

Development of a Framework for an Integrated Water Quality Strategy for Chicago Area Waterways

> David R. Zenz, Ph.D., P.E. CTE AECOM

Metropolitan Water Reclamation District of Greater Chicago Research and Development Department 2007 Seminar Series May 18, 2007 Lue-Hing Research and Development Complex

## **Outline of Presentation**

- Background
- Water Quality Standards
- Effluent Disinfection Studies
- Study of End-of-Pipe CSO Treatment
- Study of Supplemental Aeration of NBCR and SBCR
- Study of Flow Augmentation of the UNSC
- Study of Flow Augmentation and Supplemental Aeration of Bubbly Creek
- Development of an Integrated Water Quality Strategy for Chicago Area Waterways

Development of a Framework for an Integrated Water Quality Strategy for the Chicago Area Waterways, May 18, 2007

# Background

AECOM

CTE



## **Reason For Initiating Studies**

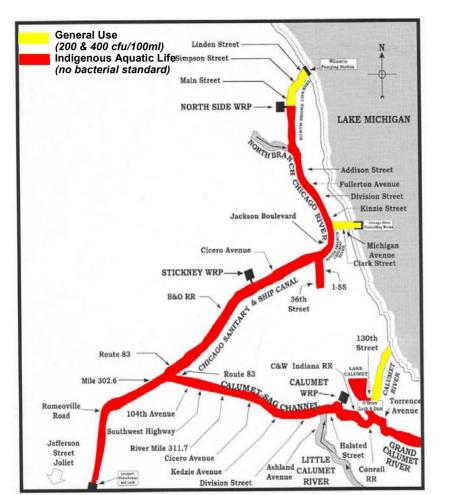
## – Use Attainability Analysis (UAA)

- Through UAA, IEPA is Reviewing Existing Use Classifications for Chicago Area Waterways (CAWs)
- Reclassifications Driven by Current and Potential Future Usage of CAWs
- District is a Stakeholder in UAA Process
- IEPA Requested That District Conduct Certain Studies as Part of UAA Process

## **CTE Studies**

| W  | ater Quality Management Options                                    | Technical<br>Memorandum |
|----|--------------------------------------------------------------------|-------------------------|
| 1. | Effluent Disinfection at MWRDGC<br>Major Plants                    | TM-1WQ                  |
| 2. | End-of-Pipe CSO Treatment                                          | TM-3WQ                  |
| 3. | Supplemental Aeration of the NBCR and SBCR                         | TM-4WQ                  |
| 4. | Flow Augmentation of the UNSC                                      | TM-5WQ                  |
| 5. | Flow Augmentation and<br>Supplemenetal Aeration of Bubbly<br>Creek | TM-6WQ                  |

