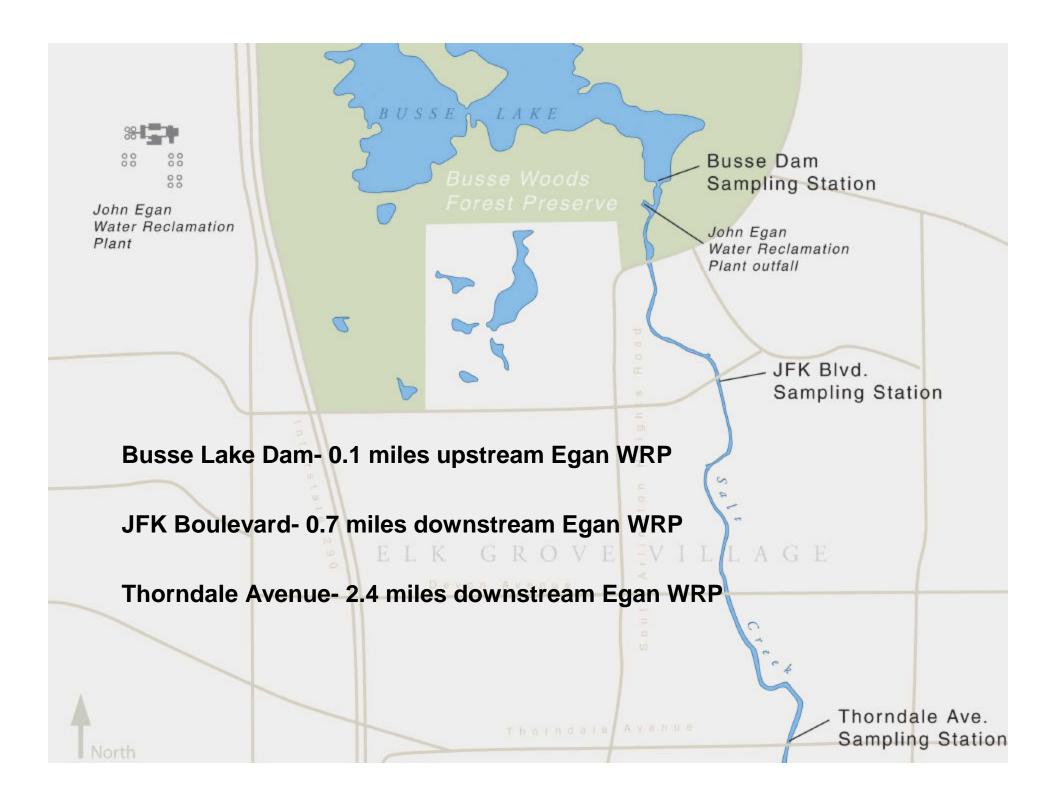
Metropolitan Water Reclamation District of Greater Chicago Protecting Our Water Environment

Phosphorous Reduction Demonstration Project at the John E. Egan Water Reclamation Plant

Jennifer Wasik, Biologist II – Stream Response Heng Zhang, Research Scientist III – Plant Operations Kamlesh Patel, Research Scientist II – Solids Processing Guanglong Tian, Soil Scientist II – Effects on biosolids

November 21, 2008

Acknowledgments


Drs. C. O'Connor and T. Granato Drs. P. Lindo and A. Cox M&O staff including Ms. Kataryzyna Lai, Ms. Mary Brand, Mr. J. Ford, Mr. Stephen Carmody, Mr. Sanjay Patel, and Mrs. Rosali Swango Engineering staff including Mr. T. Szyszka, Mr. M Annamalai, Ms. B. Zerfas and Mr. J. Lemon **Analytical Lab Staff EM&R** Laboratory technicians Dr. J.S. Jain (retired) and Mr. B. Sawyer (retired) for their role in planning the study

Background Info

-USEPA 2000 Nutrient Criteria Guidance
-Illinois Nutrient Standards Workgroup
-Discussions with IEPA about Demonstration Project
-Goals to Observe Effects on Operations, Effluent, Biosolids, and Receiving Stream Quality

Stream Water Quality Objectives

- -Determine Effects of P-Removal from Egan WRP on Downstream Water Quality
- Explore potential predictive relationships between nutrients and algae as urged by USEPA guidance in 2000
- -Determine Any Resulting Changes in the Paradigm:
 - Nutrients \longrightarrow Algae \longrightarrow Dissolved Oxygen
- -Observe Any Subsequent Effects on Biota

P Reduction Demonstration Project Methodology

Chemical

Continuous monitors for dissolved oxygen, temperature, pH, conductivity, and turbidity TP, Ortho-P, NH₄, NO₂, NO₃, TKN, BOD₅, CBOD₅, COD, TSS, VSS Sediment Chemistry

Biological

Chlorophyll *a* (same frequency as chemical constituents)
Selanastrum algal assay quarterly, then bimonthly
Fish, benthic invertebrates, physical habitat characterization (once per year)

P Reduction Demonstration Project Methodology (continued)

Water Sampling Schedule December-March 1x/month April-November 2x/month 4 consecutive days after rain event (3-4 per year) Sediment and Biological Sampling Once each summer Sampling Years Pre- P reduction sampling during 2005-6 ***Ferric Chloride dosing began February 7, 2007 Post- P reduction sampling during 2007-8

P Reduction Demonstration Project Phosphorus Results

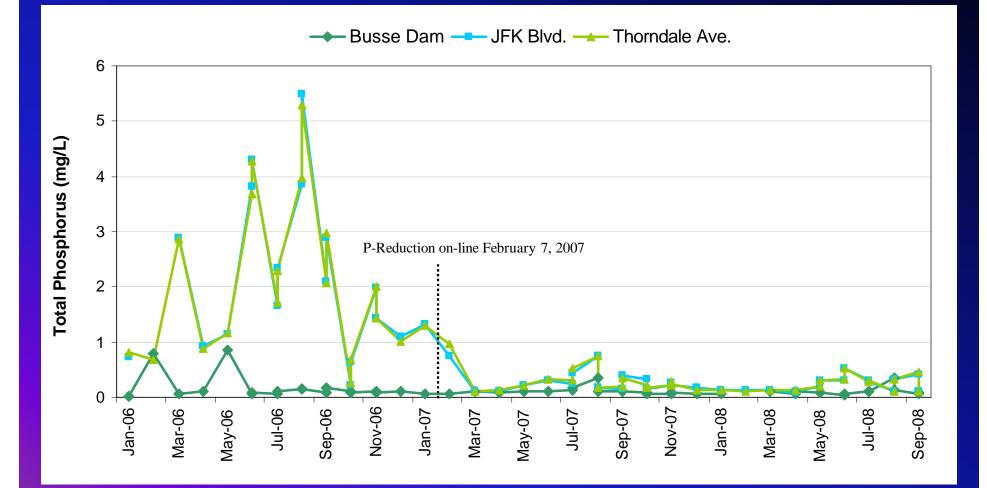
Upstream of Egan at Busse Dam

	2005	2006	2007	Jan-Sept. 2008
Mean P (mg/L)	0.25	0.18	0.11	0.11
Range P (mg/L)	<0.05-3.15	<0.05-0.87	0.06-0.36	0.04-0.35

Egan Effluent daily 24-hour composite samples

	2005	2006	2007	Jan-Sept. 2008
Mean P (mg/L)	3.26	3.72	0.35	0.43
Range P (mg/L)	0.98-5.87	0.92-8.22	0.06-1.77	0.13-1.38

