
State of the Science on Cogeneration of Heat and Power from Anaerobic Digestion of Municipal Biosolids

Metropolitan Water Reclamation District of Greater Chicago July 31, 2009

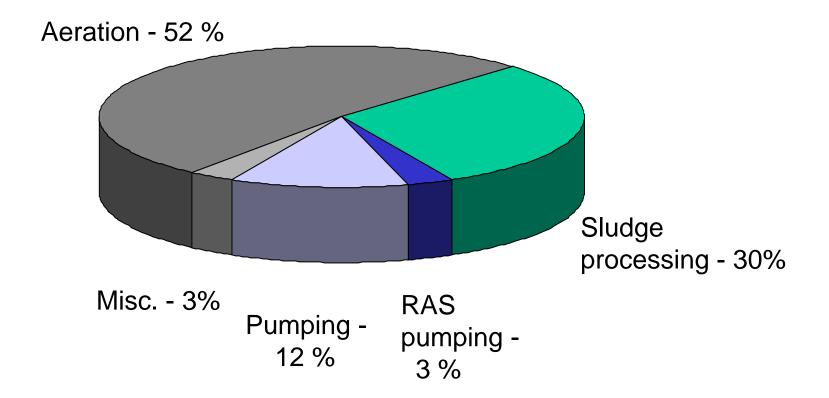
J. (Jim) E. Smith, Jr., D.Sc., BCEEM USEPA's Pathogen Equivalency Committee Andrew W. Breidenbach Environmental Research Center Cincinnati, Ohio 45268 smith.james@epa.gov

What Will be Discussed?

- Energy Issues & Wastewater Treatment
- Digester Feed
 - Sources
 - Preparation
- Digester Operation
 - Gas Production
- Combined Heat and Power
 - Gas Cleanup
 - Power Production
 - Heat Recovery
- Case Studies
- New WEF/WERF/EPA Solids Manual

RESEARCH & DEVELOPMENT

Significance and Drivers


- Electric use for centralized W&WW treatment accounts for 3.0%* of US electricity use
 - \$4 billion annually, 25-30% of total plant O&M Cost**
- Direct US GHG Emissions (2006)^{***} Municipal WW treatment-
 - 0.4 % of total GHG emissions
 - 3.0% of total anthropogenic Methane (CH₄) and 2.2% of total Nitrous Oxide (N₂O) emissions
 - CH_4 : 16 Tg CO_2 eq., N_2O : 8.1 Tg CO_2 eq.
- Estimated US GHG Emissions (2006) from electricity generation for centralized W&WW treatment: 69.8 Tg CO₂ eq. **** (1.2% of total US GHG emissions)
- * Electric Power Research Institute (EPRI)
- ** Energy Star Program
- *** Inventory of Greenhouse Gas Emissions and Sinks: 1990 2006, EPA, 2008
- **** EPRI estimate & Inventory of Greenhouse Gas Emissions and Sinks: 1990 2006, EPA, 2008

RESEARCH & DEVELOPMENT

Energy Used in Wastewater Treatment

Figures shown are typical for activated sludge plants, which use approximately 1200 kWh/MG treated.

Energy Conservation Measures

Solids Handling

- Improved digester heating and mixing
- New dewatering equipment
- Improved methods of drying (including using anaerobic digester gas)
- Increased recycle (land application and recycled products)

RESEARCH & DEVELOPMENT

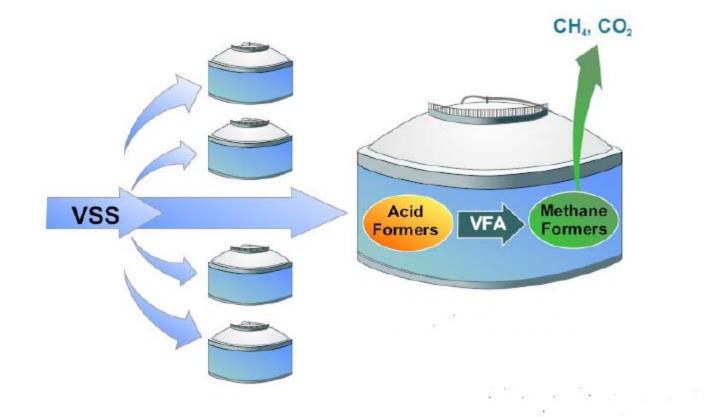
RESEARCH & DEVELOPMENT

Summary of OCSD Biosolids Disposal Options

Recycling Sites	Distance	Distribution	Load	Haul	
	(miles)	(%)	(tons/day)	(trucks/wk)	
Dateland	335	22%	143	40	
Arizona Soils	270	4%	25	7	
South Kern Organics	160	39%	250	70	
EnerTech	55	35%	225	63	
Total			643	100	

RESEARCH & DEVELOPMENT

Т


Net Carbon Footprint for All Sites

Recycling Sites	Total Emissions	тос	тос	Net CFP
	kgCO2Eq/yr	% of dry solids	kgCO2Eq/yr	kgCO2Eq/yr
Dateland	9.18E+06	20%	7.02E+06	2.16E+06
Arizona Soils	1.29E+06	20%	1.23E+06	6.66E+04
South Kern				
Organics	7.67E+06	20%	1.23E+07	-4.61E+06
Enertech	2.37E+06	20%	1.10E+07	-8.67E+06
Total	2.05E+07	20%	3.16E+07	-1.10E+07

RESEARCH & DEVELOPMENT

Anaerobic Digestion

Courtesy of R Dale Richwine, MWH

RESEARCH & DEVELOPMENT

Products of Anaerobic Digestion

- Yields gases and residues
- Gases used to make heat, electricity or fuel
- Produce Methanol (being done in Utah in large scale from pig manure fermentation).
- Residues used to make fertilizer

Courtesy of Mike Moore, OCSD

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

Why Anaerobic Digestion and Wastes are an Opportunity in California?

- 36 Million TPY disposed
- Potential to reduce GHGs
- Reduces reliance on landfills
- Alternatives to natural gas

- Helps achieve 33% threshold of renewable energy by 2020
- Low Carbon Fuel Standard (10% reduction in carbon intensity by 2020)
- 15% of waste stream is food waste high value feedstock for digesters

Courtesy of Michael Moore, OCSD

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Types of Anaerobic Digester feedstock

Courtesy of Michael Moore, OCSD

RESEARCH & DEVELOPMENT

RECOVERING & USING ENERGY FROM WWTP RESIDUALS

Engineering Rules of Thumb for Considering CHP at a WWTF

- A typical WWTF processes 100 gallons per day of wastewater for every person served.
- Approximately 1.0 cubic foot (ft³) of digester gas can be produced by an anaerobic digester per person per day. This volume of gas can provide approximately 2.2 watts of power generation.
- The heating value of the biogas produced by anaerobic digesters is approximately 600 British thermal units per cubic foot (Btu/ft³).
- For each 4.5 million gallons per day processed by a WWTF with anaerobic digestion, the generated biogas can produce approximately 100 kilowatts (kW) of electricity and 12.5 million Btu (MMBtu) of thermal energy.

- To sell back to the grid as green power.
- To operate pumps and blowers used throughout the treatment process.
- To maintain optimal digester temperatures, dry the biosolids, and provide space heating for the WWTF.