## TM-7WQ

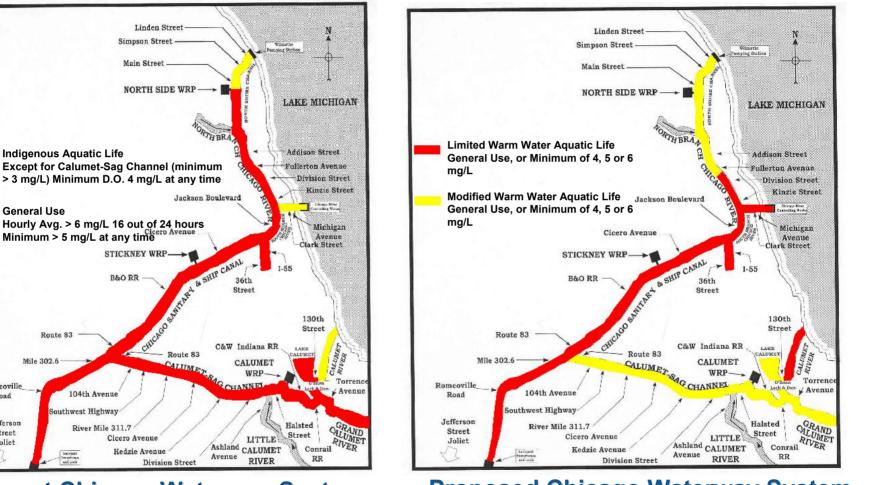

### CTE to determine framework for developing "integrated water quality strategy" for the CAWs

AFCOM

# Water Quality Standards

AECOM

CTE




#### **Current Bacterial Standards for Chicago Waterway System**

#### Limited Contact Recreation Linden Street (1,030 E. Coli cfu/100ml) Recreational Navigation<sup>Simpson Street</sup> (2,740 E. Coli cfu/100ml) NORTH SIDE WRP LAKE MICHIGAN THBRAN CH Addison Street CHICAGO Fullerton Avenue **Division Street Kinzie Street** Jackson Boulevard Dicaga Sites Michigan Cicero Avenue Avenue Clark Street STICKNEY WRP SHIP CANAL I-55 B&O RR 36th Street 130th Street Route 83 C&W Indiana RF Route 83 CALUMET SAG CHANNE Mile 302.6 CALUM Torreno Romeoville ∠ Avenue 104th Avenue Road Southwest Highway Jefferson Halsted River Mile 311.7 AND Street Street Cicero Avenue LITTLE MET RIVER Joliet Ashland CALUMET Conrail Kedzie Avenue Leckper Avenue RR RIVER **Division Street** and Lock

AECOM

#### Proposed Bacterial Standards for Chicago Waterway System



#### Current Chicago Waterway System **Dissolved Oxygen Standards**

Romeoville

Road

Jefferson

Street

Joliet

#### Proposed Chicago Waterway System **Dissolved Oxygen Standards**

# **TM-IWQ Effluent Disinfection Study**

CTE



## Effluent Disinfection Study for MWRDGC Three Major Plants – TM – 1WQ

- Review technologies for effluent disinfection
- Recommend technology(ies) most suitable for cost estimating purposes
- Prepare planning level cost estimate for MWRDGC major plants

### Initial Short List of Technologies Requiring Further Consideration

AFCOM

- Chlorination (alone)
  - Liquid
  - Gas
- Ozone
- Ultra-Violet Light
- Chlorination-Dechlorination
  - Liquid
  - Gas
- Chlorine Dioxide
- Bromine (Br) Compounds
- Sequential Disinfection Processes
- Membrane Processes

#### Opinion of Probable Costs of UV and Ozone Disinfection for North Side WRP, Stickney WRP, and Calumet WRP (Without Filtration)

|                                                                    | NORTH SIDE<br>WRP |        | STICKNEY WRP |        | CALUMET WRP |       |
|--------------------------------------------------------------------|-------------------|--------|--------------|--------|-------------|-------|
| Capital Cost Estimates, in millions                                | UV                | OZONE  | UV           | OZONE  | UV          | OZONE |
| A. General Site Work                                               | \$4               | \$8    | \$93         | \$97   | \$14        | \$14  |
| B. Low Lift Pump Station                                           | \$ 54             | \$ 54  | \$174        | \$174  | \$59        | \$59  |
| C. Disinfection System                                             | \$ 25             | \$ 100 | \$91         | \$226  | \$31        | \$110 |
| Total Capital Cost                                                 | \$ 83             | \$ 162 | \$358        | \$497  | \$100       | \$180 |
| Annual Operation and<br>Maintenance Cost Estimates, in<br>millions |                   |        |              |        |             |       |
| A. General Site Work                                               | <b>\$</b> 0       | \$ 0   | \$0          | \$0    | \$0         | \$0   |
| B. Low Lift Pump Station                                           | \$ 1.1            | \$ 1.1 | \$4.1        | \$4.1  | \$1.7       | \$1.7 |
| C. Disinfection System                                             | \$ 3.2            | \$ 6.4 | \$8.5        | \$14.9 | \$3.1       | \$6.4 |
| Total Annual O&M Cost                                              | \$4.3             | \$ 7.5 | \$12.6       | \$19.0 | \$4.8       | \$8.1 |



