METCALF & EDDY AECOM

Energy & Resource – Sustainability Greenhouse Gas Road Mapping & Current Green Initiatives in the Wastewater Industry May 16, 2008

Speakers

• Patrick Clifford, P.E. - CTE/AECOM

- Electrical/Instrumentation Engineer
- 11 years of experience at CTE Engineers
- Power Systems, SCADA, Energy Management
- Business Unit Manager for CTE's Energy and AE Services Group

Joerg Blischke – M&E/AECOM

- Masters Degree in Chemical Process Engineering
- 15 years of experience
- M&E's waste-to-energy expert

Topic 1 – "Energy Optimization"

Speaker – Patrick Clifford CTE/AECOM

- Energy Benchmarking
 - Why Benchmarking?
 - Approach, Benefits
- Typical Wastewater Treatment Energy Use Metrics
 - Relevant Metrics
 - National Averages
- Alternative Funding Mechanisms
 - Local, Federal, Third Party
- Areas of Energy Optimization
 - Understanding Plant Processes
 - Equipment vs. Operational Modifications
- Sustainable Design

MWRDGC Energy Policy

The District's energy policy promotes sound energy practices at District facilities while continuing to comply with all operating permits. The objective of the energy policy is to establish energy management practices that promote fiscal responsibility while encouraging conservation of our natural resources and utilization of renewable energy sources. These practices promote the reduction of greenhouse gases by reducing District energy usage and/or by the substitution of conventional source with renewable resources.

MWRDGC Energy Policy

MWRDGC Energy Conservation

- Executing a capacity based load reduction agreement (CLR7) with Commonwealth Edison
- Establishing an energy conservation committee
- Utilizing Computerized Dissolved Oxygen Control System for aeration tanks
- Utilizing 95% of digester gas produced
- Installing high efficiency motors and variable speed drives
- Establishing plant operations to match peak and offpeak power rates

MWRDGC Green Initiatives

- Installation of approximately 50 acres of natural prairie landscapes
- Implementation of a rain barrel distribution program
- Investigation of rain garden installations
- Installation of a prototype long-term Household Hazardous Waste collection facility
- Installation of replacement heavy equipment for new technologies that reduce drying time, and air emissions

Energy Benchmarking

Business: Total Quality Management

"Benchmarking – a continuous, systematic process for evaluating the products, services, and work processes of organizations that are recognized as representing best practices for the purpose of organizational improvement."

Michael J. Spendolini, The Benchmarking Book, 1992

Wastewater Treatment: Financial Tool

- Energy Management
 Energy Optimization
 Process Performance
- Peer Comparison

Energy Usage required to produce a specific per unit of

- Identify actions to improve performance
 - Process of Energy Benchmarking
 - Identify issues (metrics)
 - Collect Internal data (baseline)
 - Collect External data (comparison framework)
 - Analysis
 - Implement change
 - Monitor Impact
- You already have much of this information

Energy Benchmarking

- Greenhouse gas CO₂ emission reduction
- Rising energy prices
- Total energy costs
- Performance compared to other sanitary districts
- Prioritize resources
- On-going tracking tool

Energy Benchmarking Strategies

Energy Audits

- Energy benchmarking values
- Energy efficiency and emissions standards
- Energy efficient technologies
- Establish organizational and operational standards

Energy Benchmarking: Strategies

Energy Audits

- In-depth study of all major energy consuming equipment in the plant
- Explores achievable energy saving measures through a systematic and scientific approach
- Evaluates existing energy usage as well as utility energy costs
- The analysis would include simple payback calculations
- Provides sizing and sourcing of retrofits and equipment
- Requires continuous interaction between audit team and plant personnel

Energy Benchmarking: Metrics

- Normalized to Wastewater Treatment
- Energy Cost (\$/MG)
- Energy Use (kWh/MG)
- BOD Removal (\$/# of BOD removed)
- Facility
 - Geography
 - Flow
 - Loading
 - Process
- Specific to process
 - Pumping
 - Aeration
 - Filtration
 - Solids
 - Digestion
 - Chemical Treatment