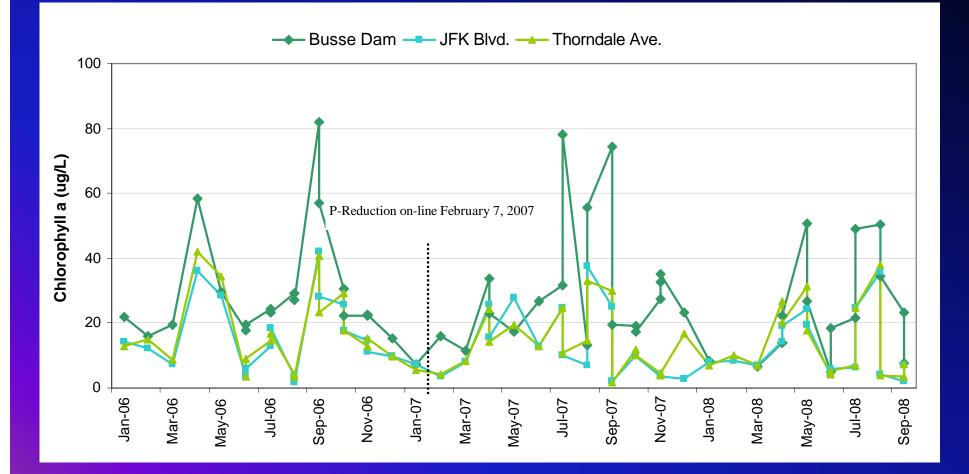
P Reduction Demonstration Project Phosphorus Results (continued)


Downstream of Egan at JFK Blvd.

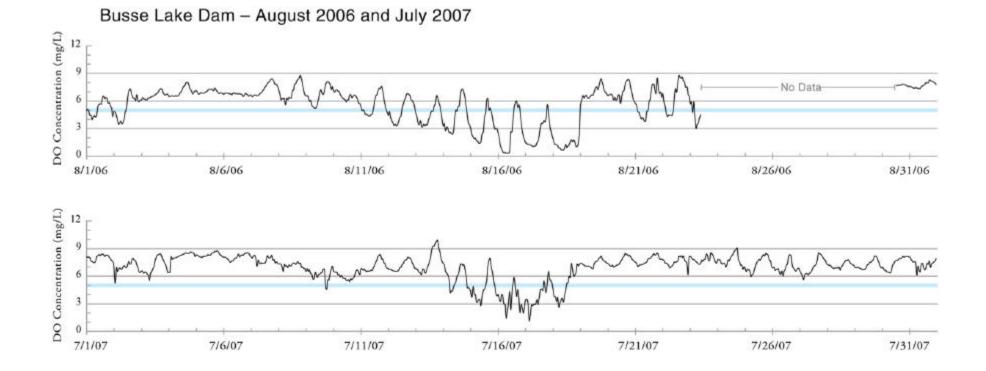
	2005	2006	2007	Jan-Sept. 2008
Mean P (mg/L)	2.76	2.20	0.29	0.23
Range P (mg/L)	0.88-4.64	0.22-5.49	0.10-0.76	0.09-0.52

Downstream of Egan at Thorndale Ave.

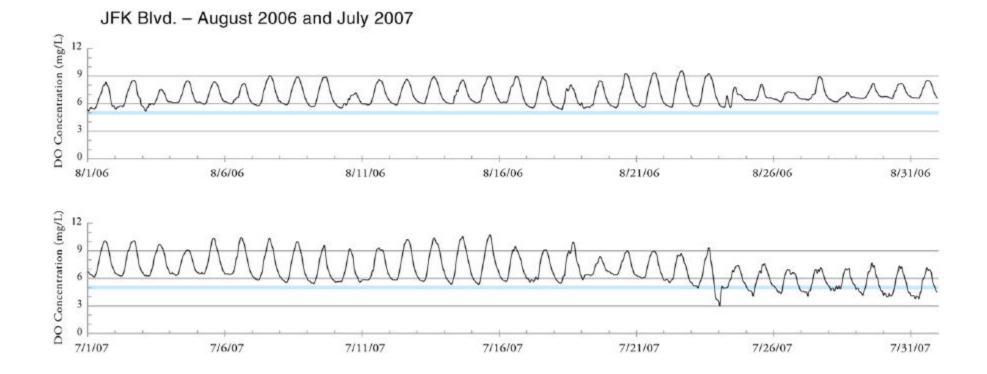
	2005	2006	2007	Jan-Sept. 2008
Mean P (mg/L)	2.51	2.12	0.30	0.24
Range P (mg/L)	<0.05-4.45	0.27-5.30	0.10-0.97	0.11-0.52

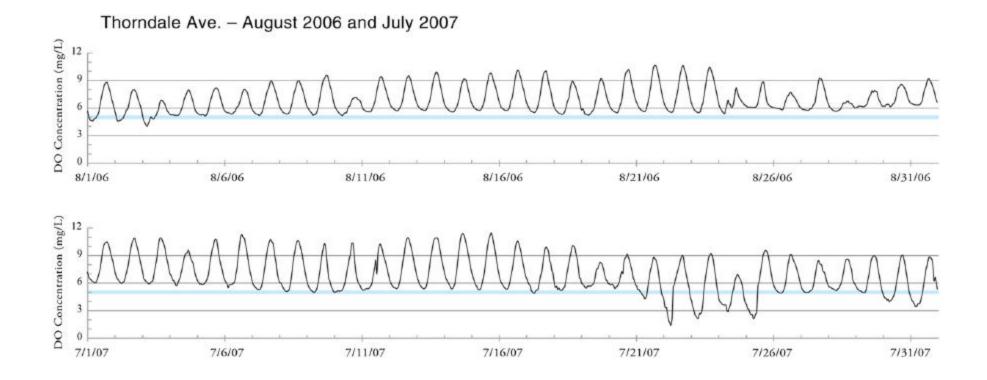

P Reduction Demonstration Project Phosphorus Results (continued)

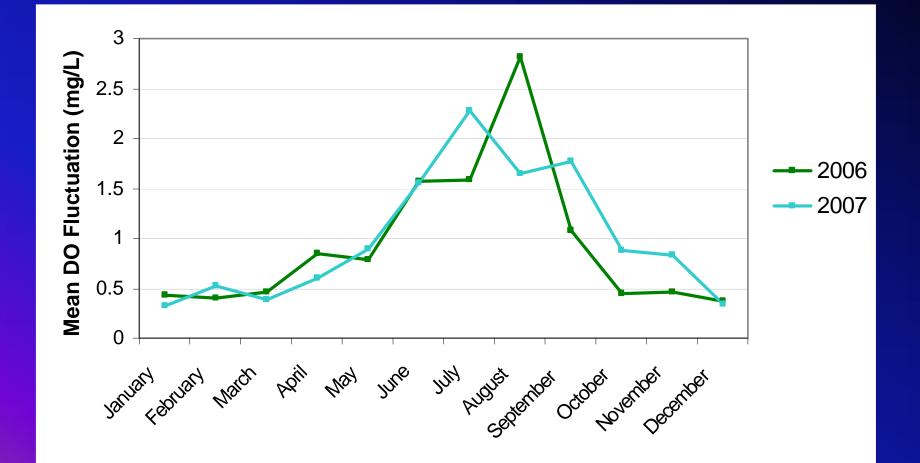
P Reduction Demonstration Project Chlorophyll a Results