#### Opinion of Probable Costs of UV and Ozone Disinfection for North Side WRP, Stickney WRP, and Calumet WRP (With Filtration)

|                                                                 | NORTH SIDE WRP |        | STICKNEY WRP |         | CALUMET WRP |        |
|-----------------------------------------------------------------|----------------|--------|--------------|---------|-------------|--------|
| Capital Cost Estimates, in millions                             | UV             | OZONE  | UV           | OZONE   | UV          | OZONE  |
| A. General Site Work                                            | \$4.00         | \$8.00 | \$93.0       | \$97.0  | \$14.0      | \$14.0 |
| B. Low Lift Pump Station                                        | \$54.0         | \$54.0 | \$174        | \$174   | \$59.0      | \$59.0 |
| C. Tertiary Filtration                                          | \$168          | \$168  | \$642        | \$642   | \$208       | \$208  |
| D. Disinfection System                                          | \$25.0         | \$100  | \$91.0       | \$226   | \$31.0      | \$110  |
| Total Capital Cost                                              | \$251          | \$330  | \$1,000      | \$1,139 | \$310       | \$390  |
| Annual Operation and Maintenance<br>Cost Estimates, in millions |                |        |              |         |             |        |
| A. General Site Work                                            | \$0            | \$0    | \$0          | \$0     | \$0         | \$0    |
| B. Low Lift Pump Station                                        | \$1.10         | \$1.10 | \$4.10       | \$4.10  | \$1.70      | \$1.70 |
| C. Tertiary Filtration                                          | \$2.30         | \$2.30 | \$4.20       | \$4.20  | \$2.30      | \$2.30 |
| D. Disinfection System                                          | \$3.20         | \$6.40 | \$8.50       | \$14.9  | \$3.10      | \$6.40 |
| Total Annual O&M Cost                                           | \$6.60         | \$9.80 | \$16.8       | \$23.2  | \$7.10      | \$10.4 |

Development of a Framework for an Integrated Water Quality Strategy for the Chicago Area Waterways, May 18, 2007

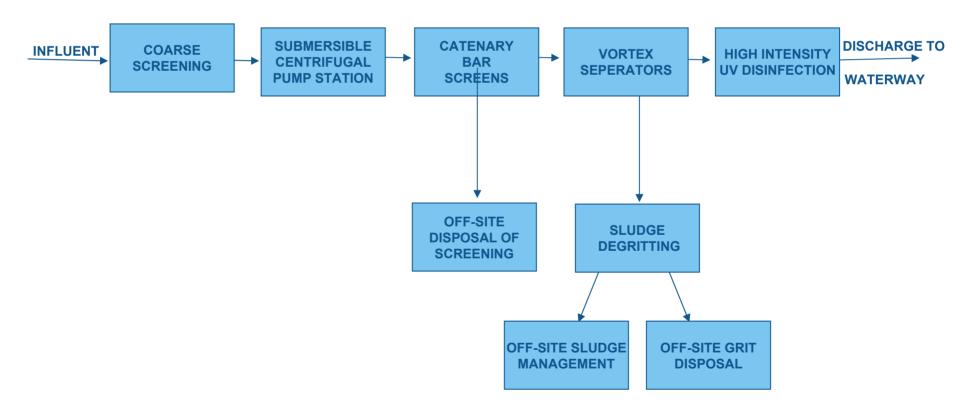
## TM-3WQ Study of End-of-Pipe CSO Treatment

AECOM

CTE

## **Objectives of Study**

Determine the technologies, siting impacts and costs for end-of-pipe treatment of CSOs in the:


AFCOM

- Upper North Shore Channel
- Lower North Shore Channel
- North Branch of Chicago River (below confluence with North Shore Channel)
- Chicago River
- South Branch of Chicago River