US Wastewater Treatment Facilities (WWTFs) with Anaerobic Digestion & Off Gas Utilization

- **# WWTFs in USA is 16,583**
- # WWTFs in USA treating a wastewater flow > 5 MGD is 1,066 or ~ 6 % of total number
 - # of these with anaerobic digesters is 544
 - # of facilities with anaerobic digesters that utilize biogas is 106

Source: 2004 Clean Watersheds Needs Survey

۲

RESEARCH & DEVELOPMENT

Current Situation / Potential

POTW anaerobic digester gas utilization for combined heat and/or power (CHP)

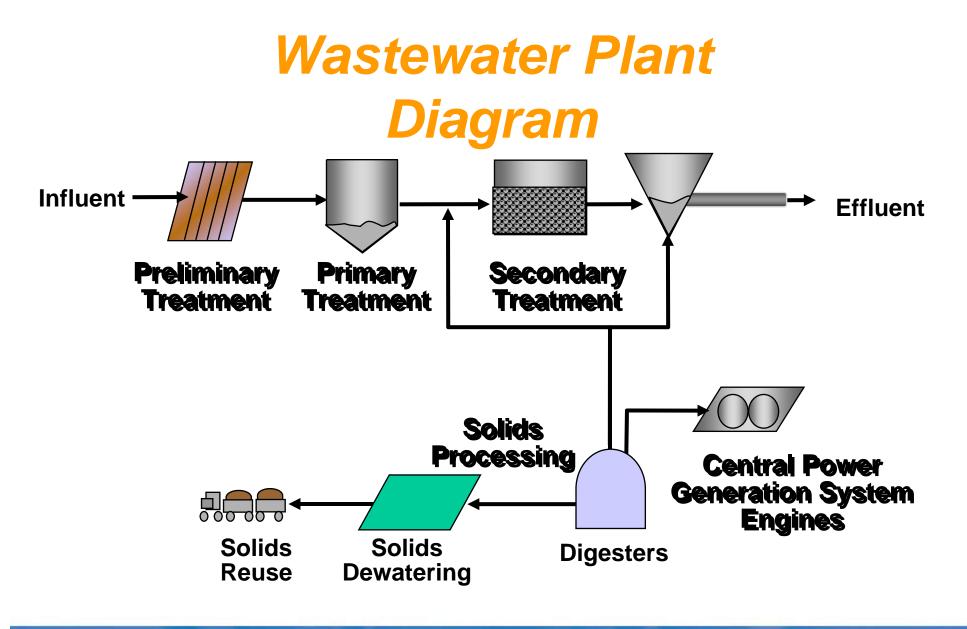
If all 544 facilities install CHP:

* Opportunities and Benefits of Combined Heat and Power at Wastewater Treatment Facilities, Combined Heat and Power Partnership, EPA 2006

- 340 MW of clean electricity generation,
- 2.3 million metric tons of CO₂ offset annually,
 Equivalent to cutting emissions from 430,000
- cars

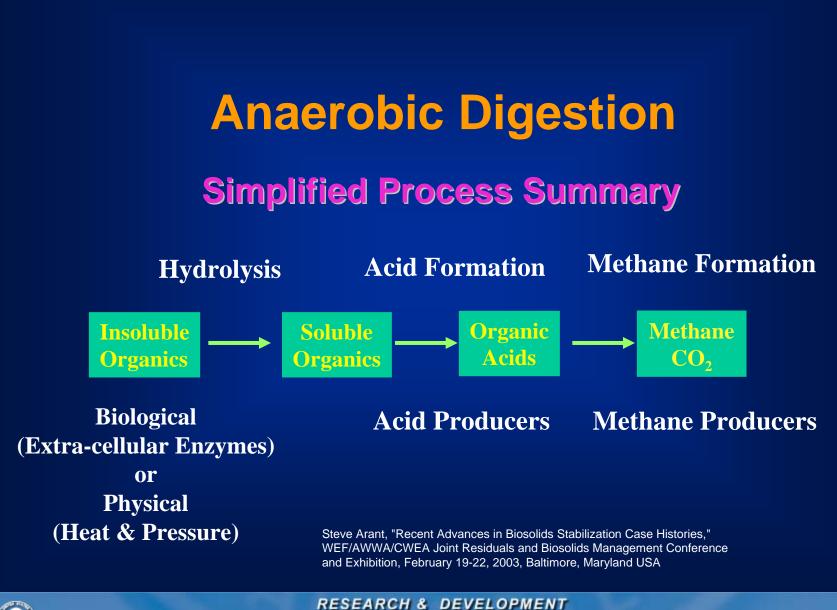
Significant opportunities for savings in energy costs

RESEARCH & DEVELOPMENT


Co-generation at Wastewater Treatment Plants in California

- ~ 50 % POTWs > 1 MGD have anaerobic digesters
- ~ 95 % of sewage treated, however, has its solids treated by anaerobic digesters
- Randomly interviewed 32 facilities
 - 21 have installed cogeneration (66 %)
 - 5 use methane for heat only
 - 6 flare methane (20 %)

USEPA-Region 9, 2008


RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Requirements for Anaerobic Digestion

Feedstock

- biodegradability
- moisture content and particle size
- C/N ratio
- presence of inhibitory or toxic compounds

Process Conditions

- temperature
- retention time
- organic loading rates
- chemical environment (pH, volatile fatty acids, ammonia, etc.)

RESEARCH & DEVELOPMENT

Typical Operational and Design Criteria for Thermophilic Anaerobic Digestion as compared to Mesophilic Digestion

Criterion	Mesophilic	Thermophilic
Typical SRT	15 to 20 days	8 to 12 days
Minimum Design SRT	12 days	4.5 to 6 days
Operating Temperature	35 to 39 degrees C	50 to 58 degrees C
	(95 to 102 degrees F)	(122 to 136 degrees F)
Feedstock Concentration	3 to 6 percent total solids	4.5 to 6.5 percent total solids
Digesting Sludge	1.5 to 4 percent total solids	2.5 to 4.5 percent total solids
Concentration		
VS Loading	0.1 to 0.15 lb VS/cubic	0.2 to 0.4 lb VS/cubic foot/day
	foot/day	
Volatile Fatty Acid	<200 mg/l	400 to 1200 mg/L
Concentrations (total as acetic		
acid)		
pH	6.8 to 7.2	7.0 to 7.7

RESEARCH & DEVELOPMENT

Typical Properties of Primary and Waste Activated Sludges

Total dry solids (%)	5-9	0.8-1.2
Volatile fraction (%)	60-80	59-88
Ether Extract	7-35	5-12
Protein (% of TS)	20-30	32-41
Nitrogen 170	1.5-4	2.4-5.0
(N, % of TS)		
Phosphorous (P ₂ O ₅ , %	0.8-2.8	2.8-11
of TS)		
рН	5-8	6.5-8.0
Alkalinity (mg/L as	500-1500	580-1100
CaCO ₃)		
Organic Acids (mg/L as	200-2000	1100-1700
HAc)		
Energy Content (kJ/kg	23000-29000	19000-23000
TS)		