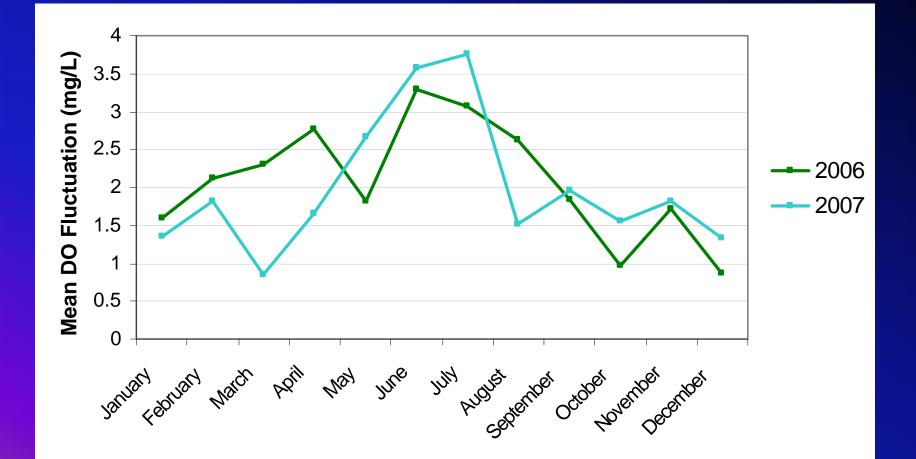

		Chl. <i>a</i> (µg/L)					
		2005	2006	2007	2008		
Location		(pre)	(pre)	(post)	(post)		
Busse Dam	Mean	29	30	31	24		
	Range	7-63	15-82	11-78	5-51		
JFK Blvd.	Mean	10	16	13	13		
JFK DIVU.	Range	3-29	2-42	2-38	2-36		
Thorndale	Mean	11	17	14	14		
	Range	3-34	3-42	2-33	4-38		

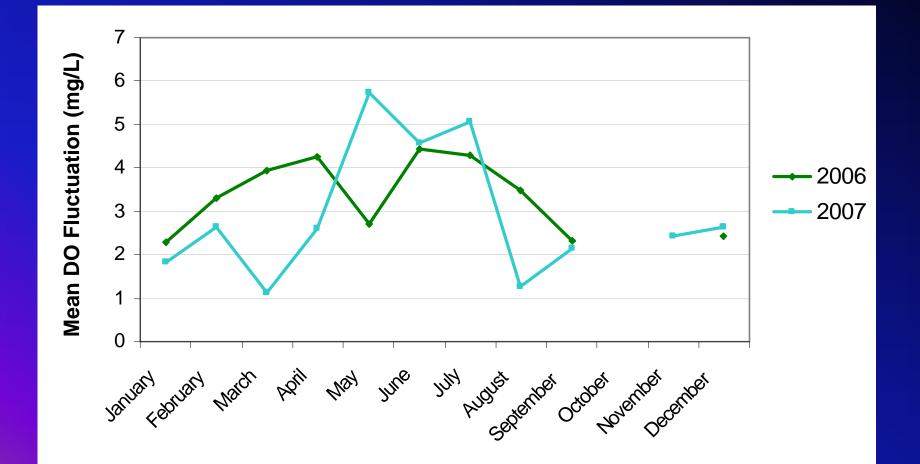
P Reduction Demonstration Project Chlorophyll a Results (continued)



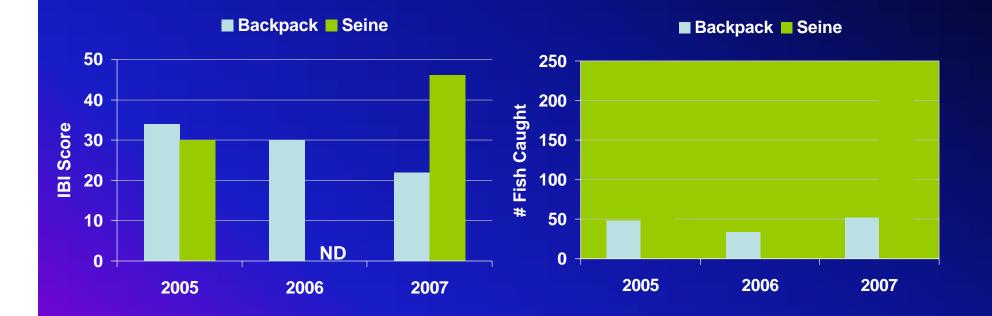

Continuous DO Comparison During Summer Month in 2006 (before) and 2007 (after) at Busse Lake Dam


Continuous DO Comparison During Summer Month in 2006 (before) and 2007 (after) at JFK Blvd.

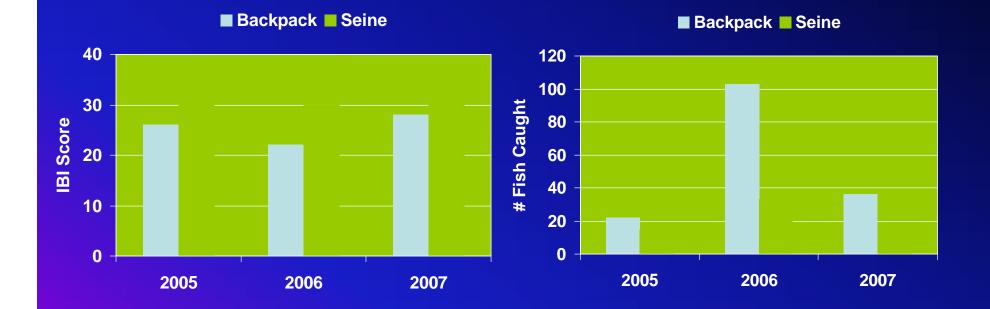

Continuous DO Comparison During Summer Month in 2006 (before) and 2007 (after) at Thorndale Avenue

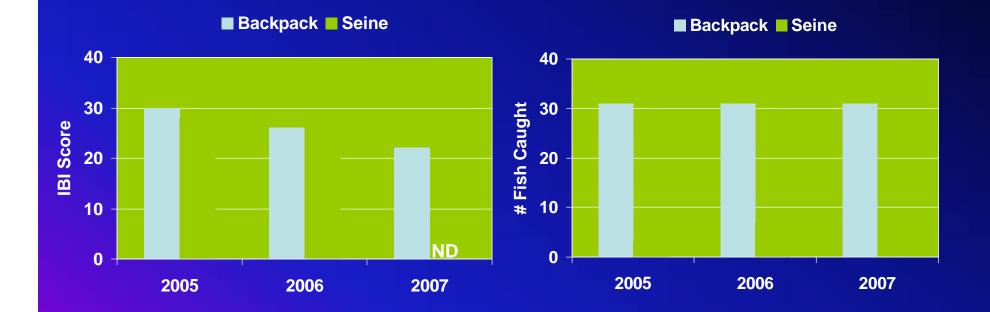

Mean Monthly DO Fluctuation at Busse Lake Dam During 2006 (before) and 2007 (after)

Mean Monthly DO Fluctuation at JFK Boulevard During 2006 (before) and 2007 (after)



Mean Monthly DO Fluctuation at Thorndale Ave. During 2006 (before) and 2007 (after)




P Reduction Demonstration Project Fish Results at Busse Lake Dam

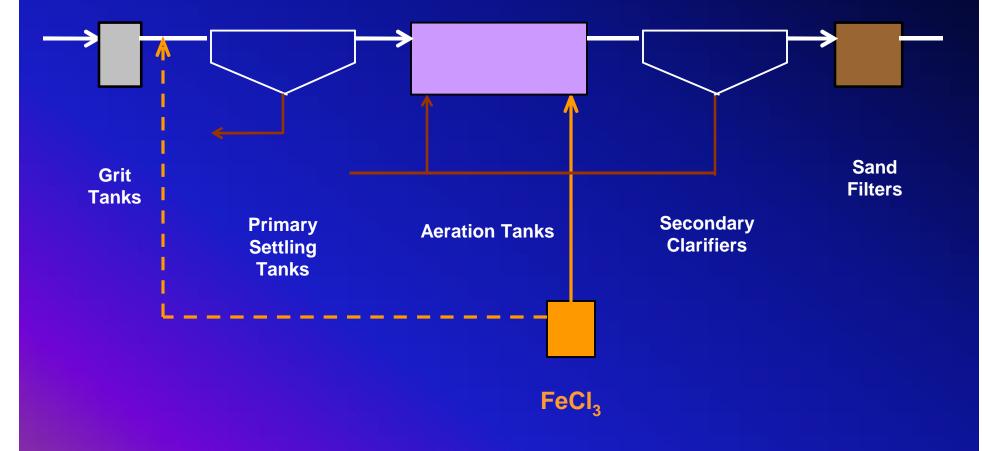
P Reduction Demonstration Project Fish Results at JFK Boulevard