## **CSO's in Study Area**

| Location                   | Number of<br>CSOs |
|----------------------------|-------------------|
| Upper North Shore Channel  | 25                |
| Lower North Shore Channel  | 20                |
| North Branch Chicago River | 59                |
| Chicago River              | 18                |
| South Branch Chicago River | 48                |
| Total                      | 170               |

#### CSO Treatment Process Train for Cost Estimation Purposes



## **CSO Study Results**

 Due to site limitations only 105 out of 170 potential sites can be used for CSO treatment

AFCOM

- Total treatment capacity of 105 sites
  = 2009 mgd
- Capital cost I \$900 million
- Annual cost I \$3.8 million

## **Schedule Issues**

- End-of-Pipe CSO Treatment is an "Interim" Measure
- Potential Implementation Schedule
  - Preliminary Design 2-3 years Detailed Hydraulic Analysis Detailed Site Surveys
  - Final Design
  - Construction

1-3 year <u>3-5 years</u> Total 6-11 years (2012-2017) McCook Reservoirs scheduled to be Done by 2015 AECOM

#### Implementation Issues

- Land Acquisition
- Brownfield Problems
- Public Acceptance

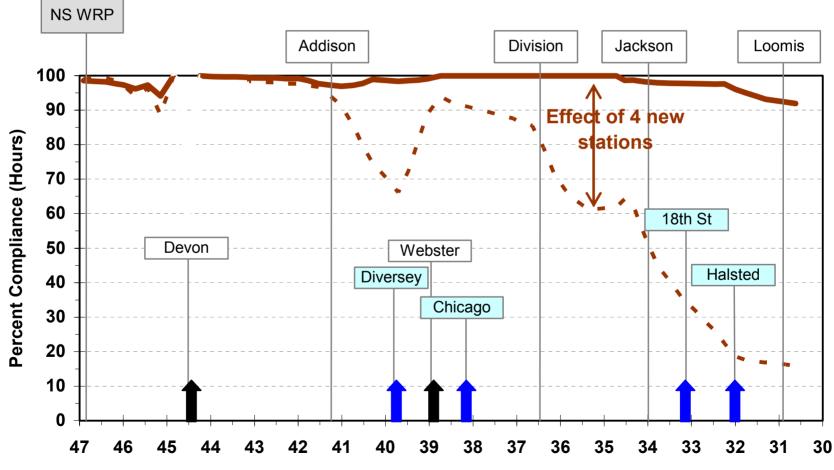
Development of a Framework for an Integrated Water Quality Strategy for the Chicago Area Waterways, May 18, 2007

## TM-4WQ Supplemental Aeration of NBCR and SBCR

CTE



## Supplemental Aeration of NBCR and SBCR – TM – 4WQ


- Locate and size supplemental aeration stations on NBCR nad SBCR
- Stream target
  - 90% compliance with D.O. concentration of 5 mg/l
- Planning level costs for potential supplemental aeration technologies

## Supplemental Aeration Marquette Model Runs Marquette Model Runs

 With Operation of existing Devon and Webster In-Stream Aeration Stations and Target of 90% Compliance with Minimum D.O. of 5 mg/l; 4 New Aeration Stations Needed:

| Waterway | Location                | Aeration Capacity       |
|----------|-------------------------|-------------------------|
| NBCR     | Diversey                | 30 g/s (5,700 lbs/day)  |
| NBCR     | Chicago                 | 30 g/s (5,700 lbs/day)  |
| SBCR     | 18 <sup>th</sup> Street | 30 g/s (5,700 lbs/day)  |
| SBCR     | Halsted                 | 80 g/s (15,200 lbs/day) |
|          |                         |                         |

#### Supplemental Aeration of North and South Branches of Chicago River, Percent of Hours Complying with 5 mg/l Criterion, All Time Periods