Energy Benchmarking: Data Sources

- 1. Comparison to Past Performance
 - Diagnostic
 - No comparison to others
 - Only relative sense of performance over time
 - "Look yourself in the mirror" approach
 - Internal data source
 - Monitor progress over a period of time
 - Operational benefits
 - Energy pricing impacts

Energy Benchmarking

2. Comparison to Large Scale Data: External

Industry Associations

- EPRI <u>www.epri.com</u>
- WERF <u>www.werf.org</u>
- AWWARF <u>www.awwarf.org</u>
- EPA/DOE <u>www.energystar.gov</u>
- NYSERDA <u>www.nyserda.org</u>
- CEC <u>www.energy.ca.gov</u>
- Limited by existing data sets
- Data by others
- Normalizing characteristics
 - Weather, plant size, plant loading
- Great way to determine where you stand in the pack

Energy Benchmarking

INPUTS

-Zip code -Average influent flow -Average influent biological oxygen demand (BOD5) -Average effluent biological oxygen demand (BOD5) -Plant design flow rate -Presence of fixed film trickle filtration process -Presence of nutrient removal process Ensuring a Sustainable Future: An Energy Management Guidebook for Wastewater and Water Utilities

2008 EPA Energy Guidebook Wastewater Treatment Plants

Energy Benchmarking Summary

Wastewater Treatment Energy Use Metrics

- Industry Facts
- Relevant Metrics
- National Averages

Typical Wastewater Treatment Energy Use Metrics

Large Energy Users

- National
 - More than 15,000 wastewater systems
 - 28,000 MGD treated
 - Estimated 75 billion kWh
 - \$6.5 billion/year on energy to pump, treat, deliver, collect, and clean water
 - Roughly 3% of annual US electricity use
 - Energy Costs = 30-50% of Total Operating Costs
 - Is the energy costs to run drinking water and wastewater systems 33% of a municipality's energy bill
 - 10% energy reduction would save \$650 million and 5 billion kWh annually

Typical Wastewater Treatment Energy Use Metrics Water & Wastewater Treatment Industry Growing

Typical Wastewater Treatment Energy Use Metrics

National Average Energy Use

Typical Wastewater Treatment Energy Use Metrics Typical 330 MGD Plant

	Typical Plant		North Side WWTP	
Large Energy Users	kWh/day	<u>kWh/MG</u>	<u>kWh/day</u>	<u>kWh/MG</u>
Wastewater Pumping	39,500	118	56,000	169
Aeration (Diffused Air)	175,500	532	143,000	433
Lighting and Building	10,000	30	27,000	110
Totals	392,000	1,188	226,000	684

Typical Wastewater Treatment Energy Use Metrics Typical 30 MGD

Large Energy Users	<u>kWh/day</u>	kWh/MG
Wastewater Pumping	3,840	128
Aeration (Diffused Air)	15,960	532
Biological Nitrification	10,227	340
Filters	1,063	35
Digestion	4,800	160
Lighting and Building	10,000	60
Totals	50,300	1,558

Typical Wastewater Treatment Energy Use Metrics Conclusion

• Must be developed over time

• No one size solution fits all

Internal benchmarking is important

EPA Newsroom Browse EPA Topics Laws, Regulations, Guidance & Dockets Where You Live Frequent Questions Information Sources Educational Resources About EPA Programs Partnerships **Business** Opportunities Report a Violation Careers **EPA En Español** 中文: 繁體版 中文:简体版 **Tribal Portal** For KIDS

н

N

N

M

N

A

Energy Optimization

Energy Optimization: conserving electrical energy usage by means of updating older inefficient equipment, optimizing process operations and system control, and improving maintenance procedures with the ultimate goal of enhancing system functionality while reducing costs.

