Metropolitan Water Reclamation District of Greater Chicago

Protecting Our Water Environment

Feasibility of Traditional and Emerging Technologies for Treatment and Resource Recovery from Recycle Streams at the Water Reclamation Plants of Metropolitan Water Reclamation District of Greater Chicago

Presented by

Kamlesh Patel Senior Environmental Research Scientist

November 19, 2010

Acknowledgement

 M&O staff are acknowledged for their assistance to help identify recycle streams, recycle flow lines and the safe sampling locations: Peter Kane, and Mark Kwan at SWRP Raphael Frost, Paul Wysocki, Greg Florek, & Roberto Sanchez at CWRP Mary Brand and Katryzyna Lai at EWRP

- 2. Shop trade personnel at SWRP fabricated a lab-scale five-branch manifold for expedient filtration of samples
- 3. IWD Staff set-up and serviced auto samplers & collected and transported samples: Renaud Robert; Turner, David; Yore Michael; Yarnik, Greg; McCune, Michael; Gaggiano, Roberet; Chodora James; Spiewak, Steven; Gardner, Edward; Waclawick, James (Retired); Geraghty, Thomas; Ms. Rogers, Marshalyn and their staff
- 4. Harold Robinson, Wastewater Tech
- ALD Staff at CAL, EAL and SAL for analytical support: Victor Olchowka, Ellice Durham, Robert Polis, Joseph Calvano, Gary Pump, John Chavich and their staff
- 6. Dori Bernstein, Research Scientist for GPS-X Modeling support
- 7. Pro-Corp, LLC and Ostara Inc. for screening recycle streams and analyzing data for cost opinions

OUTLINE

- Identification of Recycle Streams at Stickney, Calumet and Egan WRPs
- •Sampling Locations Raw Sewage and Recycle Streams
- •Sampling Plan
- •Estimation of Flow and Characteristics Data of Recycle Streams
- Loadings at Plant Headworks
- Impact on Treatment at SWRP
- Treatment Options and Screening of Technologies
- •Feasible Technologies for District WRPs

Identification of Recycle Streams at Calumet, Egan and Stickney WRPs

Centrate

East side lagoon 9 supernatant overflow plus runoff from drying cells

West side lagoon 17 supernatant overflow,

Gravity tank supernatant overflow

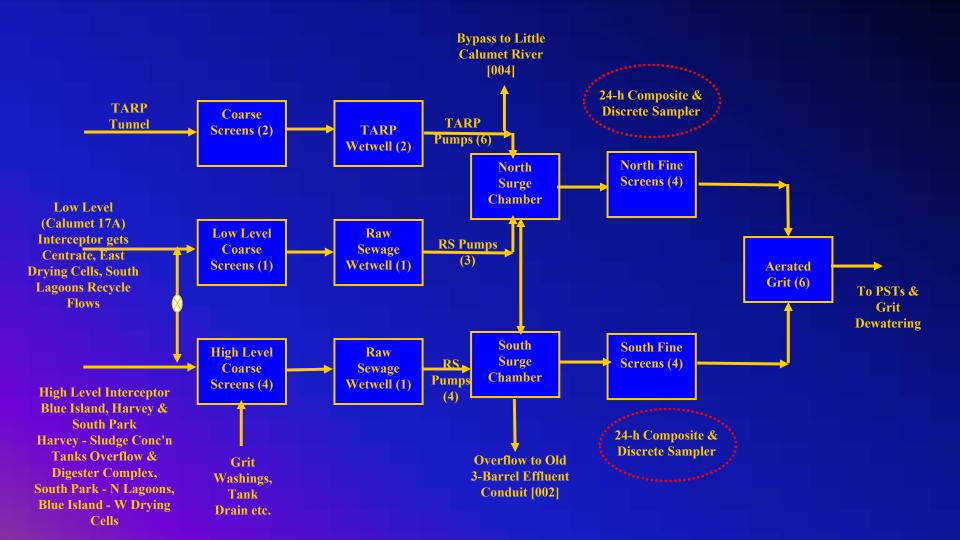
(Digester feed tank overflow and Gravity concentration feed tank overflow seldom)

Centrate

GBT filtrate

Grit Classifier Recycle

Filter Backwash

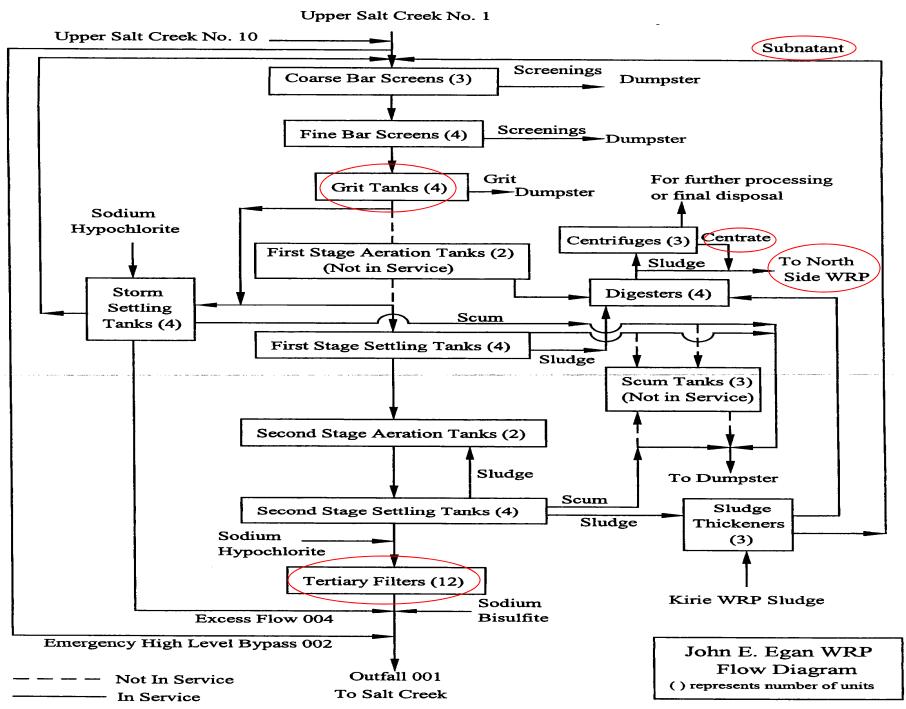

Pre-centrifuge centrate

Post-centrifuge centrate

Gravity Concentration tank supernatant overflow

(Lagoon supernatant via main screen seldom)