**River Mile** 

#### **Opinion of Probable Costs** – Capital Cost

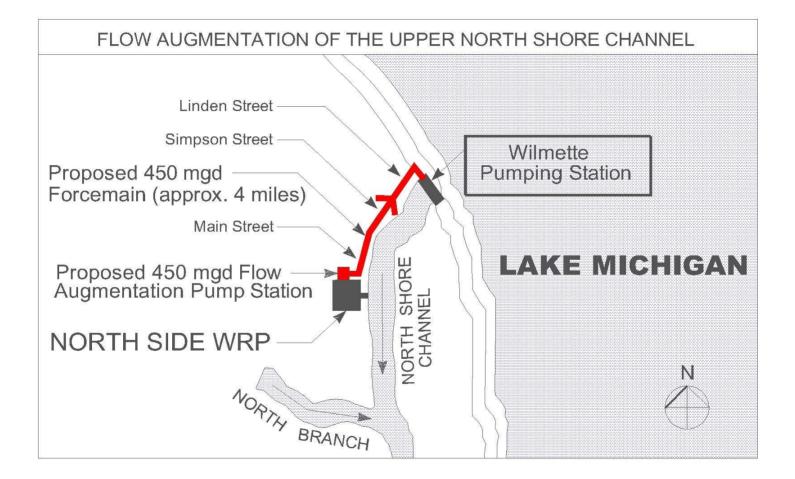
- \$28.9 Million \$59.1 Million
- Annual O&M Costs
  - \$.449 Million \$2.42 Million
- Total Present Worth
  - \$38.7 Million to \$116 Million

| Cost of Four Supplemental Aeration Stations on NBCR and SBCR |                  |               |                        |  |
|--------------------------------------------------------------|------------------|---------------|------------------------|--|
|                                                              | Total<br>Capital | Annual<br>O&M | Total Present<br>Worth |  |
| U-Tubes                                                      | \$29.8           | \$.449        | \$38.7                 |  |
| SEPA                                                         | \$59.1           | \$2.86        | \$116                  |  |
| Ceramic Diffusers                                            | \$28.9           | \$1.02        | \$49.3                 |  |
| Jet Aeration                                                 | \$51.2           | \$2.42        | \$99.5                 |  |

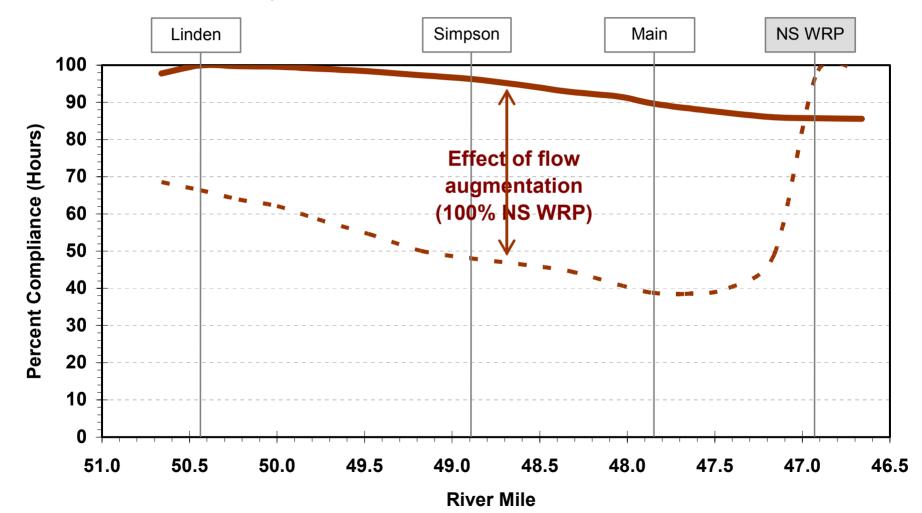
## TM-5WQ Study of Flow Augmentation of the UNSC