Why is Energy Management Important

- Municipal Wastewater Large Energy Users
- Wastewater Treatment is Growing
- Increasing Energy Costs
- Funding Concerns
- More Stringent Environmental Regulations

Environmental Regulations

- Wastewater
 - Odor Control
 - CSO's
 - Nutrient Removal
 - Disinfection (Ultraviolet Irradiation)
 - Biosolids Reduction

How to Manage Energy

- Must Understand Where it is Used
- Improve High Energy Use Equipment
- Control and Instrumentation
- Operational Considerations
- Load Shape Objectives
- Appoint an Energy Champion (#1)

Energy Optimization Energy Management Opportunities

- Large Pumping Applications
- Wastewater Treatment Plant Aeration Process
- Energy Efficient Motors
- Centrifuge Energy Efficiency
- Bio-fuel Reuse
- Energy Management SCADA and Software
- Load Balancing/Load Shifting/Operational Considerations
- High Efficiency lighting/HVAC
- Include Energy Conservation Management (ECM) on all Projects

Alternative Funding Mechanisms

How to Pay for these projects

•Illinois Clean Energy Community Foundation www.illinoiscleanenergy.org

•Illinois Department of Commerce and Economic Opportunity (DCEO)

www.commerce.state.il.us

•Energy Efficiency and Renewable Energy (EERE) & U.S. Department of Energy (DOE) www.eere.energy.gov

•Database of State Incentives for Renewable Energy (DSIRE) www.dsireusa.org

•ComEd

www.exeloncorp.com/ComedCare_Main/ComedCare

Alternative Funding Mechanisms

How to Pay for these projects

Private Funding
 -Energy Service Company (ESCO's)
 -Public Private Partnerships (PPP's)

Turnkey Solutions

What is Sustainable Design?

-Reduces Non-renewable Resources
-Minimize Environmental Impact
-Identifies Renewable Resources
-Reduces Water Use
-Reduces Energy Use

SAVES LONG TERM OPERATIONAL COSTS

CTE AECOM

- 1. Site Planning
- 2. Water Management
- 3. Energy Management
- 4. Material Use
- 5. Indoor
 - Environmental Air Quality
 - All Quality
- 6. Innovation & Design Process

69

35

3

4

6

11

3

Community Center Arlington, Virginia

Silver

Quality

Sustainable Site

Energy & Atmosphere

Materials & Resources

Indoor Environmental

Innovation & Design

GBC LEED-NC rated Sept. 3, 2003.

Sustainable Design

- What are other similar organizations doing?
 - What kind of programs have they established?
 - How much money are they spending annually?
 - What kind of funding?
 - Where is it coming from?
 - How much?

• What are the financial, operational, and public relation benefits?

Sustainable Design Opportunities

Construction Debris Reuse Transportation Water Efficiency Energy Efficiency HVAC and lighting controls Renewable Energy

Break

СТЕ АЕСОМ

End of Presentation

CTE AECOM

METCALF&EDDY AECOM

Energy Optimization

Energy & Resource – Sustainability Greenhouse Gas Road Mapping & Current Green Initiatives in the Wastewater Industry May 16, 2008

Topic 2 – "Energy & Resource; Sustainability

Speakers - Joerg Blischke – M&E/AECOM; Patrick Clifford CTE/AECOM

- Carbon Footprint and Greenhouse Gas Roadmapping for Wastewater Facilities
 - GHG 101
 - International National State: Legislation => Regulations
 - Illinois: The Climate Action Registry => Gov. Blagojevich EO 11 (2006) "Executive Order on Climate Change and GHG Reduction"
 - Voluntary Carbon Trading: Chicago Climate Exchange

FOG and Food Waste to Energy

- FOG co-digestion and SSO digestion at WWTP's
- Optimization of anaerobic digestion process digester upgrades; gas yield increase
- Cogeneration and Other Uses for Digester Gas
- Renewable Energy Opportunities and Evaluations at Wastewater Facilities
 - Renewable Energy Opportunities at Wastewater Facilities
 - Legislation, Regulations

The Industrial Greenhouse Gases

(the 6 "Kyoto Protocol" gases)

Comparison of 100-Year Global Warming Potential* (GWP) Estimates from the IPCC's Second Assessment Report (1996)

Gas	GWP in CO ₂ equivalent (CO ₂ e)
Carbon Dioxide (CO ₂)	1
Methane (CH ₄)	21
Nitrous Oxide (N ₂ O)	310
Fluorinated Gases (HFCs & PFCs)	140 – 11,700
Sulfur Hexafluoride (SF ₆)	23,900

* GWP = Measurement of the heat trapping potential of various GHGs relative to CO₂