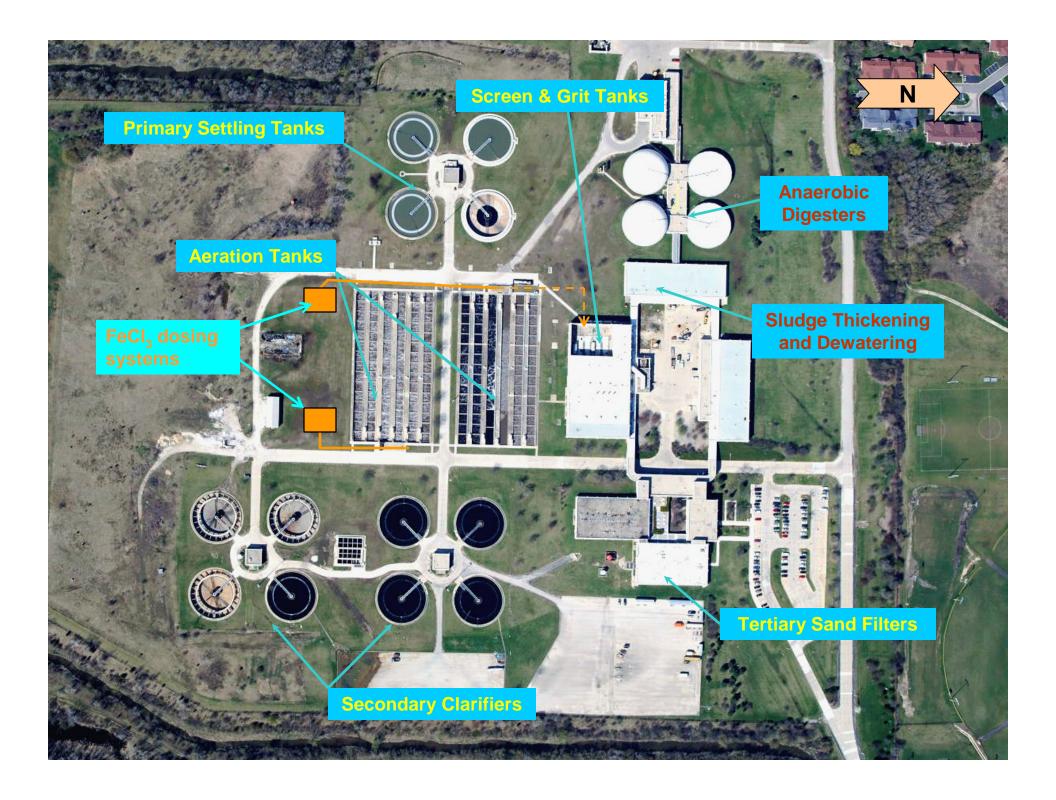
P Reduction Demonstration Project Fish Results at Thorndale Avenue

Conclusions - Stream Response

Following P Reduction at Egan, there was:
Significant reduction in stream P concentrations at stations downstream of Egan
No significant effect on sestonic algae in Salt Creek
Diurnal fluctuations of similar magnitude recorded both before and after P reduction
Fish data similar before and after P reduction

Next Steps


Analyze 2008 data
Identification/Enumeration of 2007-2008 Macroinvertebrates
Statistical analysis of 2005-2008 DO fluctuation data Account for stream discharge data
Final report including biological data as well as plant data on increased solids production and other issues, biosolids effects will be produced in spring of 2009

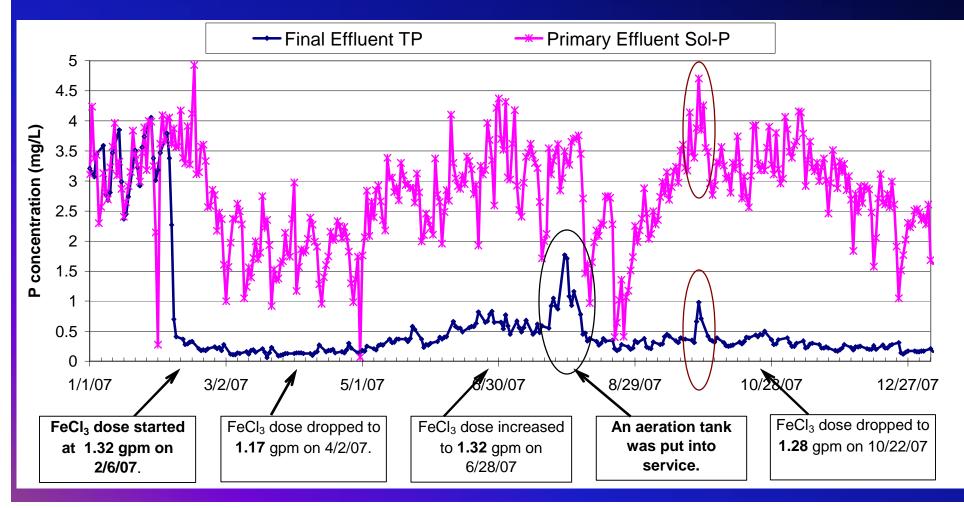

Outline for Plant Operations during P Removal

- Retrofit for chemical P removal at Egan
- Effluent P concentrations during P removal
- Chemical addition on effluent quality
- Impact on plant operations
- Chemical sludge yield estimation
- Other potential Impacts
- Conclusions

Retrofit for P Removal at Egan WRP

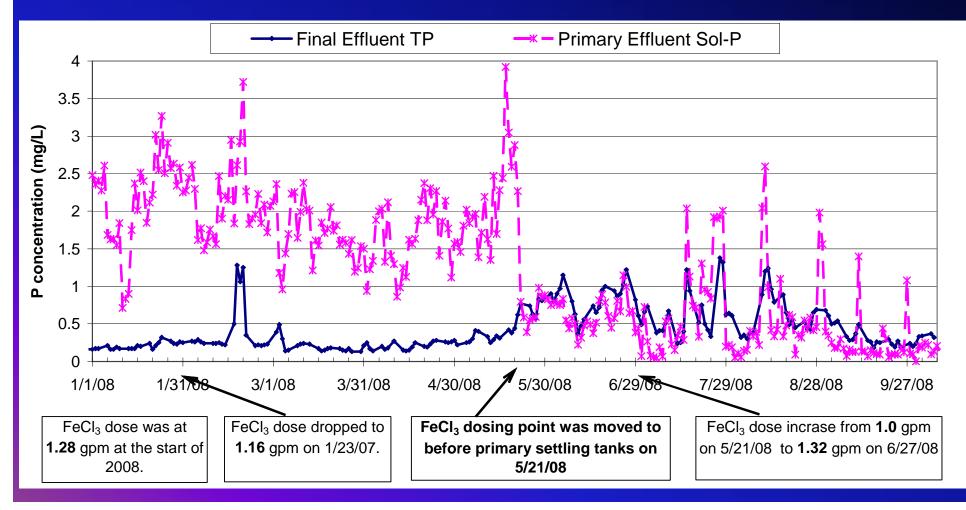
(Liquid process train at Egan WRP)

FeCl₃ Distribution System



At the end of Aeration Tanks

At the exit of Grit Tanks


Effluent P Concentrations during P Removal

FeCl₃ addition to mixed liquor started on 2/6/07 and through 2007. TP in the final effluent dropped immediately after FeCl₃ addition.