CTE




# Flow Augmentation of the UNSC – TM – 5WQ

- Via force main bring North Side WRP effluent upstream to Wilmette lock
- Two options
  - No aeration of force main
  - Aeration of force main
    - Raise D.O. from approximately 6mg/l to saturation


 Stream D.O. Target: 90% compliance with D.O. of 5 mg/l

## Flow Augmentation Without Aeration of Transferred Flow

CTE

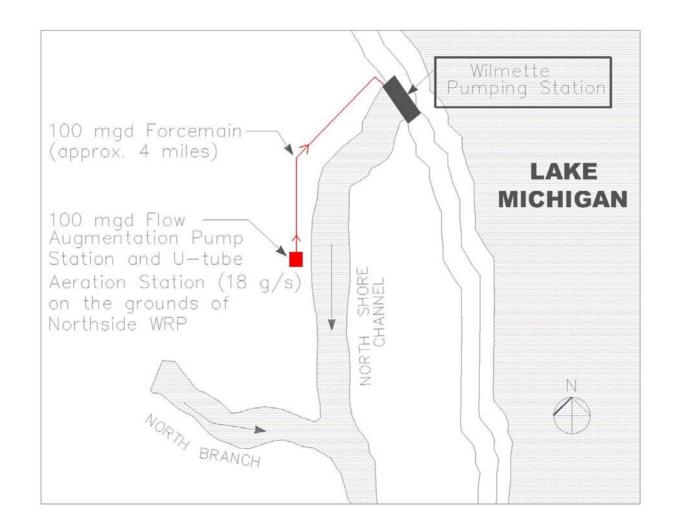


#### % Compliance With Minimum 5 mg/l Waterway Dissolved Oxygen Concentration for 100% Flow Augmentation from North Side WRP, All Time Periods

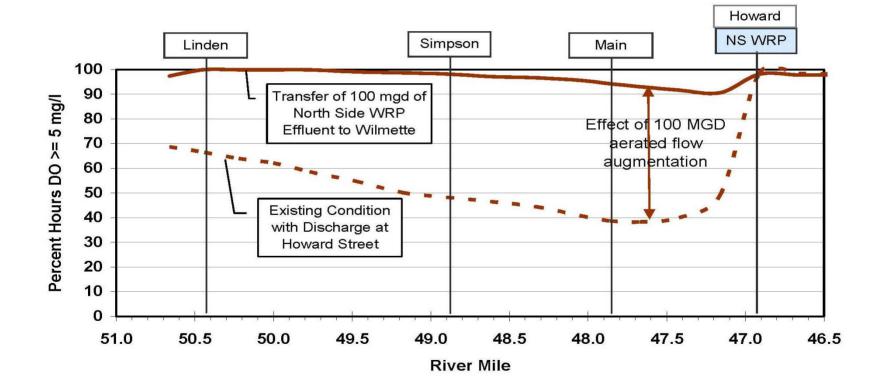




### **Cost of Flow Augmentation of Upper NSC** (Without Aeration of Transferred Flow)


| Capital Cost(\$) | Annual<br>Cost(\$) | Total Present<br>Worth(\$) |
|------------------|--------------------|----------------------------|
| \$394,000,000    | \$2,700,000        | \$447,000,000              |
|                  |                    |                            |

## Flow Augmentation <u>With</u> Aeration of Transferred Flow


CTE



# Flow augmentation of the Upper North Shore Channel with aeration of the transferred flow



#### % Compliance with Minimum 5 mg/l Dissolved Oxygen for 100 MGD of Aerated Flow Augmentation, All Time Periods



# Flow Augmentation of UNSC With Aeration of Force Main

- Capital costs approximately \$60 million
- Annual costs approximately \$0.8 million
- Total present worth approximately \$75 million