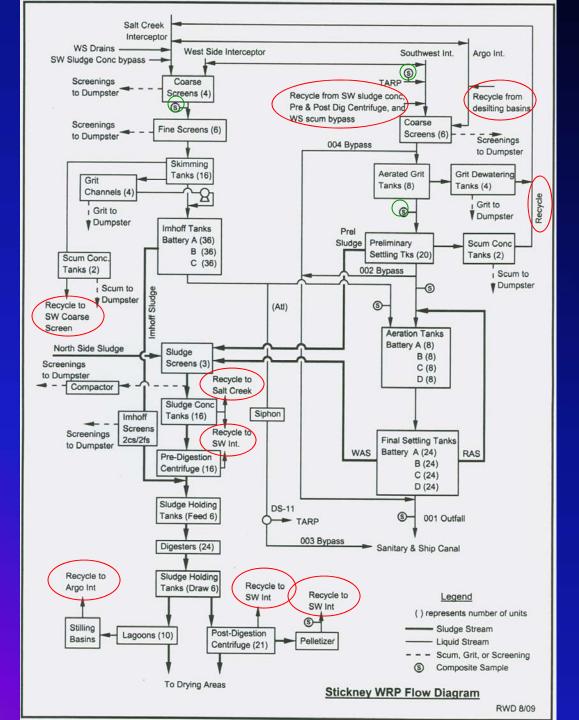
Details of Plant Headworks and Recycle Streams at Calumet WRP


CENTRATE

GRAVITY OVERFLOW

LAGOON 9

SAMPLING LOCATIONS AT CALUMET WRP



Grit Classifier

SAMPLING LOCATIONS AT EGAN WRP

SAMPLING LOCATIONS AT STICKNEY WRP

SAMPLING LOCATIONS AT PRE AND POST-CENTRIFUGE FACILITIES AT STICKNEY WRP

SPOCTC1 OLD POST CENTRIFIUGES

SCTC COMPOSITE CENTRATE

SAMPLING PLAN

•TIME COMPOSITES COLLECTED EVERY 15-MINUTE APART OVER 24-HOUR PERIOD TO MAKE APPROXIMATELY 2 GALLONS AT EACH STATION

•STICKNEY AND CALUMET WRP - ONCE A WEEK (7/30/08-7/29/09)

•EGAN WRP - TWICE A WEEK (8/11/09-9/3/09)

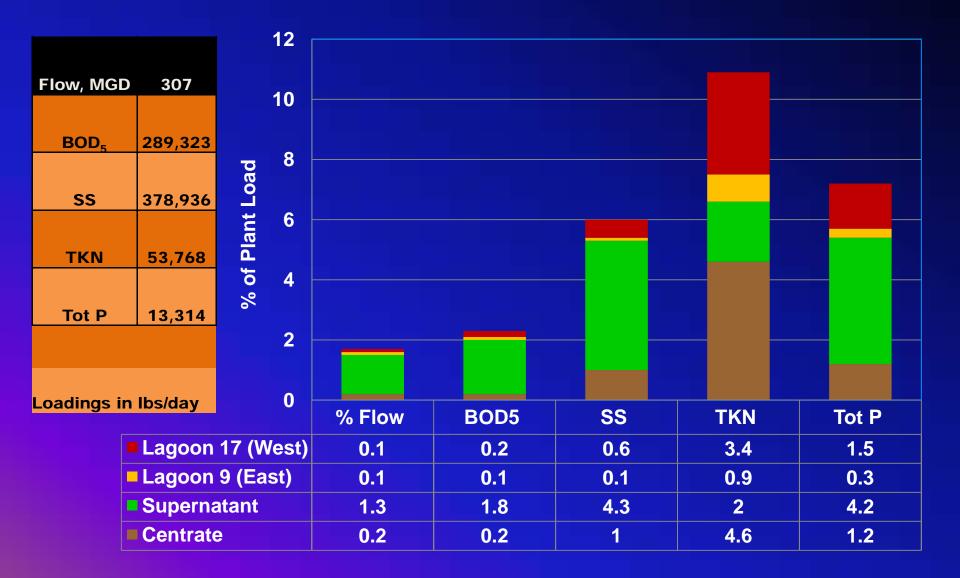
CHARACTERISTICS OF RECYCLE STREAMS AND RAW SEWAGE AT CALUMET WRP (7/30/08-7/29/09)

Parameter	Raw Sewage	Centrate	Gravity Supernatant	Lagoon 9 (East)	Lagoon 17 (West)	Combined Recycle
Flow, MGD	307	0.6	4.0	0.45	0.45	5.5
BOD ₅ , mg/L	113	139	158	50	118	143
SS, mg/L	148	768	493	99	653	504
NH ₃ -N, mg/L	10	286	7	80	308	68
TKN, mg/L	21	495	33	128	487	128
Tot P, mg/L	5	32	17	11	53	21