U.S. GHG Emissions by Gas

Source: EPA Inventory of GHG Emissions and Sinks: 1990-2006

The Benefits of Greenhouse Gas Reduction

Design & Engineering Policies and Practices that reduce GHGs produce many benefits:

- Reduces wastefulness; improves process efficiency
- Increases system sustainability
- Fulfills emerging global compliance
- Multi-billion dollar investment, re-industrialization and job growth
- Provides own hedge fund against rising energy costs
- Reduces our national & financial security risks
- GHG credits that can be sold
- Climate stabilization
- Reduces costs / saves money
- Technology improvements

The Kyoto Protocol

- 1997 Negotiated in Kyoto, Japan
- Kyoto is a 'cap and trade' system (allows emission trading)
 - Imposes national caps on GHG emissions of more than 33 industrialized countries.
 - On average, this cap requires countries to reduce their emissions 5.2% below their 1990 baseline over the 2008 to 2012 period.

World map: Kyoto Protocol, participation (December 2007)

green - signed and ratified
yellow - signed, ratification pending
red - signed, ratification declined
gray - no position

Legislative Actions

• Federal (No cohesive federal climate change protection strategy yet)

- April 2, 2007 Supreme Court Decision on Massachusetts Vs. EPA:
- EPA authorized to regulate CO₂ as a pollutant under the Clean Air Act
- CO₂ may be regulated similarly to the six criteria pollutants identified in the Federal Clean Air Act

State

California – AB 32: GW Solution Act of '06

- Reduce GHG emissions back to 1990 level by 2020
- The strongest and only standard in the nation
- CA Air Resources Board to develop regulations to achieve pollution reduction goals
- Mandatory reporting of GHG emissions by 2008; begin making reductions by 2012
- Emission trade component starting in 2012

Legislative Actions

State Illinois

2006 - Governor Blagojevich announcing a new global warming initiative building on Illinois' role as a national leader in protecting the environment, signs **Executive Order 2006-11**, creating the Illinois <u>Climate Change Advisory Group</u>, which will consider policies and strategies to reduce GHG emissions in Illinois and make recommendations to the Governor.

Regional Voluntary Actions

The Climate Registry

- 39 U.S. States
- 7 Canadian Provinces
- 6 Mexican States
- 3 Native American Tribes

Source: www.theclimateregistry.org

Local Opportunities

Source: www.chicagoclimatex.com

- Launched in 2003, is the world's first active voluntary, legally binding integrated trading system to reduce emissions of all six GHGs, with offset projects worldwide.
- Trading price of \$6.35/Carbon Financial Instrument (CFI)
 = 1metric ton CO₂e as of May 2008

Focused Wastewater Process GHG Emissions

CO₂ – Biogenic = net zero impacts
CH₄ + N₂O = <u>Focus Area</u>

U.S. Wastewater GHG Emissions (2006)

- WWTP <1% of total U.S. GHG emissions
- External GHG emissions not considered
- 4% of CH₄ emissions and 2% of N₂O emissions
- CH₄ emissions up by 4% and N₂O emissions up by 29%
- 32 TgCO₂e total
 - o 75% CH₄ (8th largest source of CH₄)
 - o 25% N₂O (6th largest source of N₂O)

Source: EPA Inventory of GHG Emissions and Sinks: 1990-2006

GHG Emission Sources for WWTP Processes

Process Step Expected GHG Emissions

- Primary Treatment None expected
- ✓ Secondary Treatment
 - None expected from aerobic processes
 - CH₄ from anaerobic treatment processes (i.e., lagoons)
 - Advanced Treatment N₂O emissions from nitrification/denitrification process
- ✓ Solids Handling
 - CH₄ emissions from sludge handling (digestion, incineration, fugitive emissions)
- ✓ Effluent Discharge
 - N₂O emissions from denitrification of nitrogen species originating from wastewater effluent in receiving water

CA AB 32 Impacts on WWTPs

- Emissions Reporting
- GHG Emissions Reductions
- Cap-and-Trade Program

Comprehensive GHG Mitigation Approach

Renewable Resources-to-Energy Green Vision for San Jose WWTP, CA - Example

- 1 Reduce per Capita Energy Use by 50%
- 2 100% of Electric Power from Clean Renewable Sources
- 3 100% Waste Diversion from Landfill => Convert Waste to Energy
- 4 100% of Public Fleet Vehicles Run on Alternative Fuels