Effluent P Concentrations during P Removal (continued)

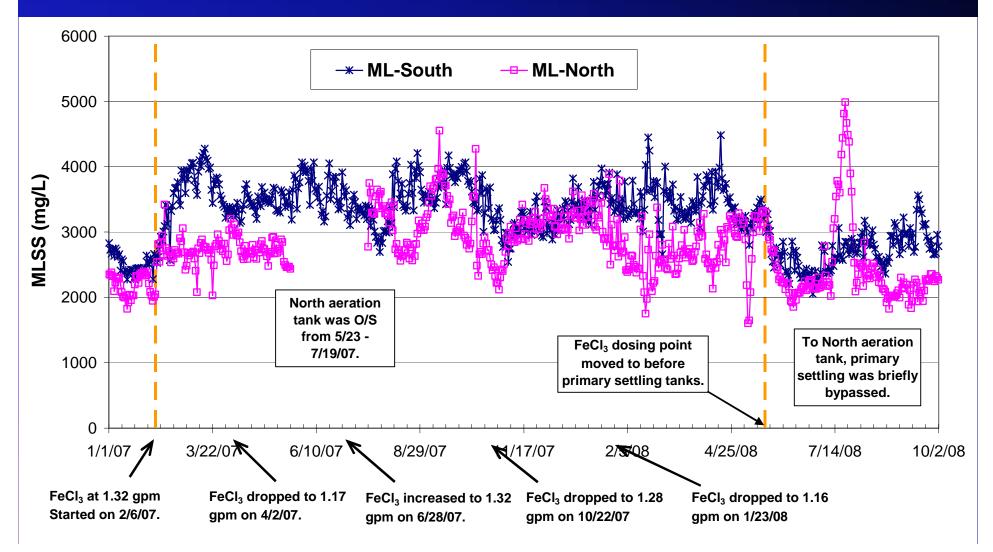
 FeCl₃ dosing location was moved from the end of aeration tanks to the end of grit tanks on 5/21/2008. Dosing rate started at 1.0 gpm and gradually increased to 1.32 gpm at the new location.

Chemical Addition on Effluent Quality

Average daily values of conventional parameters

Period	FLOW	рН	BOD ₅	CBOD ₅	SS	TKN	NH ₃ -N	NO ₃ -N	ТР
	(MGD)	(unit)	(mg/L)	(mg/L)	_ (mg/L) 、	(mg/L)	(mg/L)	(mg/L)	(mg/L)
2006	26.3	7.10	<2	<2	<2	1.3	0.08	15.05	3.72
2007*	26.1	7.00	<2	<2	<2	1.0	0.10	15.01	0.35 🤇
2008**	30.1	7.10	<2	<2	<2	1.0	0.08	15.49	0.43

Average daily values of other parameters of interest


	СІ	SO ₄	As	Cu	Fe_Tot	Fe_Sol	Mn	Zn
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
2006	176	84.0	<0.013	0.008	<0.07	0.060	0.006	0.039
2007*	219	78.5	<0.016	0.006	0.150	0.067	0.106	0.024
2008**	250	78.7	<0.016	0.012	0.160	0.063	0.027	0.026

* 2007 data are averages for 2/7/07 through 12/31/07 after P removal started.

** 2008 data are averages for 1/1/08 through 9/30/08.

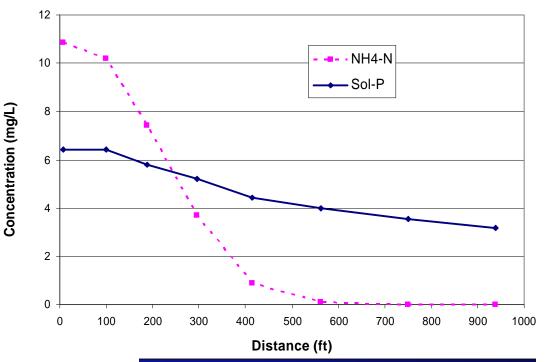
Impact on Plant Operations

- MLSS was about 30% higher while FeCl₃ was added to mixed liquor
- MLSS was lower while FeCl₃ was added before primary settling tanks

Impact on Plant Operations (continued)

- Impact of FeCl₃ addition on alkalinity and pH

Comparison of pH and alkalinity before and after FeCl₃ addition to ML

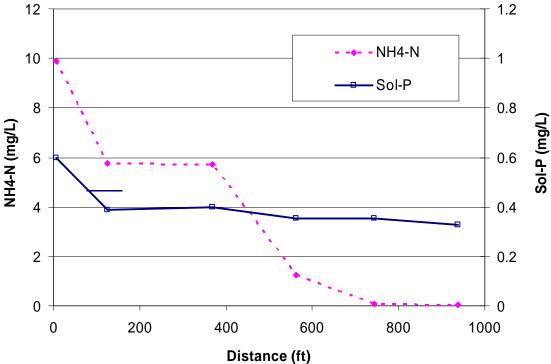

Time	<u>Flow</u>	Primary Effluent		<u>Seconda</u>	ry Effluent
Period	(mgd)	Alkalinity	рН	Alkalinity	рН
6/1 – 7/18/05	20.9	237 ± 14.5	7.62 ± 0.24	123 ± 6.8	7.60 ± 0.1
6/1 – 7/18/07	23.9	241 ± 16.4	7.50 ± 0.08	80 ± 15.6	7.25 ± 0.18

Comparison of pH and alkalinity between different FeCl₃ dosing points

Time	Flow	Primary Effluent		Secondary	y Effluent
Period	(mgd)	pH ALK		рН	ALK
5/22 - 9/30/07	26.8	7.55 ± 0.15	243 ± 15.6	7.31 ± 0.28	101 ± 36.7
5/22 - 9/30/08	28.9	7.33 ± 0.21	222 ± 18.7	7.22 ± 0.30	111 ± 37.6

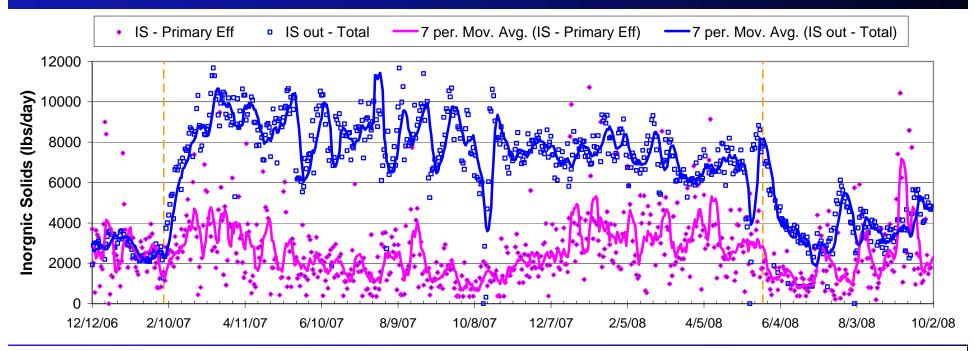
Impact on Plant Operations (continued)

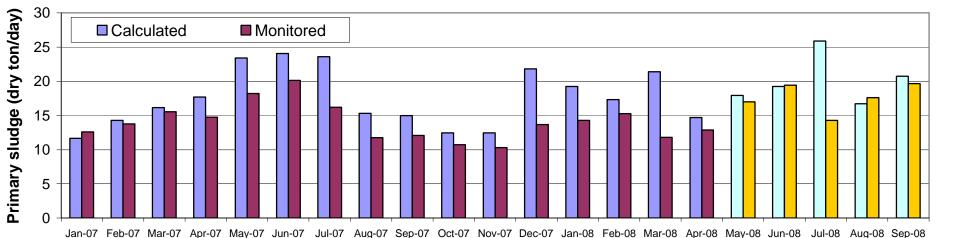
 Much lower soluble P in mixed liquor was observed during P removal. At this level, it had no apparent adverse effect on nitrification and other bioactivity.