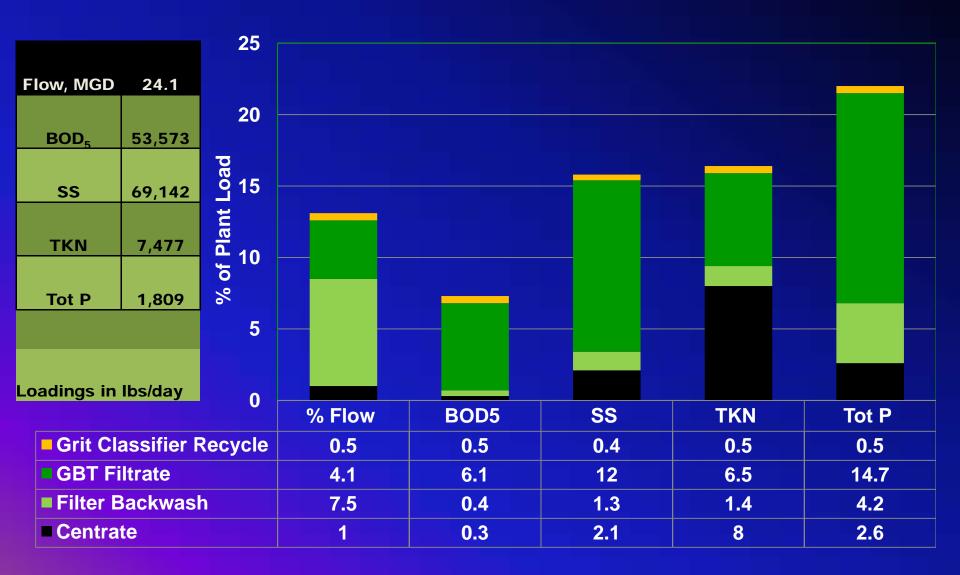
CHARACTERISTICS OF RECYCLE STREAMS AND RAW SEWAGE AT EGAN WRP (8/11/09-9/3/09)

Parameter	Raw Sewage	Centrate	Filter Backwash	GBT Filtrate	Grit Classifier	Combined Recycle
Flow, MGD	24	0.25	1.8	1	0.12	3.17
BOD ₅ , mg/L	267	80	13	393	265	148
SS, mg/L	344	695	59	998	286	414
NH ₃ -N, mg/L	17	277	2	4	17	25
TKN, mg/L	37	289	7	58	35	46
Tot P, mg/L	9	23	5	32	9	15

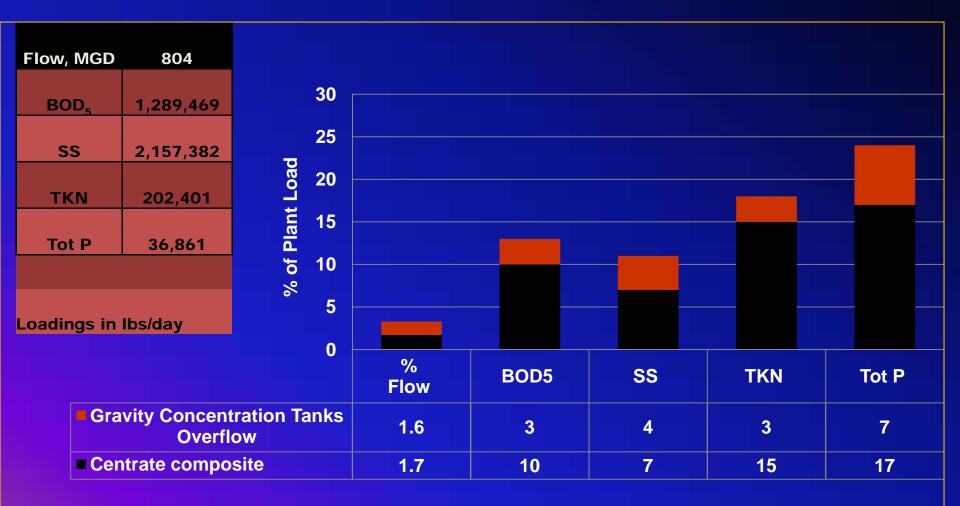
- 1. Centrate is pumped to Northside WRP
- 2. Combined recycle concentrations include centrate input


CHARACTERISTICS OF RECYCLE STREAMS AND RAW SEWAGE AT STICKNEY WRP (7/30/08-7/29/09)

Parameter, MGD or mg/L	Raw Sewage SW+WS	Post centrifuge centrate New	Post centrifuge centrate Old	Pre- centrifuge centrate	Centrate composite	Gravity Concentr ation Tanks Overflow	Combined Recycle
Flow	804	1.4	1.4	10.9	13.7	13	26.7
BOD ₅	192	79	127	853	1,085	371	677
SS	322	336	452	929	1,307	731	978
NH ₃ -N	15	291	481	20	174	15	83
TKN	30	332	564	120	266	65	151
Tot P	6	36	54	45	56	23	37

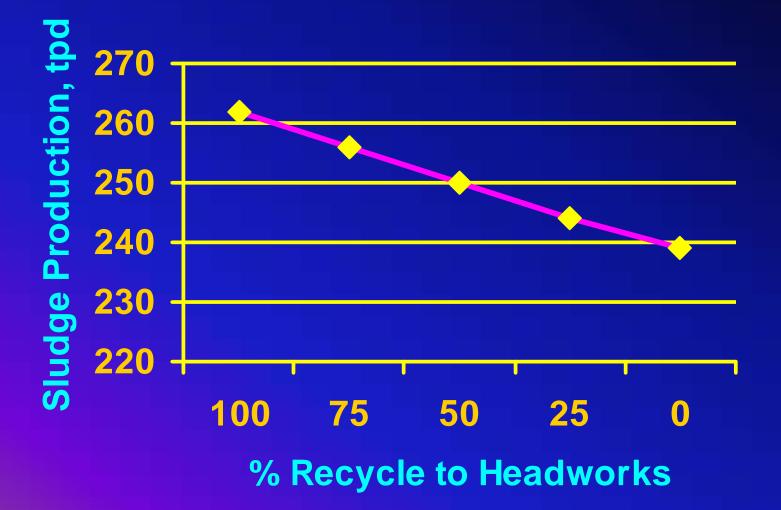

COMPARISON OF FLOW AND CHARACTERISITCS OF CENTRATE STREAMS AT VARIOUS PLANTS

WWTP	Flow, m ³ /d	Centrt Flow, m ³ /d	%	NH ₄ -N, mg/L	sCOD	TP, mg Per L	рН	Alkalinity, mg/L as CaCO ₃	sCOD/NH₄	Authors
Wards Island, NY, USA	937,500	19,125	2.04	886	431	79	7.7	2,943	0.50	Katehis et al. (1998)
Hunts Point, NY, USA	750,000	14,250	1.9	1,312	793	112	7.9	5,265	0.60	Katehis et al. (1998)
26th Ward, NY, USA	318,750	7,125	2.2	801	494	84	7.8	3,144	0.62	Katehis et al. (1998)
Bowery Bay, NY, USA	562,500	5,250	0.9	672	371	116	7.5	2,100	0.55	Katehis et al. (1998)
Kohlfurth, Germany	103,680	300	0.3	628	1,760	-	-	-	2.8	Kolish and Rolfs (2000)
Calumet WRP	1,160,460	2,268	0.2	286	260	32	7.9	1,529	0.91	Patel (2010)
Egan WRP	91,098	945	1	277	201	17	7.6	228	0.73	Patel (2010)
Stickney WRP	3,039,120	10,433	0.3	386	300	11	7.9	494	0.78	Patel (2010)


