

Metropolitan Water Reclamation District of Greater Chicago Protecting Our Water Environment

Plant Availability and Environmental Significance of Phosphorus in Land-Applied District Biosolids

Guanglong Tian Kuldip Kumar Albert Cox

Acknowledgements

Section 123 Technicians and Chemist

 Field and greenhouse work, lab analyses etc.

 Rosalie Swango and other M&O staff at Fulton County

 Field and greenhouse work, lab analyses etc.

 Analytical Labs Division

 Analyses

But Phosphorus is a Good Thing

Humans and Animals

- Essential ingredient of all cell protoplasm, nervous tissue, and bones
- Part of DNA material
- > Primary factor in energy distribution (ATP) Plants
- > An essential plant macro-nutrient
- Formation of sugars and starches and conversion of solar energy into chemical energy
- Stimulation of early growth and root formation, and promotes plant hardiness and seed production

So What's the Concern?

- Increase P concentrations in eutrophication of surfac e water-causing:
 Reduce lake water quality, cause fish kills and algal blooms
 And ultimately decrease opportunities
 More attention to non-point source (e.g. farmland)
 - pollution in recent years.

Efforts to Minimize Agricultural P Impacts P-Based Nutrient Management

USDA-NRCS 590 Standard: P-based plans based on site characteristics and vulnerability of water bodies

Options

USEPA – Confined Animal Feeding Operation (CAFO): Nutrient Management Plan

According to IEPA: CAFO rule may form basis of P-based rate biosolids rule in Illinois

No application where soil test P >300 lbs/ac (150 mg/kg)

Only amt. P to meet crop needs (single or multiple seasons)

Buffer: 100 ft from surface water

How Might P-based Application Affect District Biosolids Farmland Program?

Need more land for application

- Longer distance, higher costs
- Scenario: To utilize 100,000 dry tons/yr At current N-based rate of ~10 tons/ac, we need 10,000 acres At P-based (~2.5 dry tons/ac), we'll need ~40,000 acres
- Farmers will need to apply supplemental N fertilizer
- Difficult and probably impractical to accurately apply <5 dry tons/ac</p>

Soil Test P in 100 Fields in District Biosolids Farmland Application Program 2009 -2010

Soil Test P Range (Ibs/ac)	No. of Fields	Rating	
<40	20	Low	
40 - 50	8	Low	
60 - 80	5	High	Agronomi
>80	60	Very High	
>300	7	Prohibited	

Average for fields at <300 lbs/ac = 114 lbs/ac

Typical Characteristics of MWRD Biosolids Controlling Fate of P

Total AI (%)	2.0 - 3.0
Total Fe (%)	2.5 – 4.5
Water Soluble P	60 – 120
(1:25 solid:water), mg/kg	
Total P (%)	1.8 – 2.5
(Ibs P/ton)	36 - 50

IEPA's Top Questions

District & IEPA Collaborative P Research

- Could a P coefficient be developed which would predict what portion of the total P contained in biosolids would be available for plant uptake?
- 2. Is there a residual availability of P over time similar to the residual contribution of N over 5-year of application? If Yes? How much?
- 3. How much of a reduction in P runoff would occur if biosolids were incorporated rather than surface applied?
- 4. What is the appropriate buffer zone to limit P runoff? The Agency is tentatively proposing a 100-ft buffer from surface water. Is this enough, too much or too little?

Biosolids P Studies

Bioavailability: Greenhouse Study – Albert Cox

A coefficient can be used to account for lower bioavailability of biosolids P compared to fertilizer P, with respect to soil test P and plant uptake

Residual biosolids P in soil is released slowly over time

Bioavailability: Field Studies – Guanglong Tian

- Confirm findings of greenhouse study
- How data can be used to develop P-based guidelines
- P Runoff Biosolids Studies Kuldip Kumar
 - Runoff potential of biosolids P
 - Length vegetative reasonable to protect surface waters

Imminent P-based Biosolids Land Application Rule

Is the District's Farmland Application Program at Risk?

Bioavailability of Biosolids P Greenhouse Study

Greenhouse Study: Methods

Soil: P-deficient sandy soil (STP = 2.5 mg P/kg (5 lb/ac)

> 3 P sources

- **1. TSP (chemical fertilizer)**
- 2. Class A Air-dried biosolids
- **3.** Class B Centrifuge cake biosolids
- 6 targeted P rates: 0 300 mg P/kg soil
- 4 Replicates
- Crop: Alternating wheat & perennial rye
 - Clip foliage every 30, then regrow or reseed
 - Total of 18 crops

Relief Workers harvesting wheat Foliage

So what you doing next summer, 2011?

I don't know!! Not at the District!