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

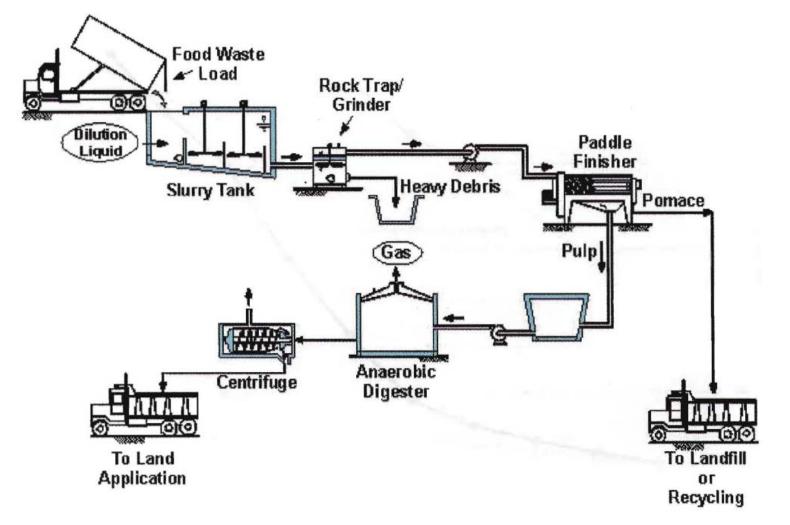
BTU Value of Different Types of Wastewater Treatment Residuals

Wastewater Treatment Sludge	Heating Value
Material	(Btu per pound of dry solids)
Fine Screenings	9,000
Grit	4,000
Grease and Scum	16,700
Dewatered Raw Biosolids	10,300
Chemical Precipitated Biosolids	7,500
Dewatered Digested Biosolids	5,300
Samaat	
<u>Source:</u> NBP 2005, p 15-10	

RESEARCH & DEVELOPMENT

Comparing Gas Production Capabilities of Different Sources

Food waste has THREE TIMES the methane potential as biosolids!


- Cattle manure= 25m³ gas/ton
- Biosolids= 120 m³ gas/ton
- Food waste= 376 m³ gas/ton

From USEPA-Region 9 & EBMUD

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Schematic of EBMUD Food –Waste Recycling Process

RESEARCH & DEVELOPMENT

Example of Innovative Approach – EBMUD, CA

Food Wasterne Wasternaten Galida Commaniaan

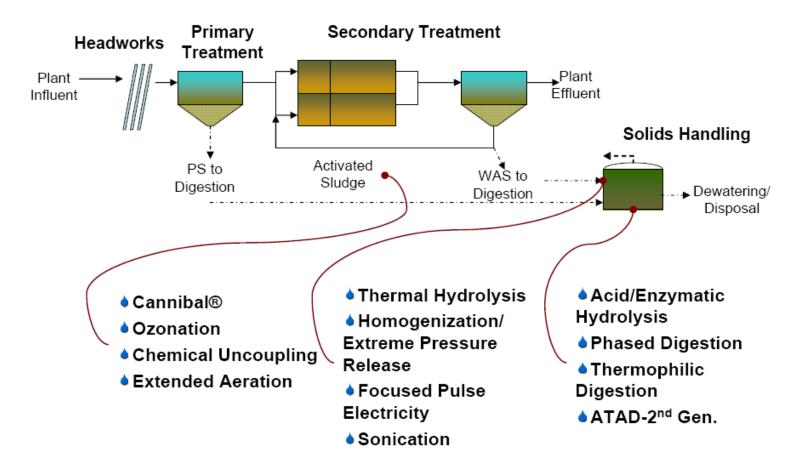
Parameter	Food Waste Pulp	Wastewater Solids
Volatile Solids in Feed (%)	85-90	70-80
Volatile Solids Loading (lbs/ft3-day)	0.60 +	0.20 max
COD Loading (lbs/ft3-day)	1.25 +	0.06-0.30
Total Solid Fed (%)	10+	4
Volatile Solids Reduction (%)	80	56
Hydraulic Detention Time (days)	10	15
Methane Gas Produced (meter ³ /ton)	367	120
Gas Produced (liters/liter of feed)	58	17
Biosolids Produced (lbs/lbs fed)	0.28	0.55

Diverting food waste from landfills prevents uncontrolled emissions of methane. Only 2.5% of food waste is recycled nationwide, and the principal technology is composting which produces volatile organic compounds and consumes energy. In California, approximately 137 wastewater treatment plants have anaerobic digesters, with an estimated excess capacity of 15-30%. Anaerobic Digestion of Food Waste funded by EPA-R9-WST-06-004.

RESEARCH & DEVELOPMENT

Examples of Organizations Using Grease for Fuel/Energy

Agency/Organization	Summary Description of Process or System Utilized
City of Riverside, California Wastewater Treatment Plant (WWTP)	Accepting trucked brown grease for co- digestion with wastewater sludge. Gas used in cogeneration engines.
City of Lincoln, Nebraska - Theresa St. WWTP	Accepting trucked grease and related wastes for co-digestion with wastewater sludge. Gas used in cogeneration engines.
East Bay Municipal Utility District, Oakland California, Main WWTP	Accepting trucked grease and related wastes for co-digestion with wastewater sludge. Gas used in cogeneration engines. Also, a pilot plant for biodiesel production from grease has operated at the EBMUD plant site.
Covanta Energy, Carver, Massachusetts	Trucked grease/FOG materials used as fuel for solid waste to energy plant in Massachusetts.
City of Oxnard, California WWTP	Accepts trucked brown grease for co- digestion with wastewater sludge. Gas used in cogeneration engines.
City of Millbrae, California WWTP	Started accepting trucked grease in 2007 for co-digestion with wastewater sludge. Privatized system by Chevron Energy Solutions includes cogeneration engine using digester gas.


RESEARCH & DEVELOPMENT

Schafer, P et al,

2008

Waste Minimization / Conditioning Technologies

Courtesy of Tom Kutcher of CH2M Hill

RESEARCH & DEVELOPMENT

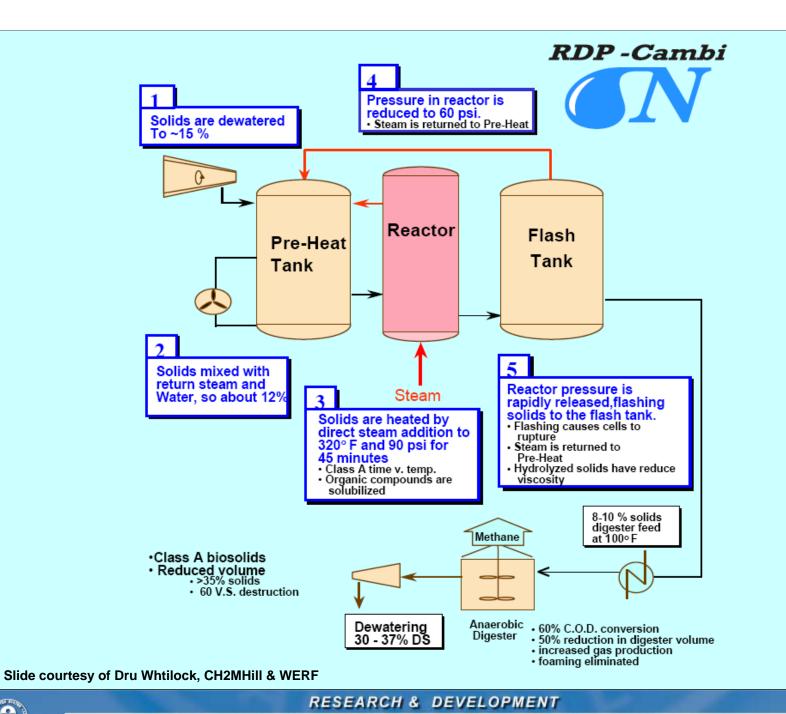
Why Condition Sludge for Anaerobic Digestion?

