.07
DO (mg-O2/L)	4.2	2.3	0.1
ORP (mV)	55.9	-10	-172
рН	7.1	7.12	7.02
Temp (°C)	29.5	29.3	29.1
Aqueous N2O (ppb-N2O)	572.55	192.16	54.9
Gaseous N2O (ppm-N2O)	22.8 ±0.67	16.47 ±0.27	1.46 ±0.14

Diurnal variability in N_2O emissions

- Significant diurnal variability in $N_2O(g)$ and $N_2O(l)$ conc. in aerobic zones
- Near perfect correlation with diurnal NH_3 , NO_2^- and NO_3^- conc.

Summary

- High-degree of variability in emissions observed
- N_2O emissions from aerobic zones were consistently higher than from anoxic zones
- Based on multivariate regression and data mining
 - High ammonia, nitrite and DO conc. positively correlated with N_2O fluxes
 - High DO and nitrite conc. together correlated positively with N_2O fluxes
- N₂O emissions are related to inadequate design and operation of BNR processes
 - There is no conflict between water quality and air quality, rather they go hand in hand
 - N₂O emissions can be used as an indicator of process upsets

What are the mechanisms linked to N_2O and NO generation by nitrifying bacteria?

Hypotheses

- Anoxic conditions stimulate the co- expression of *nirK* and *norB* in *N. europaea* and thus, NO and N₂O production.
- Upon *recovery* back to aerobic conditions, the trends are reversed.

Chemostat operation

- V=4L
- HRT=SRT=2.2d
- Transient anoxic period = 48h, followed by about 80 h recovery
- $S_{nh,o} = 280 \text{ mg-N/L}$ at steady state
- S_{nh,o}=28, 140, 280 mg-N/L during transient state
 - To determine the impact of S_{nh} accumulation on response and recovery

Short term change in DO-Nitrification

- N₂O production is directional
 - Manifestation of recovery response

Short term change in DO-Nitrification

Yu et al., 2010

<u>d</u>

- Nitrite reductase was by far the most responsive to anoxic-oxic cycling
 - $nir K \rightarrow NO$
- nirK and norB are not coexpressed
- Gene level imbalances are linked to process level N₂O inventories

Adaptation to repeated anoxicoxic cycling

The quest for cost effective BNR Engineering microbial communities

Factors correlating with N_2O emissions from nitrification

- Known triggers for N₂O from nitrification
 - High nitrite concentrations
 - Low DO concentrations and cycling from anoxic to oxic conditions
 - High ammonia concentration transients

Ahn et al., 2011

Do we need to re-think partial nitrification based N-removal strategies?₂₂

Reactor Operation

- V=11.18 d, HRT=1.1 d, pH=7.5 ± 0.1, T=21°C
- Pre-study partial-nitrification phase - SRT = 3d, DO = $1.5 \pm 0.87 \text{ mg O}_2/\text{L}$
- Full-nitrification phase - SRT= 8d, DO = $3.8 \pm 0.38 \text{ mg O}_2/\text{L}$, 104 days
- Partial-nitrification phase

- SRT= 3d, DO = 1.1 ± 0.38 mg O₂/L, 273 days

Performance and kinetics

 Rapid change in Nspeciation upon changing operating conditions

- Significant decrease in NOB kinetics during PN
- No change in AOB kinetics

Impact of changing operating conditions on microbial ecology

- PN mode led to significant washout of NOB
- No change in dominant AOB speciation
 - Nitrosomonas europaea and eutropha dominant AOB in both phases (not shown)

Impact on N₂O and NO emissions

- Highest emissions observed just after switch from full nitrification to partial nitrification
 - However, emissions during PN were not sustained subsided and stabilized after 80 days
 - Stabilized emissions during PN still statistically higher than during FN (α =0.05)

Why does PN result in higher emissions? Insights from gene expression profiles

The switch from FN to PN resulted in spikes in expression of *nirK* and *norB nirK* → NO *norB* → N₂O

• Good agreement between gene expression and chemical profiles

Summary

- Statistically higher emissions of N₂O and NO during PN than during FN
- Highest emissions close to the point of switching modes from FN to PN
 - Gaseous emissions observed even after rapid change in aqueous N-speciation
- Spikes in gaseous emissions were linked to spikes in expression of genes coding for their production in AOB (*nirK* and *norB*)
 - Microbes tend to adapt!