# TM-6WQ Flow Augmentation and Supplemental Aeration of Bubbly Creek

AECOM

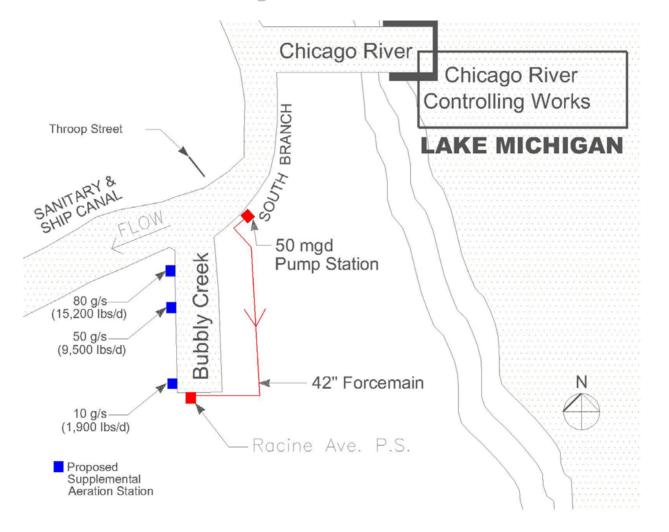
CTF



# Flow Augmentation and/or Supplemental Aeration of Bubbly Creek – TM – 6WQ

#### Flow augmentation

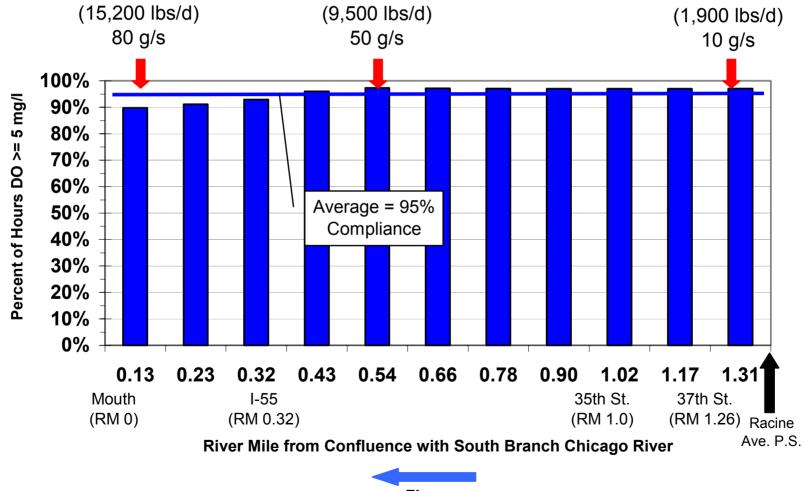
- Withdraw water from SBCR at Throop Street
- Bring water to headwaters of Bubbly Creek
- Two options
  - ✓ Aeration of Force Main
  - ✓ No Aeration of Force main
- Supplemental aeration
  - If necessary, locate supplemental aeration stations on Bubbly Creek


– D.O. Target – 90% compliance with 5 mg/l of D.O.

# "Best" Scenario for Bubbly Creek

AFCOM

- Three aeration stations on Bubbly Creek
  - 1) 15,000 lbs/day at mouth
  - 2) 9,500 lbs/day at midpoint
  - 3) 1,900 lbs/day at headwaters
- Flow Augmentation
  - 50 MGD pump station on SBCR
  - 2 mile force main to headwaters of Bubbly Creek
  - No aeration for Force Main


# Flow Augmentation & Supplemental Aeration of Bubbly Creek



**AECOM** 

#### Flow Augmentation (50 mgd) snd Supplemental Aeration of Bubbly Creek at 3 locations, Percent of Hours Complying with 5 mg/l Dissolved Oxygen Criterion, For All Simulated Time Periods in the Marquette Model