- Solubilize sludge solids and lyse cells, thereby increasing the rate of degradation
- Render the non-degradable organic fraction degradable, thereby increasing the extent of degradation
- Ultimately result in the generation of less residuals to further manage

RESEARCH & DEVELOPMENT

Thermal Hydrolysis

- High pressure-high temperature process: thermal hydrolysis of dewatered sludge under pressure using live steam.
- Hydrolyzed and pasteurized sludge digested at greater VSI (smaller vessels).
- Three systems:



Thermal Hydrolysis

Cambi Process

Building a scientific foundation for sound environmental decisions

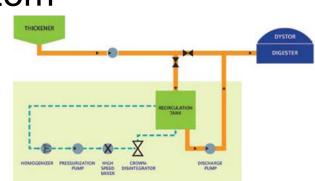
RESEARCH & DEVELOPMENT

۲

CAMBI's Performance Claims

Parameter	Mesophilic AD	CAMBI + Meso AD
Digester Feed (%TS)	4-6	12-15
VSLR (kg VS/m³/d)	1.5	3.5
VS Destruction (%)	40-55	55-65
Pathogen content	Class B	Class A
Dewatered Cake TS (%)	20-25	30-35

RESEARCH & DEVELOPMENT



Sludge Disintegration Processes

- Macerate sludge to homogenize
- Increase pressure (12 Bar) with PC pump
- high pressure mixer, flow into disintegration nozzle.
- As the flow exits the nozzle, cavitation occurs rupturing cell structure
- Sludge can be passed through system three times before discharge to the digesters.

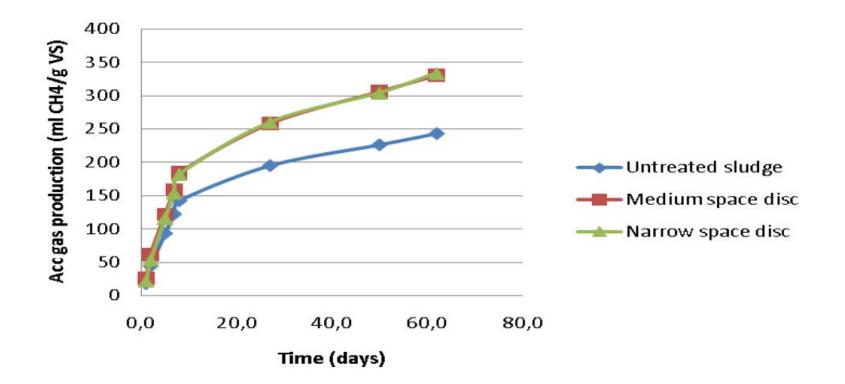
Crown Disintegrator Wiesbaden WWTP - 60m3/hr

RESEARCH & DEVELOPMENT

Performance Data by Crown

	VSr %			Biogas production cf/lb VS des		
Site Name	Before	After	% inc	Before	After	% inc
Wiesbaden Biebrich	32%	38%	20.0%	25.1	24.7	-1.7%
Taunusstein	32%	44%	38.9%	22.6	20.8	-7.8%
Ingelheim	36%	49%	34.1%	17.0	17.7	4.4%
Ginsheim	45%	54%	19.9%	14.7	14.3	-3.1%
Münchwilen	32%	43%	32.0%	20.2	19.1	-5.3%
Rosedale WWTP	51%	62%	21.6%	18.2	17.9	-1.8%
Average	38.1%	48.3%	27.7%	19.6	19.1	-2.6%

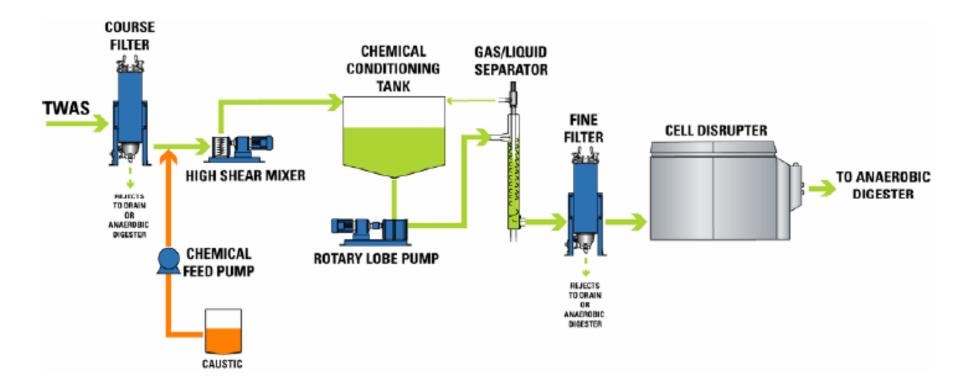
RESEARCH & DEVELOPMENT



Performance Data by Crown

	DS after dewatering %				
Site Name	Before	After	% increase		
Wiesbaden Biebrich	31	36	16.1%		
Taunusstein	31	36	16.1%		
Ingelheim	28	34	21.4%		
Ginsheim	20	23.4	17.0%		
Münchwilen	22	26.4	20.0%		
Rosedale WWTP	18.5	22.2	20.0%		
Average	25.1	29.7	18.4%		

RESEARCH & DEVELOPMENT

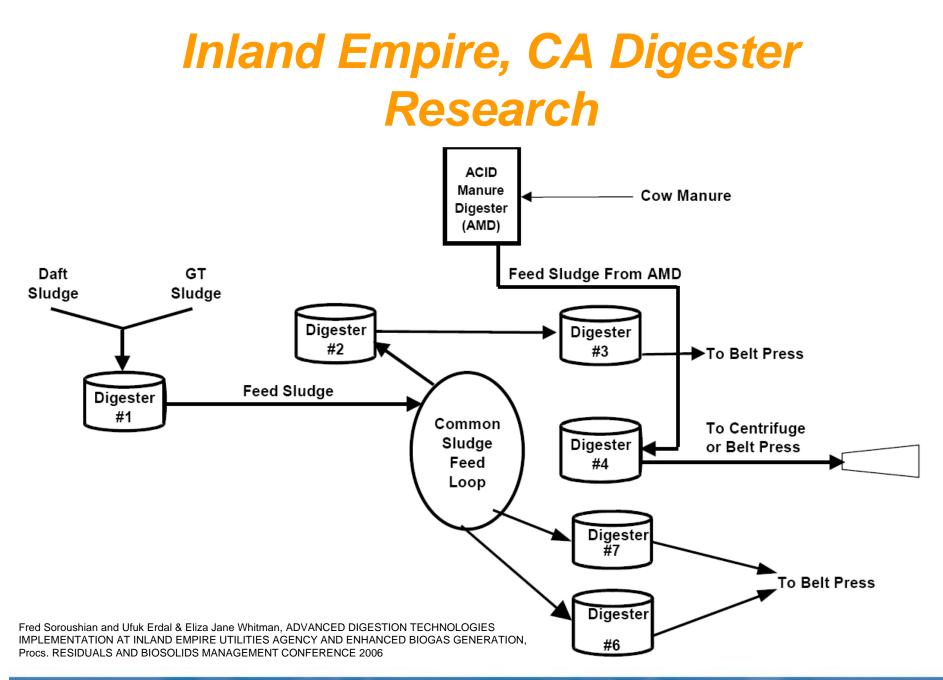

Specific methane production of biological excess sludge (DS content 5.7%, VS content 3.7%) treated with the Krima disperser narrow spaced disc and medium spaced disc respectively