RECYCLE CONTRIBUTION TO INFLUENT FLOW AT CALUMET WRP (7/30/08-7/29/09)

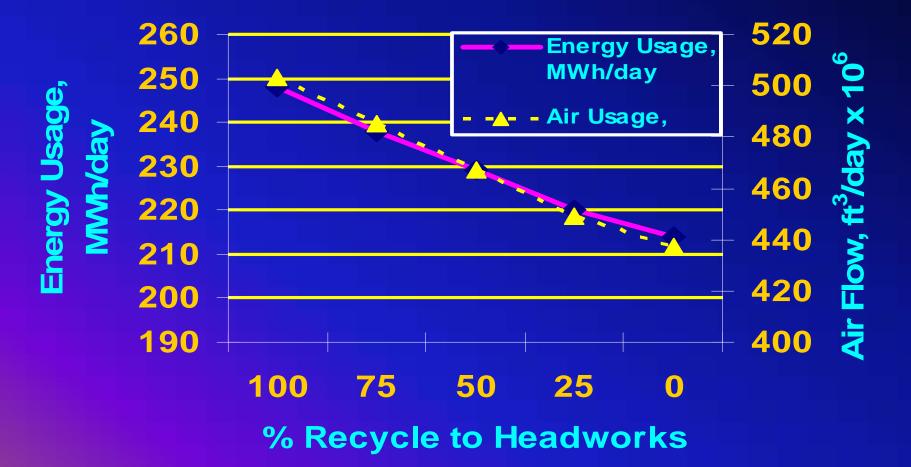
RECYCLE CONTRIBUTION TO INFLUENT FLOW AT EGAN WRP (8/11/09-9/3/09)

RECYCLE CONTRIBUTION TO INFLUENT FLOW AT STICKNEY WRP (7/30/08-7/29/09)


STICKNEY WRP GPS-X MODEL

- •Black & Veach 2000 GPS-X No recycle lines
- Modifications recycle lines to headworks or final outfall via sidestream treatment unit
- •Baseline data correspond to study period with plant and LIMS data and calibrated throughout the process train based on 100% recycle to headworks
- Added a DO controller to evaluate potential energy savings due to aeration
- Each scenario consisted of three 100-day simulations to assure stability

STICKNEY GPS-X BASELINE MODEL: 100% RECYCLE TO HEADWORKS


Parameter	WS Influent			fluent + \RP	All Recycle		Final Effluent	
Flow, MGD	431		340		26		772	
SS, mg/L (tpd)	150	150 (270)		(809)	988	(108)	4.8	(15.5)
CBOD ₅ , mg/l (tpd)	77	(139)	169	(258)	332	(36)	1.5	(4.9)
TKN, mg/L (tpd)	19	(34)	47	(71)	156	(17)	0.9	(3.0)
TP, mg/L (tpd)	4	(6)	9	(14)	37	(4)	0.8	(1.2)
NH ₃ -N, mg/L (tpd)	10	(18)	19	(29)	94	(10)	0.1	(0.2)

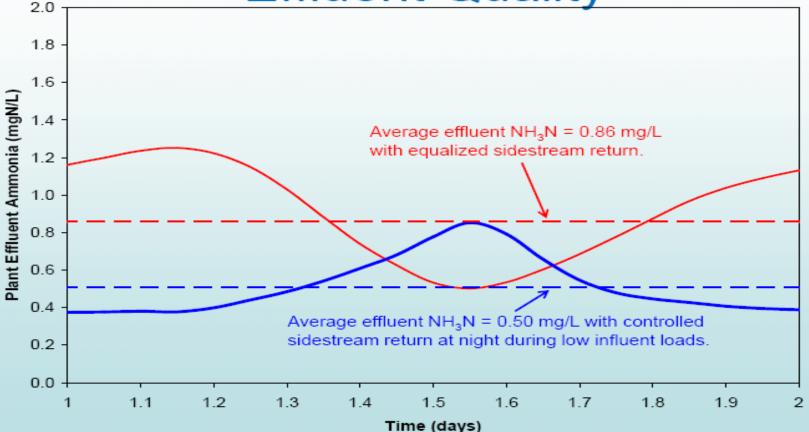
Stickney GPS-X Model: Sludge Production as a Function of Percent Recycle to Headworks

Stickney GPS-X Model: Air and Energy Usage as a Function of Percent Recycle to Headworks

Normal plant operation : 496 X 10⁶ cft/day & aeration energy 368 MWH/day DO control set point of 4.5 mg/L. Results in ~15% savings

THE OPTIONS

1. Maintain Present Operation


2. Recirculate But Equalize the Flows

3. Use As a Liquid Fertilizer

4. Remove or Recover Nutrients

OPTION 2: CONCEPTUAL REPRESENTATION OF RECYCLE FLOW EQUALIZATION

Sidestream Control Impacts Effluent Quality

OPTION 3: LIQUID FERTILIZER (N:P :: >5 to 1)

- A total of 18 MGD (37% flow) from 7 streams out of 13
- Benefits to the Environment
 - Conserve water/phosphate reserves
 - Recycle materials locally
 - Avoid greenhouse gas emissions (~8 tons CO₂e per ton fertilizer produced)
 - Environmental Sustainability
- Drawbacks
 - Transport based on volume required
 - Heavy metals

OPTION 3: AN OFFICIAL SEAL OF APPROVAL FOR LIQUID FERTILIZER

OPTION 4A: TREAT TO REMOVE NUTRIENTS. WHY?