Greenhouse Study: Methods

Soil Analyses (after every two crops)

- Soil Test P Bray 1 method
- Water soluble P (WSP)
- Total P

Plant Analyses

- Weigh foliage to determine dry matter (DM) yield
- Determine P conc. in tissue

Calculations

- P uptake = DM x P conc.
- Immediate availability = cum P uptake in first 3 crops
- Total availability = Cum P uptake in all 18 crops

How Much P is Needed to Increase Bray 1 Soil Test P by 1 Pound?

	Immo Sai	kalee nd	Watseka Sand	Drummer clay loam	Fulton Co. clay loam
Initial STP (mg P/	k <mark>g)</mark> 2.	5	132	43	18
P Source		bound	s P to rais	se STP by 1	pound
TSP	1.3	}	1.2	1.6	3.7
Biosolids	1.7	-	3.6	7.9	7.2
		Da	ata from	T 2002 lab :	study

How Many More Applications before IEPA Limit?

Cumulative P Uptake in Three Consecutive Foliage Clipping: Immediate Plant Availability

Draw Down of Soil Test P How long does it take to get back?

P Added = 300 mg P/kg (600 lbs/ac)

Bray 1 Soil Test P in Top Layer of Pots After 18 Cycles of Cropping

P Rate	Class A	Class B	TSP	
mg P/kg		- mg P/kg		
0	0.7	0.7	0.7	- AME
25	3.1	3.5	1.7	6"- Soil +
50	5.5	6.8	1.5	P Sources
100	20.1	14.9	2.1	
150	45.1	34.3	3.6	
200	67.1	52.7	6.1	Untreated layer
300	116.6	81.8	8.2	

Water Soluble P in Bottom Layer of Pots After 18 Cycles of Cropping

P Rate	Class A	Class B	TSP	
mg P/kg		- mg P/kg		Treated =
0	0.6	0.6	0.6	P Sources
25	1.28	1.65	1.72	
50	2.36	2.33	2.71	leaching
100	3.21	3.45	5.21	12"_ Untreated
150	5.64	5.13	10.23	layer
200	7.38	6.49	15.78	
300	7.35	6.42	26.38	

Cumulative P Uptake in 18 Consecutive Foliage Clipping: Long-term Plant Availability

How Might P Removal Affect Biosolids P? Effect of Chemical P Removal on P in Biosolids from **Pilot Study at Egan WRP** Total P in biosolids (mg/kg) 40000 30000 20000 10000 0 **Pre-P** removal Post-P removal Bray 1 P in biosolids (mg/kg) Water extractable P in biosolids (mg/kg) 15 150 100 10 50 5 0 Pre-P removal Post-P removal 0 **Pre-P** removal **Post-P** removal

Bioavailability: Greenhouse Summary

1. Bioavailability: Short-term (i.e. first season)

- Bioavailability of biosolids P is less than 50% compared to TSP fertilizer
- Biosolids less effective than TSP to increase STP
- To raise STP by 1 lb biosolids P required is ~8 lbs in clay loam soils and ~4 lbs in sandy soils

2. Bioavailability: Long-term

- Bioavailability of biosolids P is similar to TSP due to slow availability of residual in soil
- Draw down of STP over time is slower for biosolids P than for TSP

Over To Tian

Confined Animal Feeding Operations "Meat Factories"

USDA-NRCS 590 Standard Navigating the Phosphorus Traffic

Field P Rating	Determination of P Application Rate	Biosolids Land Application
HIGH	Prohibited	Prohibited
MEDIUM	P-Based	NOT Practical
LOW	N-Based	Feasible

So What's Your Contribution? What we eat, drink, and use

High P Diet

Low P Diet

Vegetarian/Vegan

Tax break?

I am what I ate, and I scared – Bill Cosby

Fulton County Field Study

Design: Randomized complete block

```
Replication: Four
```

Treatments (P levels in kg P ha⁻¹):

Control (no	P)		
163:	Biosolids-P	vs.	P fertilizer
325:	Biosolids-P	VS.	P fertilizer
488:	Biosolids-P	vs.	P fertilizer

650: **Biosolids-P vs. P fertilizer**

- One application (10/2005): biosolids and Triple SuperPhosphate (TSP, P fertilizer)
- Initial soil Bray-1 P: 13 ppm
- pH 5.8
- O.C.: 2%
- Soil texture: Silty clay loam

Agronomic effectiveness

Dynamics of soil Bray-1 P and effectiveness of biosolids in raising it

Dynamics of soil water extractable P and the effectiveness of biosolids in raising it