To put matters in perspective

- PN offers significant benefits in terms of lower operating costs
 - Nitrification as well as downstream removal via denitrification or anammox
- Higher N_2O emissions from PN operation for treating streams such as centrate and leachate represents an optimization challenge
- Additional analyses such as LCA could be useful in decision making on a case-specific and site-specific basis
 - Poor performance remains a bigger factor for higher emissions

Role of different electron donors on N_2O and NO emissions

- Different electron donors give rise to different μ_{max} and K_s for denitrification on
 - Response to different transient stressors needs to be systematically studied
 - Different susceptibilities different emissions?

Experimental setup

- Transient stressors
 - Organic carbon limitation COD:N = 2.5 : 1
 - Exposure to high nitrite concentration spike: 50mg-N/L
 - Oxygen Inhibition
 DO = 2-3 mg/L, 5-6 mg/L, 7-9 mg/L
- USEPA reviewed gas phase monitoring protocol

Impact on methanol based denitrification

- Minimal N₂O and NO emissions
 - COD limitation: transient NO_3^- accumulation
 - NO_2^- pulse: transient NO_3^- accumulation
 - High DO: permanent NO₃⁻ accumulation

Impact on ethanol based denitrification (I)

- Minimal N_2O and NO emissions with transient and finite peaks
 - COD limitation: transient NO₃⁻ accumulation
 - NO_2^- pulse: transient NO_3^- and NO_2^- accumulation

Impact on ethanol based denitrification (II)

- N_2O and NO emissions increased with DO concentration
- N_2O emission peak: correlated with peak NO_3^- concentration
- Transient accumulation of NO_3^- : increased with DO concentration
- **Permanent** accumulation of NO_2^- : increased with DO concentration

Gas emissions from methanol-denitrification

- Approximately 0.12% and 0.05% of influent NO₃⁻-N load converted to N₂O and NO, respectively at steady state
- Statistically similar emissions in
 - Control, carbon limitation, NO_2^{-} -N exposure, O_2 inhibition

Gas emissions from ethanol-denitrification

- Approximately 0.10% and 0.01% of influent NO₃⁻-N load converted to N₂O and NO, respectively at steady state
- Statistically similar emissions in
 - Control, carbon limitation, NO₂-N exposure
- Significantly higher N_2O and or NO emissions at DO > 5mg O_2/L

Implications

- Emissions related to denitrification are dependent upon the organic C-sources used
 - the microbial ecology and kinetics thus fostered
 - relative susceptibility and tolerance to stressors
- Organic C-limitation and nitrite toxicity played a minor role in emissions from both methanol and ethanol
 - Partial inhibition resulted in N₂O emissions (ethanol)
 - Higher inhibition led to low emission (methanol)

Implications for pre-anoxic zone sizing

- Ethanol bleed out to aerobic zone can result in N_2O and NO emissions
- Lower emissions expected during similar methanol bleed out

Summary of observations

- Started with one or two emission factors in 2008
- N₂O emissions related to recovery from stress response of nitrifying bacteria
 - Similar patterns observed at full-scale
 - Attributed to an imbalance between the expression of specific pathways in AOB
- Next: Based on mechanisms, develop BNR strategies to minimize both *aqueous* and *gaseous* N discharges

Influent ww

Aerobic and Anoxic

Acknowledgements

Research Support from

- National Science Foundation CAREER award
- Water Environment Research Foundation

• Researchers working on this project

- Joon Ho Ahn
- Ran Yu
- Huijie Lu
- Sungpyo Kim
- Hongkeun Park

POLICY ANALYSIS

pubs.acs.org/est

Emissions Credits: Opportunity To Promote Integrated Nitrogen Management in the Wastewater Sector

James S. Wang,^{*,†,⊥} Steven P. Hamburg,[†] Donald E. Pryor,[‡] Kartik Chandran,[§] and Glen T. Daigger^Ⅱ

⁺Environmental Defense Fund, 257 Park Avenue South, New York, New York 10010, United States

^{*}Brown University, Providence, Rhode Island 02912, United States

⁵Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States

CH2M HILL, Englewood, Colorado 80112, United States