OPTION 4B: TREAT TO RECOVER NUTRIENTS. WHY?

Option 4A: Why to Treat Recycle Streams?

1. Stringent Regulatory Limitations

- TP (Water Quality)
- > TN (Water Quality)
- > Nitrate (SDWA)
- > NH₃-N (NPDES for Aquatic Toxicity)
- Bottle-necks in Permit (Daily Max, Wkly Avg. etc.)
- 2. Sustainable Treatment for Nutrient Removal & Entire Plant
 - Requires less energy (reduction in C footprint)
 - > Increases Process Capacity at Low Temperatures
- 3. Common Treatment for Multiple Plants
 - More TP and TN @ SWRP from NSWRP/EWRP
 - Less Capital & OM Costs
 - Reliable Operations @ One Location than Two Small-scale Operations
- 4. Adjustment in Plant Operations
 - Variable Thickening and Dewatering Process Schedule
 - Impact if Only One Shift or Certain Days (HPWRP, CWRP)
 - Increased use of BNR
 - Major Plant Upgrade (e.g. Master Plan)

Option 4B: Why to Recover Nutrients? FACTS AND PERSPECTIVE ON P

-Phosphorus Supply Challenges

-Nutrient Recovery from a global perspective (7 billion humans and 63 billion live stock)

-1.5% mining of rock phosphate can be reduced if P recovery around the world (Shu et. al. 2006)

-"We may be able to substitute nuclear power for coal, and plastics for wood, and yeast for meat, friendliness for isolation – but for phosphorus there is neither substitute nor replacement" Isaac Asimov

-Conserve phosphate reserves, recycle P locally, reduce GHGs and environmentally sustainable

Phosphorus is an "Emerging Issue"

Phosphorus Famine: The Threat to Our Food Supply

This underappreciated resource--a key component of fertilizers--is still decades from running out. But we must act now to conserve it, or future agriculture could collapse

By David A. Vaccari

From The Times

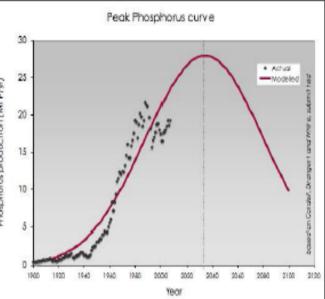
June 23, 2008

Scientists warn of lack of vital phosphorus as biofuels raise demand

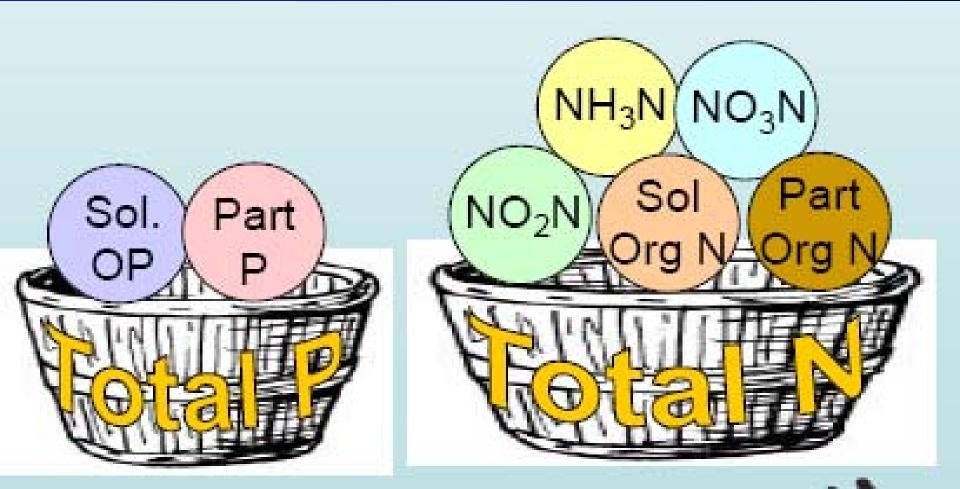
Leo Lewis, Asia Business Correspondent

NEWS SCAN

Scientific American – November 2009


Sewage's Cash Crop

How flushing the toilet can lead to phosphorus for fertilizers BY KATHERINE TWEED


TUCKED AWAY IN OREGON'S WILLAMETTE VALLEY, THREE MASsive metal cones could help address the world's dwindling supply of phosphorus, the crucial ingredient of fertilizers that has made modern agriculture possible. The cones make consistently highquality, slow-release fertilizer pellets from phosphorus recovered at the Durham Advance Wastewater Treatment Facility, less than 10 miles from downtown Portland. By generating about one ton

WASTEWATER WONDER: Ostara's Crystal Green, a slow-release fertilizer, incorporates phosphorus retrieved from sewage streams.

Treatment Technologies for Options 4A and 4B

TREATMENT TECHNOLOGIES

Biological

- CND
- AND : Bioaugmentation w/ and w/o RAS (In-Nitri, BABE, BAR etc.)
- Nitritation/Denitritation and Deammonification (SHARON, ANNAMOX, SBR, STRASS,MAUREEN, OLAND, CANON etc.
- Algae Based (stabilization/oxidation ponds, Algaewheel®, Algal Turf Scrubber® Technology, Algae farms)

Physicochemical

- Ammonia Stripping (ARP via Steam, Hot Air, & CAST Vacuum Distillation)
- IE
- MAP based technologies (Metal Salts, Ostara, Pro-Corp)

SCREENING OF TECHNOLOGIES

- •CND: Alkalinity deficiency 25, 88, 82% at CWRP, EWRP and SWRP, respectively, impact on aeration cost, ammonia toxicity etc.
- Bioaugmentation: pH, temp, TDS/osmotic pressure changes in main treatment so augmented nitrifiers predated
- Nitritation/Denitritation/Deammonification: Many premature and emerging technologies - not suitable for full-scale of District plants
- Algae Based: Settling and possible SS violation, premature for full-scale, polymer costs
- •Air Stripping: 2000:1 Air to NH3 ratio, pH ~11, ~55C air temp pH and temp control, scaling etc.
- Steam Stripping: Heat exchanger & stripper fouling, 300 500 to 1 steam to liquid ratio, high temp maintenance and associated energy cost

•IE: Pretreatment such as filtration needed, salt deposits within resin bed, piping etc.