Anna Maria Sundin, DISINTEGRATION OF SLUDGE - A WAY OF OPTIMIZING ANAEROBIC DIGESTION, Procs 13th European Biosolids & Organic Resources Conference & Workshop, www.european-biosolids.com

RESEARCH & DEVELOPMENT

Micro-Sludge Process Flow Diagram

Rob Stephenson et al, "FULL SCALE AND LABORATORY SCALE RESULTS FROM THE TRIAL OF MICROSLUDGE AT THE JOINT WATER POLLUTION CONTROL PLANT AT LOS ANGELES COUNTY, " WEF/AWWA Joint Residuals and Biosolids Management Conference 2007

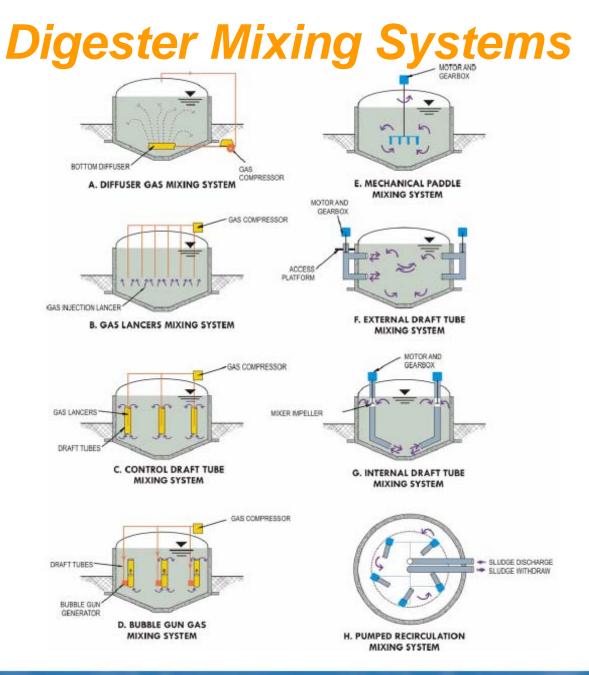

RESEARCH & DEVELOPMENT

Summary of Sludge Pre-Treatment Options at JWPCP

Pre-treatment Option	Result	Current Status at JWPCP
Ultrasound	No material change in VSr or gas production	Tested
Thermal hydrolysis	Concerns over high odour potential, pressure vessels	Not tested
Acid Phase Digestion	No improvement in VSr or gas production at lab scale	Tested
MicroSludge + Acid Phase Digestion	20% improvement in VSr or gas production at lab scale	Tested
MicroSludge + Co-digestion of WAS + PS	16% increase in VSr or gas production at lab and commercial scales	Tested
MicroSludge + WAS Only Digestion	16% improvement in VSr or gas production at lab scale	Tested
Build More Digesters for 30 Day HRT	Increase in VSr and gas production at lab scale by 16%	Under consideration to increase HRT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT


Study Results

Parameter	Units	Single Phase Meso	Single Phase Thermo	Two Phase Meso-Meso Acid-Gas	Two Phase Meso-Thermo Acid-Gas	Three Phase Meso-Thermo Acid-Gas
		Jan. 99 - Sep. 99	Oct. 98 - Dec. 98	Mar. 00 - Jun. 00	May 03 - Dec. 03	Jan. 03 - May 03
Acid Phase Loading Rate	lbVS/cf-d	N/A	N/A	0.84	0.79	0.92
Loading Rate	lbVS/cf-d	0.09	0.06	0.20	0.26	0.29
Acid Phase HRT	d	N/A	N/A	3.0	2.7	2.4
Total HRT	d	31.8	51	26.9	19.3	21.5
Acid Phase VSR	%	N/A	N/A	17.2	15.9	18.2
Overall VSR	%	54.5	51	55.7	53.7	58.5
Specific Gas Yield	cf/lb VS reduced	15.6	14.9	15.3	18.2	14.2
Digested Biosolids NH ₃ -N	mg/L	1,600	1,610	1,530	1,410	1,600
Digested Biosolids Alkalinity	mg/L	5,730	5,620	5,430	5,050	5,700
BFP Feed TS	%	2.94	N/A	2.61	2.38	2.55
BFP Solids In	dry ton/d	24	N/A	23.4	27.3	26.8
BFP Solids Capture	%	88	N/A	99	94	94
BFP Cake TS	%	17.5	N/A	18.2	19.1	19.0
Delumer Lleage	lb/d	909	N/A	876	895	806
Polymer Usage	lb/ton solids	16.8	N/A	15	13	12
BFP Loading Rate	lb/sf	1.95	N/A	2.18	2.18	2.1

NR : Not Reported; N/A : Not Applicable

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

After D. Parry for WEF/WERF/EPA Solids Manual, March 2009

RESEARCH & DEVELOPMENT

Discussion of Different Mixing Technologies

Mixing System Description	Advantages	Disadvantages
External Pump Circulation Involves installation of large pumps and piping to provide physical turn-over rate of >16/day	 Simple, reliable, measurable pumping technology Easily maintained, nothing inside digester to maintain other than piping Low foaming potential 	 Most applicable to smaller (<50 ft diameter) digesters Moderate energy efficiency Potential for dead spots (moderate mixing effectiveness) Large pumps and piping require more space than gas system
Dynamic Mixing A variation of external pump circulation. Mixing energy is provided by specially designed and placed nozzles.	 Simple, reliable, pump mixing May be adapted to larger (>50 ft) diameter digesters Easily maintained, nothing inside digester to maintain other than piping Low foaming potential Rapid re-suspension of settled solids after shutdown Smaller pumps and piping Lower energy consumption than conventional pump circulation Suitable for varying tank levels. Natural vortex surface motion draws floating solids down to reduce matting. 	 Mixing must be evaluated by tracer testing Limited installations in the US. External nozzle adjustment (Jet Mix[™] system)

Kenneth D. Fonda, SHAKEN OR STIRRED: DIGESTER MIXING DESIGN AND OPERATION SUCCESS STORIES, WEF/AWWA Joint Residuals and Biosolids Management Conference 2007