Recovery of P at 3 years after the P application

Long-term data support less leaching of P from biosolids

Biosolids Fe/Al add to soil P fixation capacity

- Fe(OH)_n⁺
- H₂PO₄-
- Fe-P complexes Adsorption and co-precipitation

Amorphous Fe oxides increase along the biosolids application

Surface water at Fulton County long-term biosolids application watershed

Possible: N-based biosolids land application

Not possible: yearly repeated application

Recommendations for biosolids land application program

A Nitrogen-Based 5-Year Rotation

Potentials of farmland in Chicagoland for biosolids use

- South block: 30 X 40 mile
- West block: 30 x 40 mile
- Crop land: 400k ha
- MWRD biosolids farmland: 100k Mg yr⁻¹
- Biosolids 20 Mg ha⁻¹:
- Land needed for biosolids: 1%
- Rotate every 5 yr, only use 5 % land

But Phosphorus is a Good Thing

Humans and Animals

- Essential ingredient of all cell protoplasm, nervous tissue, and bones
- Part of DNA material and energy distribution

Plants

- An essential plant macro-nutrient
- Formation of sugars and starches and conversion of solar energy into chemical energy

Stimulation of early growth and root formation, and promotes plant hardiness and seed production

Good for ROOT Growth of both Plants & Human Hair

AGRONOMIC IMPACTS

ENVIRONMENTAL IMPACTS

Runoff

Biosolids

USEPA (1986) Guideline for Agricultural Runoff P < 1 mg/L

..................

Leaching

Rainfall Simulation Study

Objective: To compare potential P losses from Class-A & Class-B biosolids when surface applied or mixed (incorporated) with soil.

- H→ No difference in Class-A and Class-B biosolids.
- H[→] Mixing of biosolids will reduce P losses as compared with surface application.

Treatments

- Rates of Application

 To meet crop N requirement (N basis)
 To meet crop P requirement (P basis)
- Method of Application
 Surface (S)
 - Incorporated (In)
- TSP rates (Incorporated in soil)

 Biosolids equivalent P based on N
 Biosolids equivalent P based on P
- Control

Runoff Simulation National P Project Protocol - SERA 17 Rainfall Simulator – Joern's Inc. Eleven soils (3 Reps) Rainfall on Days 1, 3, and 7 Rainfall – 7.0 cm/hr, 30-min runoff noff P analyses Ru red Molybdate Reactive P (DMRP) 0,45µm filter, acid dig olved P otal D otal P ed, acid digest

DMRP and Total P Concentration

DMRP in Runoff

Treatments	P lost during 3 runs (mg/tray)		
	Surface	Incorporated	
N-Based			
Class A	9.1	1.3	
Class B	5.6	2.3	
TSP		7.4	
P-Based			
Class A	1.4	0.9	
Class B	1.9	0.9	
TSP		0.7	
Control	0.6		

Particulate P in Runoff

Treatments	P lost during 3 runs (mg/tray)		
	Surface	Incorporated	
N-Based			
Class A	27.9	10.1	
Class B	128.5	22.5	
TSP		18.0	
P-Based			
Class A	7.9	8.5	
Class B	23.4	16.5	
TSP		9.1	
Control	7.6		

Total P in Runoff

Treatments	P lost during 3 runs (mg/tray)		
	Surface	Incorporated	
N-Based			
Class A	39.5	13.2	
Class B	137.2	27.4	
TSP		28.0	
P-Based			
Class A	11.2	11.1	
Class B	29.7	18.7	
TSP		10.6	
Control	8.7		

Cake and Air-dried biosolids are different

10 mins

30 mins

5 hrs

24 hrs

Summary

- Greater losses of dissolved P occurred from surface applied Class-A biosolids, however total P losses were higher from class-B biosolids.
- Incorporating biosolids reduced the P losses substantially. Biosolids incorporation within 24 hrs of spreading is the best management practice followed in District's farmland application program.
- Most of the losses were due to particulate P, so controlling erosion may reduce P losses substantially.

Field P Runoff Study

Objective: To compare the length of vegetative buffer strip for reducing particulate P losses from biosolids applied fields.

 H : Longer the buffer strip, less will be particulate P losses.

All the Fun at Fulton County: Thanks Rosalie and FC staff

Buffer Length and Particulate P

Summary

- We cannot reduce the P in agricultural runoff to ZERO, no matter what is the length of vegetative buffer strip.
- 25 ft buffer length was sufficient to reduce particulate P concentration to < 1 mg/L in 9 out of 10 runoff generating storm events.
- 50 ft is a good conservative length, the suggested length by IEPA for proposed regulation is 100 ft.

Fine-earth fraction The Three Soil Separates

Cake and Air-dried biosolids behave differently

10 mins

30 mins

5 hrs

24 hrs

Imminent P-based Biosolids Land Application Rule

Is the District's Farmland Application Program at Risk? No

- Selection of fields based on soil test and erosion potential
- Most of the losses were due to particulate P, so controlling erosion may reduce P losses substantially.
- BMP's (e.g. vegetative buffers, WT-Residual Strips) in sensitive areas

Questions?

All biosolids are created equal but some are more Equal than others

District Biosolids

are 'Celebrity Biosolids'