NITRIFICATION, NITRITATION-DENITRITATION AND DEAMMONIFICATION FUNDAMENTALS

•CND: Alkalinity – 7.14 g/g NH4

- : O2 4.57 g/g NH4
- : C 3 to 4.5 g COD/g of NO3

Nitritation/Denitritation:

- : O2 25% less wrt CND
- : C 40% less so 40% less biomass

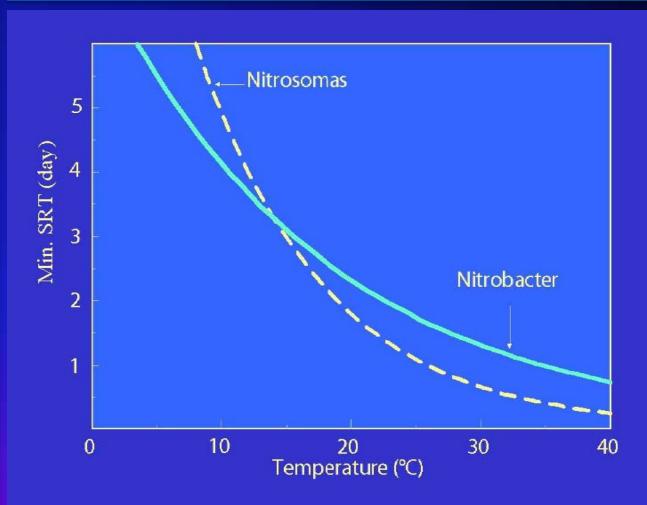
•Deammonification:

- : **O2 62% less wrt CND**
- : C 100% less so much reduced biomass
- : Reduced CO2 and N2O

SINGLE REACTOR FOR HIGH ACTIVITY AMMONIA REMOVAL OVER NITRITE

Features:

• At 25-40 C the nitrifying bacteria have a higher growth rate than the nitrafying bacteria.


•pH 6.6 to 7.2 for AOBs and DO 0.3 to 2 mg/L

•SRT=HRT

• At a 1 day SRT/HRT the reactor acts as a selector converting ammonia to nitrite

• The process then allows for denitrification via nitrite.

BIOLOGICAL GROWTH RATE – SRT_{MIN} AS A FUNCTION OF TEMPERATURE

SHARON PLANTS

Location	Nitrogen Capacity(pe)	(lbs N/day)	Operation
Utrecht, Netherlands	400,000	2000	1997
Rotterdam-Dokhaven	470,000	1900	1999
Zwolle	200,000	900	2003
Beverwijk	320,000	2,600	2003
Groningen-Garmerwolde	300,000	5,300	2004
Den Haag-Houtrust	430,000	2,900	2004
New York-Wards Island	250 MGD	12,700	2008
Geneva, Switzerland	115 MGD	3,600	2009

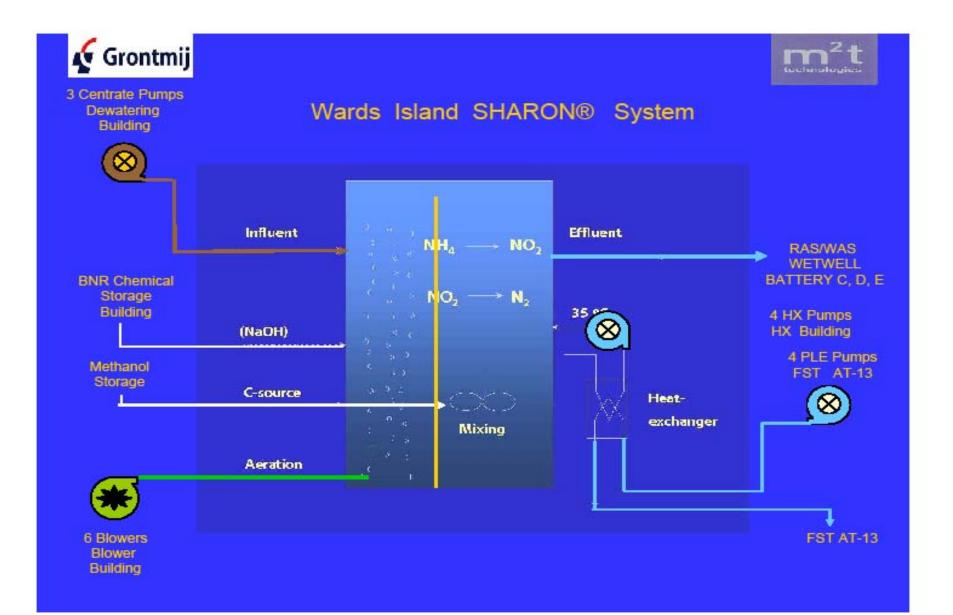
WARDS ISLAND, NEW YORK SHARON PLANT

courtesy of Grontmij N

Goals:

- To reduce TN discharge from the Wards Island facility into the East River/Long Island Sound/NY Harbor
- To reduce TN discharge associated with the solids handling at multiple NYC-DEP facilities
- To utilize a highly efficient process for cost savings associated with TN

mage courtesy of Grontmij NV


WARDS ISLAND, NEW YORK – 250 MGD Solids from 3 Plants First in the USA and the largest in the world

Two Parallel SHARON Reactor Trains :

Design / Peak Flow : 1.85 / 2.31 MGD NH₃ : 700 mg/l 10,800 lbs./day (~30% N-Load) TSS : 600 mg/L COD : 950 mg/L Temp. : 28 – 32 C N-Removal : >95%

Benefits:

- Removes 25-35% of ammonia load to main stream nitrification tanks. Over 2.5 tpd TN removed.
- Reduces oxygen required for nitrification
- by 25%. Lowering both capital and M&O costs.
- Reduces methanol required for denitrification by 40%. Lowering both capital and M&O costs.
- Reduces the size of main stream reactors, especially associated with respect to denitrification processing.