Before FeCl₃

addition for P


removal in 2005


After FeCl₃ addition for P removal in 2007

Chemical Sludge Yield Estimation

- Chemical sludge is estimated using mass balance approach

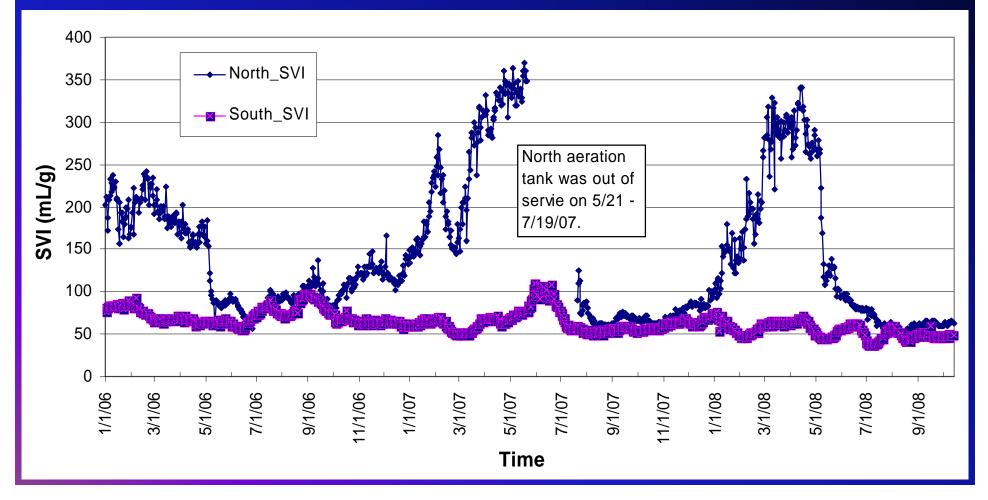
Chemical Sludge Yield Estimation (continued)

 Chemical sludge yield was estimated while FeCl₃ was added to the mixed liquor. The amount varied with the amounts of FeCl₃ added and P removed.

> $PO_4^{3-} + Fe^{3+} = FePO_4 (s)$ MW = 151 $3OH^- + Fe^{3+} = Fe(OH)_3 (s)$ MW = 107

Time Period	TP Load	Sol-P Load	FeCl ₃ Dose	IS Produced	IS Yield*
	(lb/d)	(lb/d)	(gpm)	(lb/d)	(lb IS/lb FeCl ₃)
3/6 – 4/2/07	924	511	1.32	6470	0.87
4/3 - 6/29/07	951	552	1.17	6680	1.01
6/30 - 10/22/07	909	578	1.32	6890	0.92
10/23/07 -1/23/08	926	545	1.28	5460	0.75
1/23 -5/21/08	921	513	1.16	4470	0.68

* IS stands for inorganic solids


Other Potential Impacts

 Nocardia foaming developed in one of the aeration batteries during P removal. Lower pH in aeration tanks due to FeCl₃ addition might have been a major contributor.

Other Potential Impacts (continued)

 It appears that the mixed liquor settling characteristics in the north aeration battery was affected by the addition of FeCl₃ to the aeration tank. But, the same effect did not happen in the south aeration battery.

Conclusions – Plant Operations

- P removal to 0.5 mg/L of TP in the effluent could be achieved by simply adding a chemical dosing system to the existing plant if the existing clarifiers have excess capacity with respect to solids loading.
- FeCl₃ could be added, at a weight ratio (FeCl₃:Sol-P) of 12 to 14.8 or a molar ratio (Fe:Sol-P) of 2.3 to 2.8, either to the mixed liquor using secondary clarifiers or to primary influent using primary settling tanks for precipitating particulate P.
- The addition of FeCl₃ has little impact on effluent quality. Alkalinity was reduced and pH dropped slightly. However, it may be a major contributing factor to the worsening of mixed liquor settling characteristics in one of the aeration batteries.
- Inorganic content in MLSS increased from 16% to 37% after FeCl₃ was added to the aeration tanks. Approximately, 0.68 to 1.01 lb of chemical sludge per lb of FeCl₃ added was produced.

Why Monitor Solids Process Train?

•Poor GBT Performance During 2005 WERF Study (02-CTS-1), 30-45 mg/L FeCl₃ Dosed to ML to Achieve TP<0.5 mg/L for 6 Months

•Analogous Long-term Full-scale Demonstration Study To Evaluate the Effects of TP Reduction in the Receiving Stream During 2007-2008, TPOs Concerned

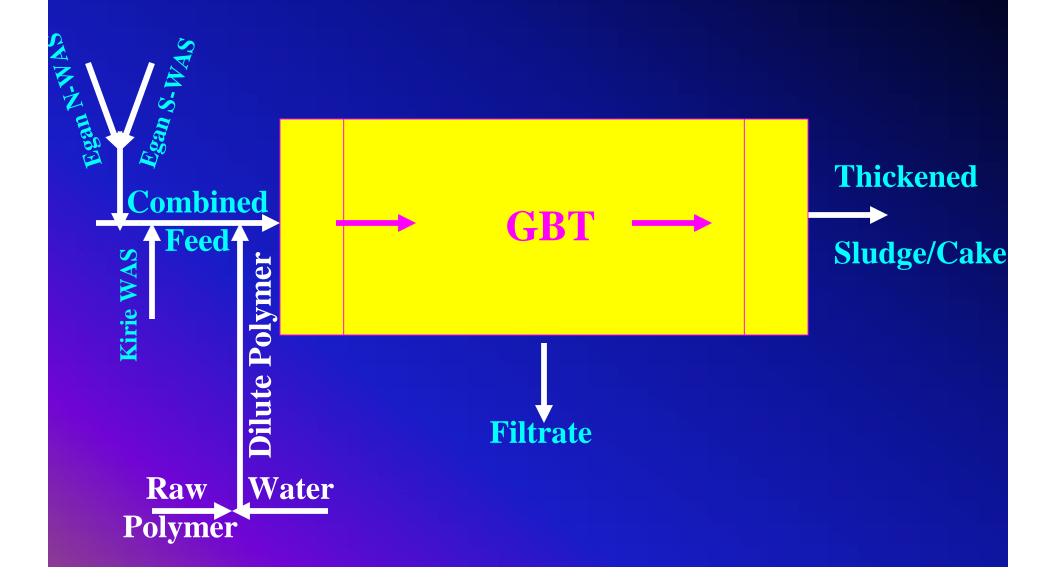
•As a Part of Future Nutrient Removal Strategy, FeCl₃ Based P-Removal Technology May be Considered

•GBTs Being Considered for Stickney and Calumet WRPs Under Master Plan

Objectives

•To Evaluate the Effects of FeCl₃ Addition for Phosphorous Removal on Solids Processing Train - Includes GBTs, Anaerobic Digesters and Centrifuges for Dewatering