Conservation / Efficiency		
Renewable Resources	Expertise / Experience -	
	Examples	
Biomass	CHP; CNG	
Wind	Wind Turbine Parks	
Sun	Solar PV	
SJWWTP		

Renewable Resources-to-Energy Biomass-to-Energy

Renewable Resources-to-Energy Landfill Gas (LFG) and Leachate Mitigation Through Organics Recovery and Diversion

Renewable Resources-to-Energy Fats, Oil, Grease 101 - Oil Crops & Content

Renewable Resources-to-Energy Fats, Oil, Grease 101 - What is Free Fatty Acid?

Fat Molecule (Triglyceride) A free fatty acid chain that has broken off the "fat molecule"

Free Fatty Acid (FFA) break off through hydrolysis => Steam from cooking foods, salts, chemicals, heat, etc.

Renewable Resources-to-Energy Fats, Oil, Grease 101 - Usage

Feedstock	Free Fatty Acid	Usage
Virgin Oils (Soy, Canola, Palm)	Negligible	Food; Cosmetics; Soap; Biodiesel
Yellow Grease	< 15%	Cattle Feed; Soap; Biodiesel
Brown Grease	> 15 %	Cattle feed; Co-Digestion; Biodiesel

Renewable Resources-to-Energy Fats, Oil and Grease (FOG) – Yellow and Brown Grease

Objectives and Measures:

- Reduce the amount of FOG released to the sewer system to extend its useful life
- recover the energy value of FOG to reduce the City's dependence on fossil fuel sources
- Develop & enhance the City's FOG control ordinance including FOG Discharge Limits and Enforcement
- Educate all licensed food establishments of the importance of installing and maintaining grease traps

Renewable Resources-to-Energy FOG Collection

TORR THE

9

Grease Interceptor (Outdoor, In-ground)

Renewable Resources-to-Energy FOG Co-Digestion

- East Bay Municipal Utility District (EBMUD), CA
- Watsonville WWTP, CA
- Oxnard WWTP, CA
- Millbrae WPCP, CA
- South Bay System Authority, Redwood City, CA
- Riverside WWTP, CA
- Duisburg-Kasslerfeld WWTP, Germany

Watsonville WWTP, FOG Storage & Digester Mixing

Renewable Resources-to-Energy FOG Co-Digestion - Example

Renewable Resources-to-Energy FOG Co-Digestion - Example

Renewable Resources-to-Energy FOG Co-Digestion - Example

Oxnard WWTP, FOG Collection & Direct Injection

Renewable Resources-to-Energy Organic Feedstock Recovery

- Commercial Organics & Source Separated Organics Objectives & Measures:
- Increase of Waste Diversion towards Zero Waste Goal
- Closing Carbon and Nutrient Loop
- Cheap feedstock for energy production
- Develop and implement ordinance & organics collection program
- Educate food establishments, food processors, retailers, and residents of organics collection

Renewable Resources-to-Energy AD of Source Separated Organics (SSO) - Example

Renewable Resources-to-Energy AD of Source Separated Organics - Example

SSO Receiving and Pre-Treatment Facility at a WWTP in California, Conceptual Design

Renewable Resources-to-Energy AD of Source Separated Organics - Example

SSO Receiving and Pre-Treatment Facility at a WWTP in California, Conceptual 3D Model

Renewable Resources-to-Energy AD of Source Separated Organics - Example

SSO Receiving and Pre-Treatment Facility at a WWTP in California, Conceptual 3D Animation

Renewable Resources-to-Energy Optimizations of AD Performance – Digester Upgrades

Renewable Resources-to-Energy Combined Heat and Power Generation

Source: Stirling Biopower (former STM Power)

Source: CTE/AECOM

Cogeneration with Digester Gas

- Reciprocating ICEs
- Dual-Fueled (Gas with Diesel Pilot) ICEs
- Micro Turbines (30-250kW)
- Gas Turbines >1,000kW)
- Fuel Cells (200 1,000 kW)
- Stirling Engines (25kW+)