Courtesy of Mr. Keith Beckmann, P.E., Chief - Process Planning of NYCEP, NEW YORK

ANaerobic AMMonium OXidation Process

•Observation of simultaneous removal of NH_4 -N and production of N_2 in the Netherlands in 1986 led to ANAMMOX technology

•A derivative of SHARON process - ANAMMOX bacteria/autotrophic bacteria accomplish N-removal during nitrification & denitrification

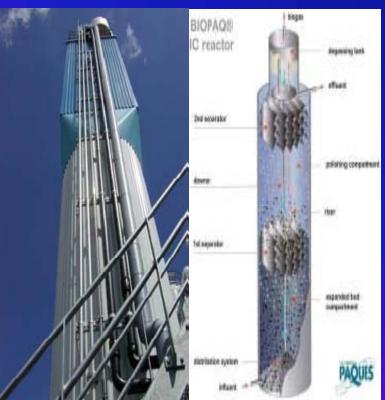
•NH₄-N is used as an electron donor in lieu of organic carbon source such as methanol

•50 % of NH_3 -N is oxidized to NO_2 -N in a SHARON reactor and equal ratio of NH_4 -N to NO_2 -N liquor is sent to the second ANAMMOX reactor, where the ANAMMOX bacteria reduce nitrite to N_2

•Both processes can take place in a single reactor where two guilds of bacteria form compact granules (Kartal et. al. 2010)

> Enriched culture of anaerobic ammonium oxidizing bacteria (Radboud University Nijmegen) <u>Kinestetika</u> 20:44, 15 August 2007 (UTC)

ANAMMOX Process Benefits (STOWA)


- •62% Reduction in O2 wrt conventional nitrification to nitrate
- •No organic carbon needed for denitrification
- Reduced biomass production
- •Operating costs reduction by 90% compared to CND (van Loosdrecht, 2004)
- Reduction in GHC gases by 95% possible because of the consumption of CO_2 and a lack of production of nitrous oxide (N₂O)
- $\cdot N_2$ gas can partially mix the contents which can reduce the mixing energy needs
- •Sustainable process wrt economic and operational perspectives

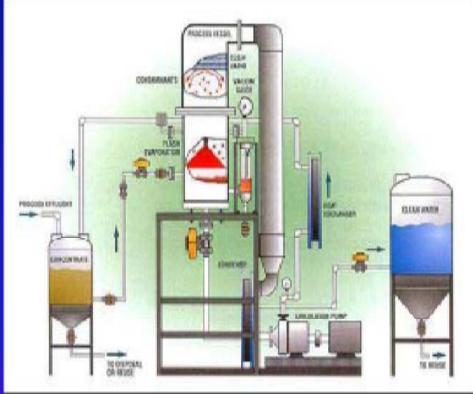
ANAMMOX Process Full-scale Applications and Challenges

•The DCWASA, City of Baltimore and the NYCDEP spent considerable effort on this technology, DCWASA under design stage for sidestream

•As of 2010, 20 installations in Europe and 2 in design in the US

•A full-scale test for raw sewage to begin in Strass Austria and pilot-scale at HRSD

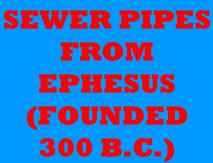
•Very slow growth rate of ANAMMOX bacteria need 100 to 200 days after initial seeding to reach full capacity and produce low sludge production. Due to slow growth rate, sludge retention is very important and typical SRT is 1.5 to 2 days


•Higher nitrite concentration for extended period of time is detrimental to ANAMMOX bacteria

•Challenge is to make it suitable for the treatment of wastewater with lower nitrogen concentrations and low temperatures. **Controlled Atmosphere Separation Technology Vacuum Distillation (CASTion)**

- •CASTion A subsidiary of ThermoEnergy •Proprietary tech for recovery of chemicals and water in many industries including WRPs •Up to 40% NH₃ recovery as NH₄SO₄
- •Flash Vacuum Distillation
 - •Atomizer
 - •Low Vacuum
- Continuous or batch
- Physical principles
 - Uses partial pressures to separate materials
 - Uses sensible heat of wastewater to increase efficiency
- Combined with other technologies (IE, MBR etc) depending on application

Key Variables : pH (10 to 12), feed temp (90 to 120 F, pressure –ve 26 to 29", process time 6 to 12 min, recirculation rate 15 to 30 turnovers



CASTion PILOT-SCALE RESULTS

- •Midsized Aberdeen, WA filtrate: 80% of initial NH₃ of 550 ppm in 7 min at 11.5 pH and T 100 to 120 F
- •NYCDEP 26th Ward centrate pilot tests: 80% of initial NH₃ of 815 ppm in 3 min at >12 pH and T 90 F
- •Also maintained <100 ppm effluent NH₃ from the initial 550 ppm for 28 min at 11.2 to 11.4 pH and T 100 F
- •1.2 MGD centrate CASTion project at 26th Ward plant to begin Qtr 2, 2010.
- •City of Tacoma, WA is to start on-site pilot tests for \$50,000 (Off-site tests for \$3 to 4000)
- **Benefits and Drawbacks / Limitations :**
- + Potential for substantial reduction in methanol requirement for BNR because it returns alkalinity and COD for BNR
- - Filters, IE pretreatment, pH and temp increase make it costly depending upon centrate quality

STRUVITE – A BUILDING BLOCK FOR MAP BASED TECHNOLOGIES

$NH_3 + PO_4 + Mg + 6 H_2O \longrightarrow \downarrow NH_3PO_4Mg * 6 H_2O$

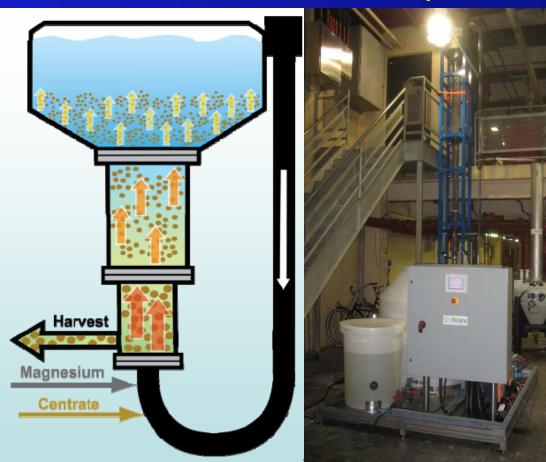
- pH dependent, pH pushes the reaction. $CO_2 \uparrow = pH \uparrow = struvite \downarrow$
- Removes equi-molar ammonia and phosphorus
- AKA: Struvite, MAGamp, MAP
- Mg limiting element

1 kg of struvite can be recovered from 100 m³ wastewater & applied on 2.6 ha arable land (Shu L. et. al.)