RESEARCH & DEVELOPMENT

Discussion of Different Mixing Technologies

Mixing System Description	Advantages	Disadvantages
Mechanical Draft Tube Mixing High volume, low head pump mixing system with submerged impeller in a draft tube draws liquid in from the bottom or top and promotes a rolling action. Primarily for fixed cover digesters, but may be adapted for certain types of floating cover digesters.	 High mixing effectiveness High energy efficiency Single manufacturer responsibility Accessible equipment Low foaming potential Flexible operation (forward or reverse) May qualify for energy conservation rebates from electric utility company to offset construction costs 	 Some models have experienced shaft seal and main bearing failures Crane removal required Careful vertical alignment required Internal draft tube mixing with floating cover requires internal tube to have telescopic operation Unable to see problems with mixing
Unconfined Gas Mixing Mixing energy is provided by the velocity gradient obtained from gas bubbles as they rise within the digester. Digester gas is recirculated and discharged through individual gas lances or fixed floor mounted spargers.	 Lances can be pulled for maintenance Lances can have individual purge systems Flexibility to modify mixing pattern 	 Potential for ragging Mixing efficiency effected by depth of submergence Unable to see problems Potential for surface debris accumulation Potential for foaming Handling flammable gases

RESEARCH & DEVELOPMENT

- -

• -

. . . .

-

- -

- -- -

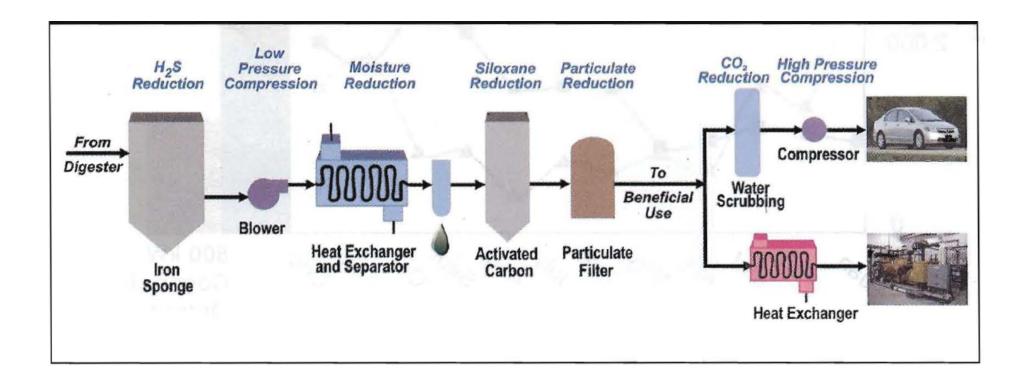
Discussion of Different Mixing Technologies

Mixing System Description	Advantages	Disadvantages
Bubble Gun Gas Mixing Is a variation of the confined gas mixing system that utilizes large bubbles the same size as the tube. The bubbles are released into the tube force the liquid column above the bubble to the surface in a piston action and drawing liquid in from the bottom of the tube.	 High mixing effectiveness High energy efficiency High local velocity gradients and good bottom scour Unit responsibility for bubble gun systems Compressor redundancy can be provided Flexibility to vary mixing pattern and intensity Performance guarantee available, tracer data supporting backup Internal tubes may be heated to be used as a primary or supplemental digester heating system. 	 All working parts, except compressor are inside digester (includes sludge heat exchangers) Subject to ragging, plugging, and corrosion Unable to see or troubleshoot effectively Requires digester dewatering for major maintenance
Confined Gas Mixing Mixing energy is provided by the velocity gradient created by gas bubbles as they rise within a tube in the digester. As the gas bubbles accelerate towards the surface and expand under lower pressure, fluid is pumped from the bottom at the same rate it leaves the top. Digester gas is recirculated and discharged through individual gas lances or spargers mounted below the confined tube.	 Confined gas systems provide greater local velocity gradients, better bottom scouring, and higher mixing effectiveness compared to unconfined Lances can be pulled for maintenance Lances and spargers both can have reliable individual purge systems Spargers may be made from stainless steel for longer lasting equipment Unit responsibility for lance or sparger systems Compressor redundancy can be provided Exceptional flexibility to vary mixing pattern and intensity 	 Potential for foaming Handling of flammable gases Unable to see problems Potential for ragging Works best when all discharge at same level

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Typical Concentration Ranges for Anaerobic Digester Gas

CONSTITUENT	PERCENTAGE
Methane	40 - 65
Carbon Dioxide	30 – 55
Nitrogen	1-5
Oxygen	0.1 – 1
Ammonia	0.1 – 1
Hydrogen	<0.2
Hydrogen Sulfide	<0.2
Siloxanes	<0.01


Source:

Characterization of the Installed Costs of Prime Movers using Gaseous Opportunity Fuels. Prepared for: Energy Efficiency and Renewable Energy US Department of Energy Washington DC, and Oak Ridge National Laboratory Oak Ridge, TN. Prepared by: Resource Dynamics Corp., McLean, VA, <u>www.rdcnet.com</u>, September 2007.

RESEARCH & DEVELOPMENT

Biogas Treatment for Beneficial Use

RESEARCH & DEVELOPMENT

Problems with Siloxane

The sand-like material is SiO2 produced through oxidation (burning) of the volatized siloxanes contained in the digester gas. Figure shows siloxane deposition on boiler tubes.

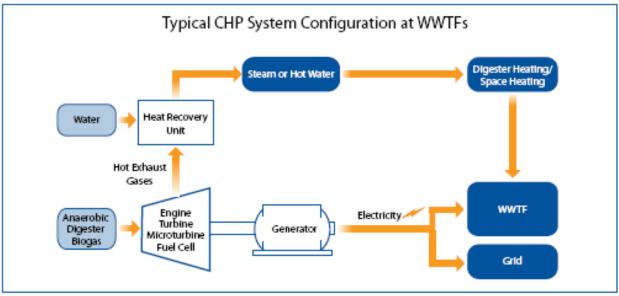
RESEARCH & DEVELOPMENT

Damage from H₂S & Siloxane

Engine Generator is shown.