•Prime Objective is to Monitor Performance of GBT Operation


Gravity Belt Thickeners

Dilute Polymer Prep Tanks and Dilute Polymer Meters

Sampling Points at a Glance

Samples and Tests

Sample Stream	Sample Type, Frequency	Analytes
Egan N & S WAS	Composite,* daily	%TS, T-Fe, TP
Kirie WAS	Composite,* daily	%TS, T-Fe, TP
GBT Feed	Composite,* daily	%TS, T-Fe, TP
Cake	Composite,** daily	%TS, T-Fe, TP
Filtrate	Composite,** daily	%TS, T-Fe, TP
Dilute Polymer	1 Grab sample***, daily	% TS
Raw Polymer	1 Grab Sample, daily	% TS
Dilution Water	1 Grab Sample, daily	% TS, TDS

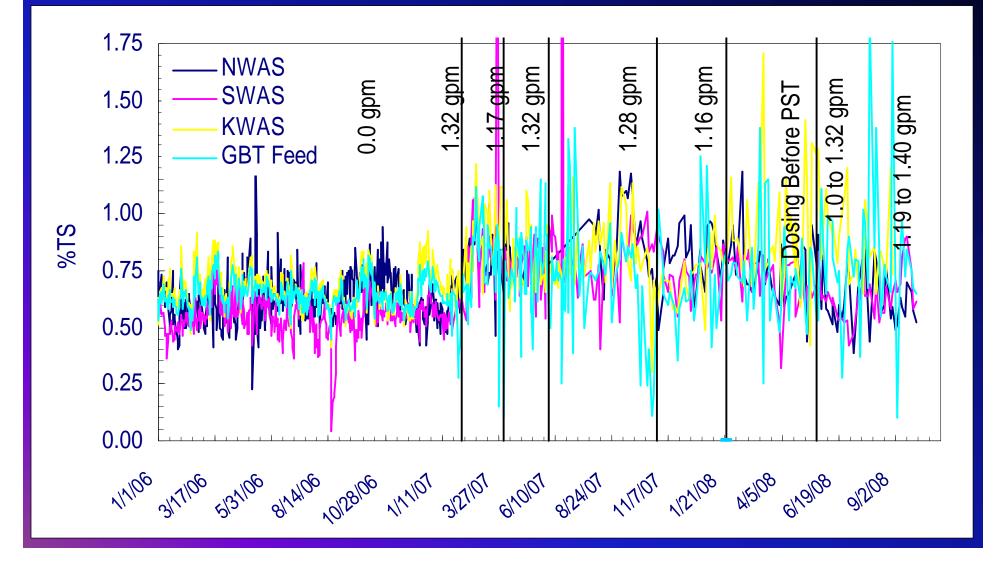
*Composite of 3 grab samples collected once per shift **Composite of 3 grab samples collected once per shift per machine ***Grab per shift per dilute polymer preparation tank

Results: Role of Polymer

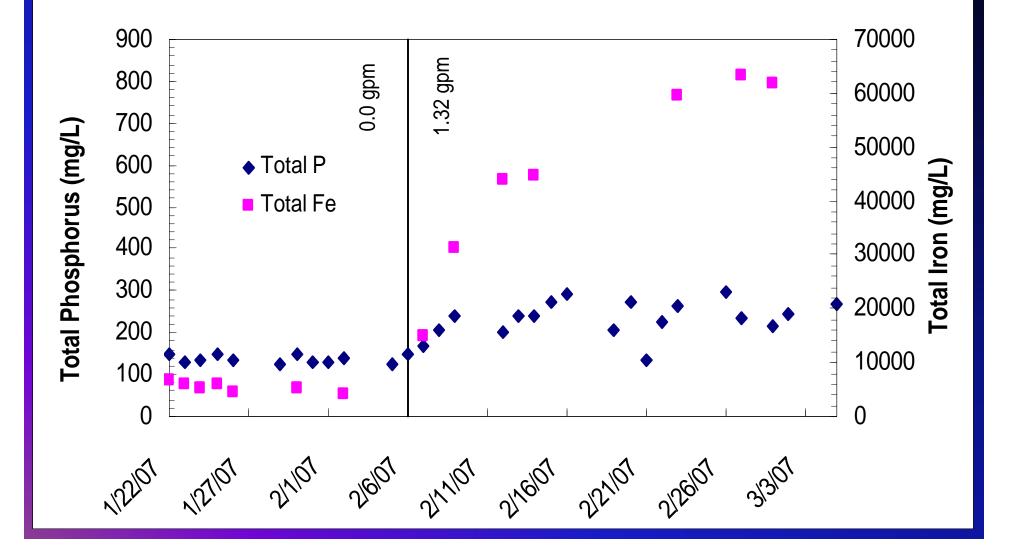
 Individual Performance Evaluation Difficult When Both Polymer and FeCl₃ Applied to Same Sludge

•Polymer Addition Was Held Constant to Discern Effects of FeCl₃

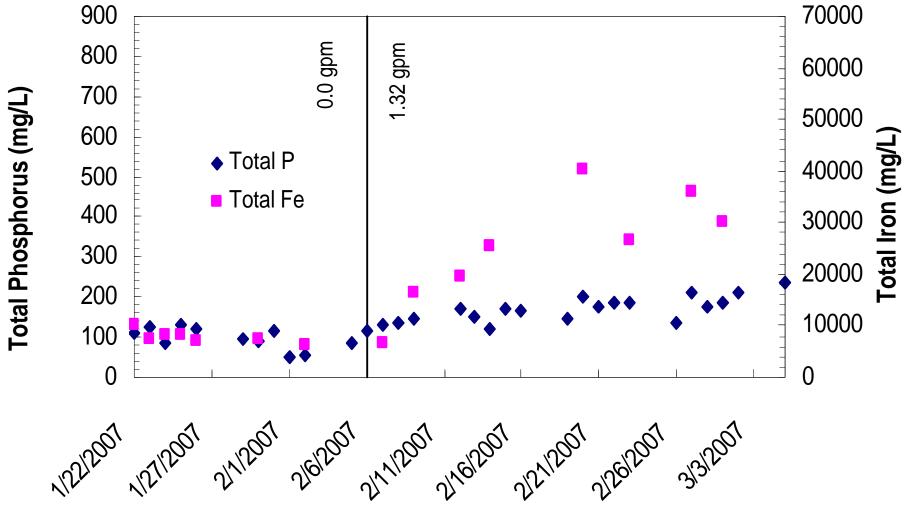
•Consistent Raw Polymer Quality During Background and Testing Period (2/6/07- 9/30/08) (3.91, 3.71 %TS)


•Consistent Dilution Water Quality During Background, and Testing Period (2/6/07- 9/30/08) (684, 729 ppm TDS, City Water)

•Dilute Polymer Preparation During All Three Shifts in Both Tanks Remained Consistent and Comparable


•As a Result, Consistent Dilute Polymer Quality During Background, and Testing Period (2/6/07- 9/30/08) (8.08, 8.51 %TS)

•Polymer Dose Per Machine N/A Due To Lack of Polymer Flow Data


Impact on %TS in N-WAS, S-WAS, K-WAS and GBT Feed

Impact on Total Fe & TP – N WAS

Impact on Total Fe & TP - GBT Feed

Effects on Feed, Thickened Sludge & Filtrate

	TS, mg/kg		Total Fe, mg/kg			TP, mg/kg			
Stream	Backgro und (1/22- 2/5/07)	FeCl₃ Dose (2/6/07- 9/30/08)	% Increase	Backgrou nd (1/22- 2/5/07)	FeCl₃ Dose (2/6/07- 9/30/08)	% Increase	Backg round (1/22- 2/5/07)	FeCl₃ Dose (2/6/07- 9/30/08)	% Increase
N-WAS	6787	7646	13	5420	25237	366	135	246	82
S-WAS	5678	7804	37	6743	35236	423	113	256	127
K-WAS	6942	8403	21	8350	11831	42	125	150	20
GBT Feed	5337	7506	41	7902	21070	167	97	177	83
Avg Cake	64760	68737	6	7355	19053	159	1162	2064	78
Avg Filtrate	1235	1256	2	4	17	366	22	23	3