MAP Based Technologies for P Recovery from Resource Streams OSTARA & PROCORP, LLC

NH₃N NO₃N

Sol


NO2N

Sol

Part

PEARL[™] Process Operation

OSTARA NUTRIENT RECOVERY TECHNOLOGIES INC.

PREFERRED APPLICATION

- •Plant size >5 MGD
- Plant processes:
 - Anaerobic zone (Bio-P)
 - Anoxic zone for denitrification/biological selectors
 - Anaerobic digestion & dewatering
- •PEARL[™] process feed stream desired characteristics:
 - PO_4 –P >75 mg/L, and > 140 lbs/day for 90% + P removal
 - TSS <1000 mg/L
- Struvite and/or vivianite formation challenges
- •<10 Year Payback / Instant Net Savings</p>
- •At present, not feasible at District plants but may become feasible with Bio-P treatment

OSTARA TREATMENT AT DISTRICT WRPS

•NOT FEASIBLE DUE TO LOW P

•BIO-P IS A MUST

•IN ORDER TO REALIZE CASH FLOW, NEEDS AT LEAST 2 TO 3 TIMES HIGHER P IN CENTRATE

Estimated P-Recovery at Stickney, Egan and Calumet WRPs : Pro-Corp LLC

Recycle	Fertilizer, tpd	NH3, Ibs/day	TP, Ibs/day
SWRP Pre-Centrate	6	740	1600
SWRP Pre & Post Centrate	11	1500	2700
EWRPCentrate + Filtrate	0.33	46	83
CWRP Centrate	0.2	26	48
CWRP Lagoon 9 (Not enough P)			
Lagoon 17	0.4	48	87

If Iron is not added at EWRP, more P will be available, potentially up to 75% of TP

A SUMMARY OF TREATMENT TECHNOLOGIES FOR FURTHER CONSIDERATION AT DISTRICT WRPS

•SHARON-ANNAMOX process for SWRP

•Consider CASTion based on cost economics if excess recovered by-product can be sold in Chicago markets

Consider MAP Based Technology if Bio-P is implemented
: Ostara or ProCorp LLC

Keep eye on Algalwheel success

THE NEXT STEP

Need for data on flow and characteristics of recycle streams

• Due to limited supply of P, P-resource recovery from recycle streams in future may become more attractive

 Identify and evaluate feasibility of select technology (e.g. SHARON-ANAMMOX at SWRP) at a pilot-scale

THANKS FOR YOUR ATTENTION

- Questions and/or Comments Now?
 - Later? kamlesh.patel@mwrd.org

• 708-588-3735

REFERENCES

- 1. WERF Project Report No. 02-CTS-1
- 2. Stickney GPS-X Model from District's Stickney Master Plan (Slightly Modified)
- 3. WERF Webinar Webcast on 12/9/09
- 4. International Conference on Nutrient Recovery from Wastewater Streams, May10-13, 2009
- 5. Wastewater Technology Fact Sheet on Side Stream Nutrient Removal, USEPA 832-F-07-017
- 6. USEPA Nutrient Workshop, May 2010 at Rosemont, IL (Barnard, Randall and Stensel)
- 7. Nutrient Removal from High Strength Recycle Streams by Roger F. Gyger–m2t technologies LLC at 29th IWEA Annual Conference
- 8. Cultivating Algae In Existing Wastewater Treatment Plants by Jun Yoshitani, Bioenergy & Environment, Inc. at DOE Algal Biofuel Consortia
- 9. Web Based Literature Developed by Synthetic Genomics, Inc. and Exxon Mobil Alliance
- 10. <u>www.hydromentia.com</u> and Mark J. Zivojnovich Presentation on Algal Turf Scrubber® Technology Growing Algae as Part of the Process with Potential Use as Cellulosic Biofuel at POTW Nutrient Reduction and Efficiency Conference, January 12 - 14, 2010 at Evansville, Indiana
- 11. AlgalWheel® Technology Website and Personal Talk at 31st Annual IWEA Conference & Exhibition, 1-3 March 2010 in East Peoria, IL
- **12. A2BE Carbon Capture LLC, Algaeatwork.com**
- CASTion Inc. Personal Conversation with John Sawyer and a presentation by Company CTO, Alex Fassbender at POTW Nutrient Reduction and Efficiency Conference, January 12 - 14, 2010 at Evansville, Indiana
- **14. Consultation with Chris Howorth, Ahern Britton, and Matt Kuzma of Ostara, Inc.**
- **15. Consultation with Eric Fessler and Vicki Lipinski of ProCorp LLC**
- 16. Consultation with Mr. Keith Beckmann, P.E. Chief Process Planning, NYCEP, New York
- 17. Shu L., Scheider, P., Jegatheesan, V., Johnson J School of Engg Bioresource Technology, Nov 2006, 97(17):2211-6 Epub 2005 Dec 20

REFERENCES (continued...)

- 18. "Treatment of sludge return liquors: Experiences from the operation of full-scale plants," Norbert, J et al., 2006, WETEC'06, WEF, Alexandria, VA.
- 19. Van Loosdrecht MCM, Hao, X., Jetten MSM, Abma, W. "The SHAROn-Anammox process for treatment of ammonium rich wastewater" Water SCi Tech (2004) 4(1), p 87-94
- 20. STOWA Report, ISBN 1843390000
- 21. Kartal, B., Kuenen, G. J. and Loosdrecht Van MCM, "Sewage Treatment with Anammox, Science, 2010, vol 328 p 702-3