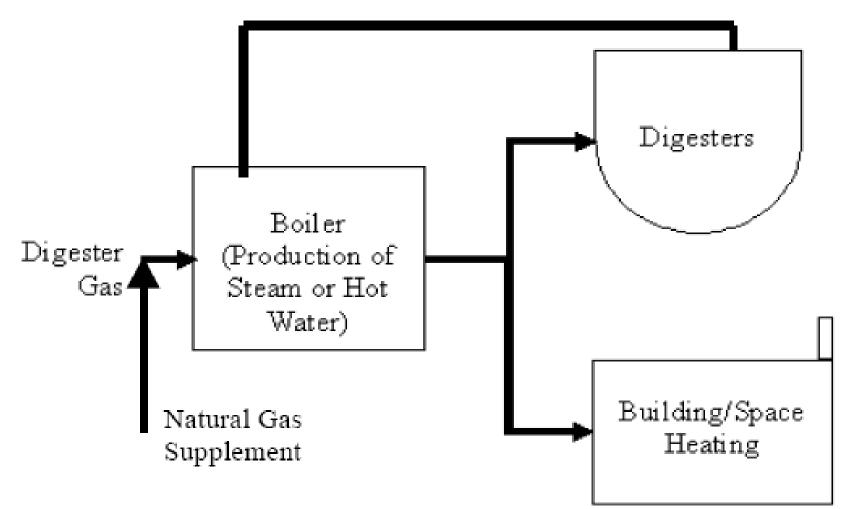
RESEARCH & DEVELOPMENT

Treating Digester Gas with Activated Carbon


Plant	Gas flow	Installation	Technology details and efficiencies
Alvardo WWTP, Union City, CA (Slezak <i>et al.</i> , 2002)	17000 m3/day (600,300 scf/d)	One unit, 820kg media. Use gas compression, condenser/moisture removal, reheating, and particle filter	Protect Gas Engines
Annacis Island, Vancouver, BC (Slezak <i>et al.</i> , 2002)	45000m3/day (1,589,000 scf/d)	One unit with 500kg media. Treats 800m3 gas/kg media). Use gas compression, condenser/moisture removal, reheating, and particle filter	Protect Gas Engines Treatment involves outlet concentration of 5mg/m3 (survey data)
Bergen County Utility, Little Ferry, NJ (Tower, 2003b)	8150-32600 m3/day (287,800 - 1,151,000 scf/d)	Implemented full scale: 2 vessels operating series (plus 1 on standby), 3600lb media each (PMG). 3 different types of media in layers	Gas engine and OCR catalyst protection. Inlet 2- 4ppm, reduced to non- detectable limits, H2S was also consistently <1ppm in pilot tests (Liang et al, 2002)

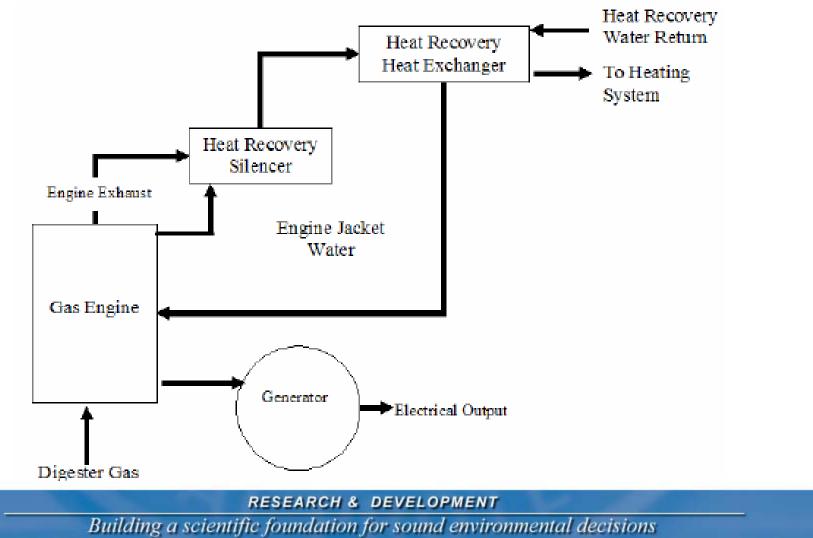
RESEARCH & DEVELOPMENT

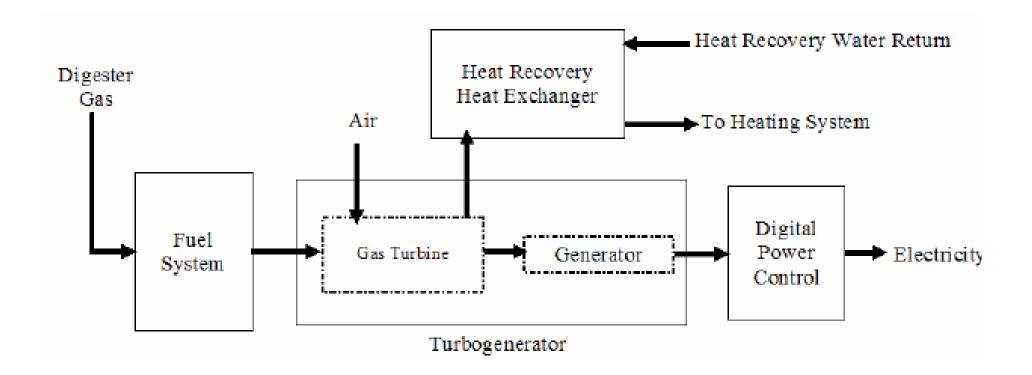
Combined Heat and Power


 Definition: Utilizing equipment to simultaneously generate electricity and heat using anaerobic digester biogas

٩

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions


Energy Recovery from Digester Gas using Boilers


RESEARCH & DEVELOPMENT

Energy Recovery from Digester Gas using Engine Generators

Energy Recovery from Digester Gas from a Microturbine Unit

RESEARCH & DEVELOPMENT

CHP Technology	Capacity	Electrical Efficiency
Internal-combustion engine	100 to 4000 kW	30% to 42%
Gas turbine	1000 to 4600 kW	25% to 38%
Microturbine	70 to 250 kW	24% to 26%
Stirling engine	55 kW	29%
Fuel cells	200 to 300 kW	38% to 42%

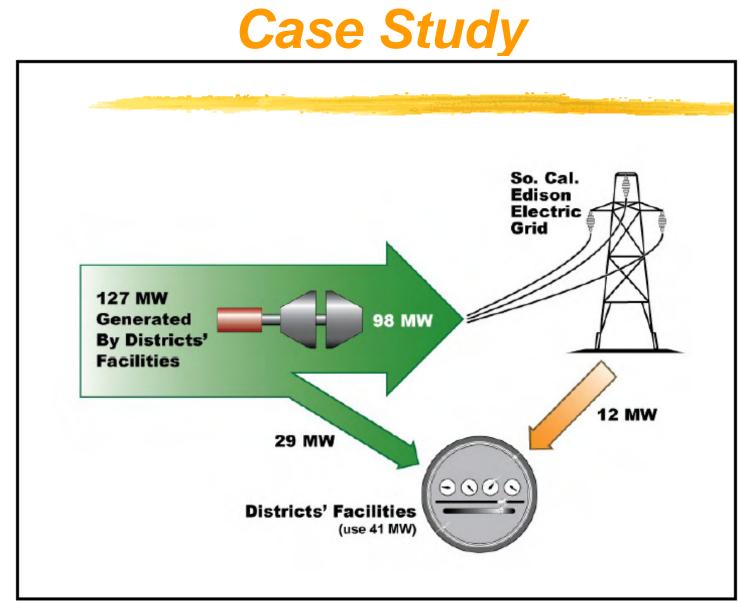
CHP Technology	NOx Emissions (g/kWh)	CO Emissions (g/kWh)
Rich-burn engines	~ 9	~ 9
Lean-burn engines	0.8 to 1.3	3.4 to 7.4
Gas turbine	0.14	0.14
Fuel cell	~ 0	~ 0