Source: King County WWTP, WA

Source: Capstone

Renewable Resources-to-Energy Digester Gas Upgrade to Biomethane (Biomethanation) - Example

Amine Carbon Dioxide Absorption Process (LP Cooab™); Courtesy PURAC, adapted

Renewable Resources-to-Energy Digester Gas Upgrade to Biomethane - Example

Gothenburg (Sweden), LP- CooabTM biogas upgrading plant; Coutesy Purac

Renewable Resources-to-Energy Digester Gas Upgrade to Biomethane - Example

Trollhättan (Sweden), 50,000 inhabitants, north of Gothenburg, 12 buses and personal vehicles run on a biomethane; AD Feedstock: Biosolids and organic commercial waste from a fish processing factory.

METCALF & EDDY | AECOM

Renewable Resources-to-Energy Biodiesel - Feedstock & Production

Feedstock	Free Fatty Acid	Production Complexity	Cost of Feedstock	Cost for Production
Virgin Oils (Soy, Canola, Palm)	Negligible	Low	\$\$\$	\$
Yellow Grease	< 15%	Medium	\$\$	\$\$
Brown Grease	50-100%	High	\$	\$\$\$

METCALF&EDDY AECOM

Source: EBMUD

Renewable Resources-to-Energy Biodiesel from FOG

Raw FOG

from restaurant interceptor pump-outs

Brown Grease

2-5% of delivered FOG

Biodiesel

25-60% conversion yield

METCALF&EDDY AECOM

Source: EBMUD

Renewable Resources-to-Energy Biodiesel from FOG - Example

- Brown grease to biodiesel: Acid pre-esterification & base transesterification with methanol + wash
- Glycerin, water, and waste methanol are byproducts
- Production challenges include:
 - Variable quality feedstock
 - Contaminant level (water and solids)
 - High free fatty acid content
 - High sulfur content of feedstock
 - Cloud point
 - ASTM Standards

Biodiesel Pilot Facility; EBMUD

Lifecycle renewable-diesel GHG emissions relative to diesel

Renewable Resources-to-Energy Biodiesel – Emission Profile

METCALF&EDDY AECOM

Source: EPA

Renewable Resources-to-Energy LFG and Leachate Mitigation Through Organics Diversion -> WIN - WIN - WIN

Renewable Energy

Definition of Renewable Energy

Renewable Energy is energy produced from the utilization of <u>natural</u> <u>resources</u> such as sunlight, wind, rain, tides, and geothermal heat which are naturally replenished.

Laws and Regulations

- Federal Energy Policy Act of 2005 & Executive Order 13423
 - 3% of total electricity used at federal facilities must be from a renewable energy source in fiscal years 2007 to 2009
 - Increases gradually to 7.5% by fiscal year 2013
 - 50% of total renewable energy must be from new sources (post 1999)
- Renewable Energy Portfolio Standards
 - Two types Mandatory and Voluntary
 - Sets % of electric generation which must be from renewable sources
 - Currently 29 states with RPS
 - 25 Mandatory and 4 voluntary
 - State of Illinois
 - Mandatory as of 2008
 - 2% by 2008 with incremental increases to 25% by 2025
 - 75% of renewable energy must come from wind power

METCALF & EDDY | AECOM

Why Should You Go GREEN?

- WWTP's are perfect candidates for renewable energy projects
 - Large energy users
 - Water treatment and pumping account for approximately 3-5% of total US electricity use
 - Energy costs account for 30-50% of plant operating budgets
 - Favorable site conditions
 - Large amounts of land
 - Ample rooftops for mounting of solar panels

The Three Benefits of Going GREEN

- Reduction in Plant Operating Costs
- Improved Public Relations
- Preparedness For The Future

Financial Incentives

Open Market

- 1. Selling of Renewable Energy Credits
 - We Energies Utility Company
 - Purchases electricity generated by the customer from on-site solar panels at \$0.225 per kW-h
 - Illinois utilities do not currently offer these programs

Private

- 2. Equipment installed and owned by third party
 - Third party can utilize 30% Federal Income Tax Credit to offset project costs
 - No initial capital expenditures, and no price volatility on purchased power
 - Project paid for by municipality buying electricity from the installer
 - Equipment turned over to municipality after set period