Filtrate Results are in mg/L

Impact on Anaerobic Digesters A & C

	Digester A			Digester C			
Parameter	No FeCl ₃ Addition (1/22- 2/5/07)	FeCl ₃ Addition (2/6/07- 9/30/08)	% Change	No FeCl ₃ Addition (1/22-2/5/07)	FeCl ₃ Addition (2/6/07- 9/30/08)	% Change	
Total Feed, MG	0.08	0.11	26	0.09	0.10	15	
Digester Feed, DT	14.91	22.50	51	16.00	22.14	38	
Dig Gas produced X1000 ft ³	253	221	-13	343	229	-33	
%VS Destruction	57	45	-21	57	46	-20	
Detention Time, days	32	25	-21	30	26	-13	

	Dige	ster A	Dige	ster C		Dige	ster A	Diges	ster C
Month	Detention Time, d	%VS Reduction	Detention Time, d	%VS Reduction	Month	Detention Time, d	%VS Reduction	Detention Time, d	%VS Reduction
Oct-06	29.26	38.52	26.75	39.17	Aug-07	27.60	35.60	27.66	36.11
Mar-07	22.43	38.35	22.78	38.96	Sep-08	26.13	37.10	26.13	38.06

Centrifugal Dewatering Operation

Impact on Centrifuge Dewatering Operations

Parameter	Background (1/22-2/5/07)	FeCl ₃ Addition (2/6/07-9/30/08)	% Change
Sludge Feed, MG	0.24	0.23	-2
Sludge Feed, DT	20.70	23.86	15
Polymer Dose, Ibs/DT	510	415	-19
Ferric Chloride Dose, lbs/DT	431	314	-27
Centrate SS, mg/L	2,498	2,893	16
Sludge Cake, %Total Solids	24	26	7

Preliminary Conclusions

•No Operational Problems for GBT, Digestion and Centrifugal Operations.

•The GBT Feed and Egan WAS Showed Appreciable Increase in TS, Fe and TP.

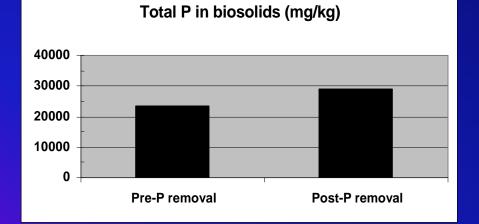
•The GBT Performance As Measured By %TS of Thickened Sludge Did Not Significantly Change by the FeCl₃ Addition.

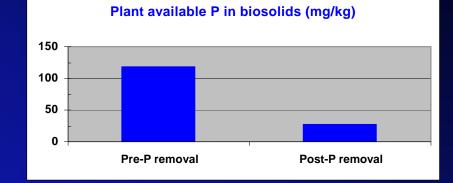
•The FeCl₃ Fortified Thickened Solids Produced Less Volatile Solids Destruction in the Primary Digesters.

•Reduction in Gas Production May Be Associated With Less Volatile Solids Destruction Due to Shorter Detention Time wrt Before FeCl₃ Addition.

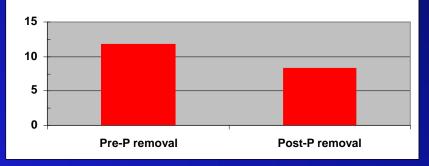
•No Significant Impact on Digester Performance Was Observed Due to FeCl₃ Addition.

•FeCl₃ and Polymer Demand Were Significantly Reduced for Centrifugal Dewatering Operation.


•Marginal Increase in Cake Solids and Centrate Solids Were Also Noted.

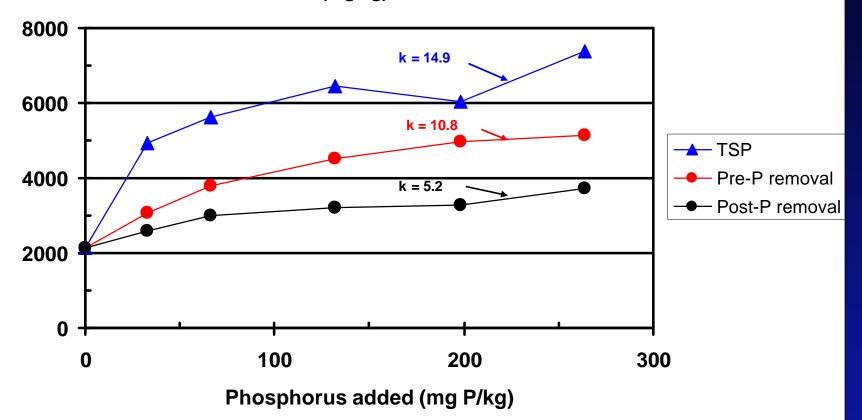

Why does P in biosolids matter?

Typical biosolids application rate: 22 Mg/ha Biosolids generally contains: 2.5% P Biosolids application increase soil P by: 550 kg/ha Crop requirement for TSP: 40 kg/ha **R & D research indicates P availability:** Biosolids P = 1/3 TSP Even that: over application of P is still likely If P-based biosolids land application implemented in Illinois, biosolids application has to be reduced, resulting in high costs of operations.


P-removal in effluent changes P in biosolids, research is needed to find what impact of such change can cause to biosolids land application.

Effect of P removal on P in biosolids

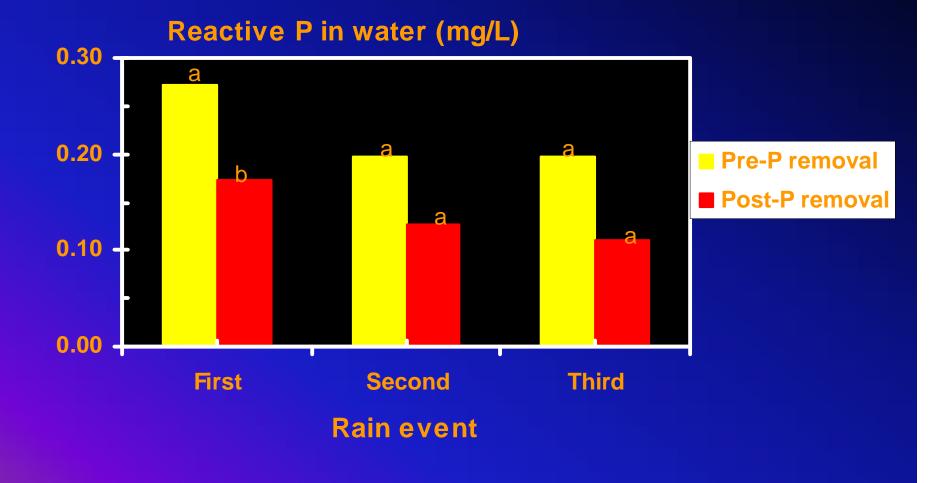
Water extractable P in biosolids (mg/kg)



Greenhouse study

Availability: tissue P concentration

Tissue P concentration (mg/kg)


Environmental lability: P in runoff

- Soil mixed with biosolids
- Rainfall intensity: 100 mm hr⁻¹

Effect of P-removal on P in runoff

Conclusions - biosolids

This study indicates that chemical P removal process slightly increases total P content of biosolids greatly decreases the P agronomical availability and environmental lability of the biosolids.

The P-removal biosolids can be applied at a rate similar to or greater than conventional biosolids.