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

ELECTRIC & THERMAL ENERGY POTENTIAL WITH CHP FOR TYPICALLY SIZED DIGESTER: MESOPHILIC

	No CHP system	Microturbine CHP	Fuel Cell CHP	Internal Combustion Engine CHP
Total POTW Flow (MGD)	9.1	9.1	9.1	9.1
Heat Requirement for Sludge (Btu/day)	5,148,750	5,148,750	5,148,750	5,148,750
Wall Heat Transfer (Btu/day)	541,727	541,727	541,727	541,727
Floor Heat Transfer (Btu/day)	507,869	507,869	507,869	507,869
Roof Heat Transfer (Btu/day)	326,231	326,231	326,231	326,231
Total Digester Heat Load (Btu/day)	6,524,577	6,524,577	6,524,577	6,524,577
Heat Required for Digester Heat Load* (Btu/day)	8,155,721			
Heat Potential of Gas (Btu/day)	54,370,800	54,370,800	54,370,800	54,370,800
% of Gas Used for Digester Heat Load (Btu/day)	15.0%			
Amount of Gas Flared** (Btu/day)	46,215,079			
Electric Efficiency		0.28	0.43	0.30
Power to Heat Ratio		0.61	1.95	0.64
Electric Production (Btu/day)		15,223,824	23,379,444	16,311,240
Electric Production (kW)		186	286	199
Heat Recovery (Btu/day)		24,957,089	11,989,458	25,486,313
Additional Heat Available*** (Btu/day)		18,432,512	5,464,882	18,961,736

RESEARCH & DEVELOPMENT



ESTIMATED CAPITAL COSTS FOR THREE CHP SYSTEMS AT WASTEWATER TREATMENT FACILITIES

	CHP System Type					
Capital Cost		W (net) oturbine	300 kW	Fuel Cell		V Internal ion Engine
	Cost (\$)	Cost per kW (\$/kW)	Cost (\$)	Cost per kW (\$/kW)	Cost (\$)	Cost per kW (\$/kW)
Gen-Set	\$143,000	\$1,135	\$1,200,000	\$4,000	\$685,000	\$646
Fuel Treatment and Compression	\$202,000	\$1,603	\$194,000	\$647	\$369,000	\$348
Switchgear & Controls	\$19,500	\$155	\$97,600	\$325	\$125,000	\$118
Heat Recovery	\$26,000	\$206	\$23,200	\$77	\$100,000	\$94
Total Equipment Costs	\$390,500	\$3,099	\$1,514,800	\$5,049	\$1,279,000	\$1,207
Consulting and Design	\$23,400	\$186	\$125,000	\$417	\$150,000	\$142
Installation	\$114,400	\$908	\$457,000	\$1,523	\$604,500	\$570
Permits & Inspection	\$9,750	\$77	\$25,000	\$83	\$25,000	\$24
Contingency 5%	\$26,903	\$214	\$106,090	\$354	\$102,925	\$97
Total Project Costs	\$564,953	\$4,484	\$2,227,890	\$7,426	\$2,161,425	\$2,039

RESEARCH & DEVELOPMENT

From "The Power of Digester Gas: A Technology Review from Micro to Megawatts," Mark McDannel, Los Angeles County Sanitation Districts, WEFTEC, October 16, 2007

RESEARCH & DEVELOPMENT

Case Study - LACSD

FACILITY	POWER PRODUCTION TECHNOLOGY/ (FUEL)	NET POWER PRODUCED
Joint WPCP	CC Gas Turbine(Digester Gas)	22 MW
Valencia WRP	IC Engine (Digester Gas)	400 kW
Puente Hills LF	Steam Boiler/Turbine (LFG)	46 MW
Palos Verdes LF	Steam Boiler/Turbine (LFG)	4 MW
Spadra LF	Steam Boiler/Turbine (LFG)	8 MW
Puente Hills LF	Gas Turbine (standby) (LFG)	0 MW
Calabasas Landfill	Capstone Microturbines (LFG)	250 kW
Lancaster WRP	Ingersoll-Rand Microturbine (DG)	225 kW
Palmdale WRP	Molten Carbonate Fuel Cell (DG)	225 kW
Puente Hills LF (2005)	IC Engine (LFG)	6 MW
	TOTAL BIOGAS GENERATION	87 MW

RESEARCH & DEVELOPMENT

Power Generation Cost Summary Comparison for Different Approaches

	Installed Cost (\$/kW)	Operating Cost (\$/kWh)	Power Production Cost* (\$/kWh)
Gas Turbines	\$2,000	\$0.010	\$0.04
IC Engines	\$1,700	\$0.015	\$0.04
Microturbines	\$3,000	\$0.016	\$0.06
Fuel Cell	\$8,500	\$0.035	\$0.16

*10 year write down @5%

RESEARCH & DEVELOPMENT

CHP Case Studies

- Albert Lee, MN
 - Flow 2.82 MGD
 - Fuel Type Digester gas
 - Prime Mover (4) 30 kW Capstone microturbines
 - Energy savings 800,000 kWh/yr (30%)
 - Installed Cost \$250k
 - Annual energy savings \$40-\$60k
 - Simple payback 4-6 years
 - Year installed 2003

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

UPDATE SOLIDS PROCESSING DESIGN AND MANAGEMENT MANUAL

Manual Objectives

- Easy to update on CDs / online
- Best management, technical practices emphasis
- Operator and Designer perspectives
- Neutral on bioenergy sources (thermal and biological)
- Case studies, lessons learned, example designs
- Dated and location-specified cost estimates
- Cross-referenced

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

TABLE OF CONTENTS

GLOSSARY OF TERMS (to be provided) CHAPTERS

- 1. Introduction (Pramanik)
- 2. General Considerations for Planning of Solids Projects (Shea, Moore & Stevens)
- 3. Greenhouse Gas and Establishing Your Carbon Footprint (Baroldi & Cheng)
- 4. Public Involvement (Beecher)
- 5. Solids Production and Characterization (Gellner)
- 6. Design Approach (Forbes)
- 7. Conveyance (Sadick)
- 8. Chemical Conditioning (Laraway, Cassell & Senss)
- 9. Thickening (Gillette)
- 10. Waste Minimization (Tsang)
- 11. Anaerobic Digestion (Parry)
- 12. Aerobic Digestion (Bizier et al)
- 13. Dewatering (Essner & Koch)
- 14. Composting (Williams, Todd)
- 15. Alkaline Treatment (Smith)
- 16. Disinfection and Stabilization Considerations (Naylor & Smith)
- 17. Thermal Drying (Santha)
- 18. Thermal Oxidation and Energy Recovery (Dominak)
- 19. Other Thermal Processes (Chilson)
- 20. Transport and Storage (Williams, Lisa)
- 21. Management of Odors (Easter)
- 22. Sidestreams from Solids Treatment Processes (Benisch)
- 23. Instrumentation and Monitoring (Ekster & Lagrange)
- 24. Land Application & Product Distribution (Moss)
- 25. Landfill Management Systems (Sullivan)
- 26. Emerging Technologies (Tsang)
- 27. Treatment and Utilization of Green Gas (Schettler)

RESEARCH & DEVELOPMENT

3. Greenhouse Gas and Establishing Your Carbon Footprint

Layne Baroldi, Orange County Sanitation District Stephanie Cheng, East Bay Municipal Utilities District

10. Waste Minimization K. Richard Tsang, CDM

11. Anaerobic Digestion David L. Parry, CDM

27. Treatment and Utilization of Green Gas Jim Schettler, Brown and Caldwell

RESEARCH & DEVELOPMENT