METCALF & EDDY | AECOM

Financial Incentives

3. State

- Illinois Department of Commerce and Economic Opportunity
 - Solar Energy Rebate Program
 - Rebate of 30% of project costs, up to a maximum of \$10,000
 - Total project cost must be <\$50,000</p>
 - Capacity of system must be > 800 watts

- Wind Energy Production
 Development Program
- Grant of \$25,000 to offset project costs
- Maximum project capacity of 500 kW
- www.dsireusa.org

Renewable Energy Audits

- Uses existing software package to provide low cost prefeasibility analysis
- Allows 'apples-to-apples' comparison of different renewable energy technologies
- Resources can be focused on the most promising solutions
- Easily updated if major inputs change (utility prices, consumption, equipment costs, etc.)

Types of Renewable Energy Evaluated

- Photovoltaic
- * Wind
- Ground Source Heat Pump
- Solar Water Heating
- Cogeneration
- Solar Air Heating
- Passive Solar Heating
- Biomass Heating

Wind

- Illinois is ranked 8th for existing capacity, at almost 700MW, and 16th for wind potential
- Over 9,000MW of capacity can be installed in prime areas, just 1.2% of the state's land
- Small capacity turbines are becoming more costeffective

Wind Case Study Example

- Wastewater treatment plant in Ohio
- 50kW turbine
- \$145,000 installed cost
- Simple Payback under 10 years without incentives
- Over 140MWh expected annual output

Backup

GHGs - The Realities of Our Problem

- Now seeing effects of GHG levels from 30 yrs ago
 - There is a 30 yr lag between GHG levels and their climate impacts.
- Our children will be the 1st generation of humans to see the North Pole free of ice in the summer
 - And our grandchildren will likely see a different geographic outline of the world
- Current industrial systems are the source of the problem we are not a sustainable economy
 - Ex: over-dependence on fossil-based energy
- Water certainty will be the greatest casualty of climate change
 - More extremes of both draught and flood
- State-level Greenhouse Gas Emission Factors for Electricity Generation (Source: www.eia.doe.gov)
 - East-North Central States (ave.)
 - Illinois
 - California

0.740 metric tons CO₂/MWh 0.528 0.275

1000 Years – Carbon Emissions, CO₂ & Temperature

U.S. Mayors Climate Protection Agreement

Source: www.usmayors.org

- 2005 U.S. Conference of Mayors Climate Protection Agreement, in which mayors commit to reduce emissions in their cities to 7% below 1990 levels by 2012
- 852 Cities have signed on as of 5/6/2008 representing a total population of over 80 million citizens

Renewable Resources-to-Energy SUMMARY EXAMPLE PROJECTS

Renewable Resources	Application / Utilization	Expertise / Experience - Projects	
Biomass – Source Separated Organics to Biogas	Heat / Power (ICE CHP)	 Cogeneration 4 x 300kW ; leper, Belgium Design/Build; Status: Completed 2003 Receiving & Pre-Treatment Facility at WWTP in CA; Engineering Services; Status: Ongoing 	
Biomass – Biosoilds to Digester Gas	Heat / Power (ICE CHP)	 Cogeneration 3 x 250kW; Northeast Treatment Plant, Urbana/Champaign, IL IEUA Regional Plant-1,, 8x30kW Microturbines; Chino, CA; Engineering Design Services; Status: Completed 2002 	
Biomass - FOG to Digester Gas and Biodiesel	Heat / Power / Fuel (ICE; Fuel)	SFPUC: - FOG Program - CEC PIER Grant Fog-to-Biofuels Engineering Services; Status: Ongoing	
Biomass – Biosoilds to Digester Gas	Heat / Power / Fuel (CNG)	Digester Gas-to-Pipeline Quality; Philadelphia, PA Engineering Services; Status: Ongoing	
Wind	Wind Power Turbines	Several 100MW each Nobel Wind Parks, NY; Engineering Design, Status: Complete in 2009	
Sun	Solar Power (PV)	350kW of solar PV energy, Rooftop mounted system & parking lot canopy structure CSU, San Bernardino, CA Engineering Services; Status: Ongoing	

Title

Break