**AECOM** 



Flow



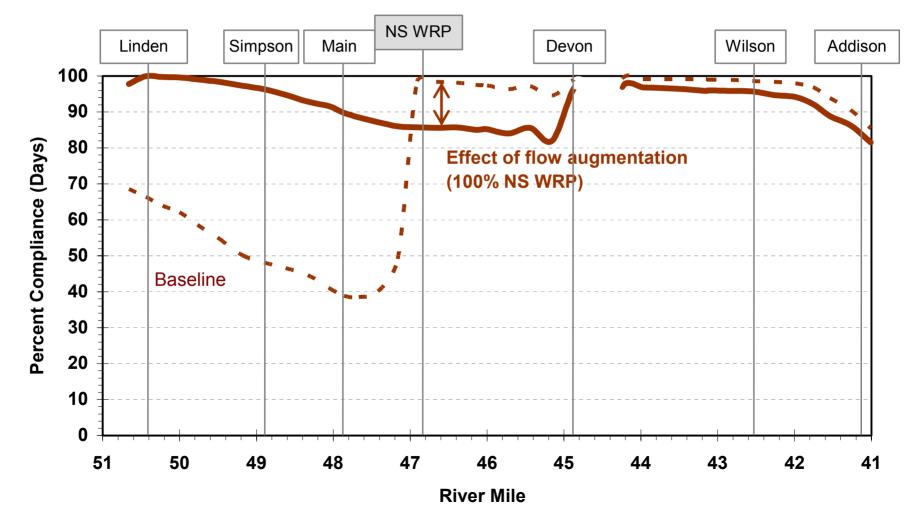
- Costs for Flow Augmentation and Supplemental Aeration of Bubbly Creek
- Capital Costs of 60.4 million to \$102.9 million
- Annual costs of \$1.0 million to \$2.8 million
- Four potential supplemental aeration technologies
  - U tubes
  - Sidestream elevated pool aeration
  - Ceramic diffusers
  - Jet aeration

# TM-7WQ Development of a Integrated Water Quality Strategy for the Chicago Area Waterways

AECOM

CTF

#### AECOM


# **Need For Integrated Strategy**

- Previous studies assumes only single option was operating on the CAWS
- Previous studies did not include all portions of CAWS
- Water quality management options can be combined to meet water quality objectives

#### Flow Augmentation (100%) for the Upper North Shore Channel Reduces Compliance below the North Side WRP

**AECOM** 

Percent of Hours Complying with 5 mg/l Criterion, All Time Periods



# Suggested Integrated Water Quality Development

- Task 1 Develop long list of potential water quality management options
- Task 2 Prepare short list of water quality management options
- Task 3 Audit water quality model
- Task 4 Model modifications and/or improvements
- Task 5 Evaluate short list of water quality management options
- Task 6 Prepare final water quality strategy

Task 1 – Develop long list of potential water quality management options

AECOM

- Work with stakeholders
- Workshop approach
- Use results of TM-1WQ to TM-6WQ
- Finalize water quality targets
- Look at variety of options
  - Sediment Remediation
  - Completion of TARP



# Task 2 – Prepare short list of potential water quality management options

- Matrix Evaluation
  - Economic Factors
  - Non-Economic Factors
- Workshop Approach

# Task 3 – Audit Models

### Review Available Models

- U of I Hydraulic Model of TARP Tunnels and Reservoirs
- U of I Water Quality Model
- Marquette University Water Quality Model

## Consider Need for Collection System Model

# Task 4 – Model Modifications and Improvements

AECOM

### – If Necessary

- Revise calibration and verification
- Add additional data bases
- Additional sampling and analysis
- Sensitivity analysis



# Task 5 – Evaluate Short Listed Water Quality Management Options

- Sizing of Options
  - Use of Model

# – Simulate Water Quality Benefits

- Use of Model
- Develop Study Level Costs
- Matrix Criteria and Weights
- Workshop

## Task 6 – Prepare Final Water Quality Management Strategy

**AECOM** 

– Workshop Approach



# **Conclusion**

Much more work needs to be done to determine what combinations of water quality management options offer the most cost-effective means to meet water quality objectives.

# Questions & Answers

AECOM

CTE