

Biosolids Use in Parkland Development at the Former U.S. Steel Southworks Brownfield Site

Lakhwinder Hundal, Ph. D.

Overview

Background

- Beneficial Uses of The District's Biosolids
- USX site A Steel Mill Slag Brownfield
- Development Plans for The USX Site
- Problems and Solutions

Research and Demonstration Project

- Amendments Evaluated
- Turfgrass and Trees Evaluated
- Parameters Monitored
- Summary and Conclusions

Biosolids use in the City of Chicago

- Chicago Department of Environment (DOE) Policy
 - Chicago Park District's (CPD) Needs

Beneficial Use Program

Beneficial Use of Aged, Air-dried EQ Biosolids

- Biosolids distributed under Controlled Solids Distribution permit
- Illinois Environmental Protection Agency (IEPA) approval through a user information form for each project
- IEPA requires biosolids monitoring and management practices to ensure the protection of environmental and public health
- Biosolids Utilization and Soil Science staff provides technical support to all biosolids users

Potential Beneficial Uses

- Soil Amendment or Soil Conditioner
 - Improve soil fertility or soil tilth
- Substitute for Commercial Fertilizers
 - Top dressing golf courses

Examples: Construction of parks, golf courses, athletic fields

Example of Projects in Chicago: Saint Rita High School; De LaSalle High School; Chicago River Sculpture Park **Eden Place Nature Center; Harborside International Golf Club**

Eden Place Nature Center Before Using Biosolids

Two Truck Loads of Biosolids Transformed the Site Completely!

Harborside International Golf Club

- 453-acre site including two 18 hole courses and golf academy
- Over 500,000 dry tons of District's biosolids used in final cover of landfill
- Hosted Georgia-pacific senior PGA pro Am and SBC senior open
- Voted third best municipal golf course in USA by the golf week magazine

Harborside International Golf Club

Background – USX Brownfield

- **Brownfields** are abandoned and under-utilized properties that plague many metropolitan cities in the U.S.
 - **Example:** USX Site a 570-acre steel mill slag brownfield in metropolitan Chicago
- USX site, formerly known as U.S. Steel Southworks, is located near 86th Street and South Shore
- Steel mill ceased operations in late 1970s
- The site was created by filling Lake Michigan with slag, iron ore, and construction rubble

Development Plans for USX

Chicago Park District

Extend the lakefront park system

Convert 120 acres of slag into parkland

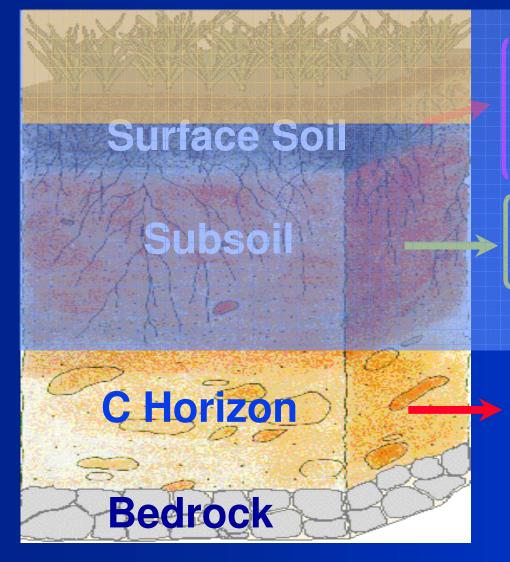
City of Chicago

Residential development

Commercial/industrial development

Create some green space - landscaped area

Top View of USX Site


Cross-Sectional View of USX Site

Problems

• Slag is poorly suited to support any type of vegetation because it has Poor fertility and productivity High porosity Extremely heterogeneous nature Poor water holding capacity

A Conceptual Soil Profile

Light texture, high organic carbon Root zone, highly fertile Stores moisture, plant nutrients

Zone of clay accumulation Regulates water movement

Parent material

Solutions

Slag needs to be capped with topsoil to support any plant growth

Large quantities of topsoil needed
 Need 1-ft thick cap for Turfgrass

Need 4-ft thick cap for Trees

Require \approx 387,000 cu. yard Topsoil for making 2-ft cap on a 120-acre slag site

Cost @ \$24 per cu. yard = \$9.7 million

Solutions

The Cost Can Be Reduced?

By using by-products such as BIOSOLIDS

Use of 25:75 Biosolids:Topsoil mixture could save \$2.4 million

Why Biosolids?

Locally available – abundant supply

No cost

Desirable properties – nutrients, organic matter

PHYSICAL & CHEMICAL PROPERTIES OF DISTRICT BIOSOLIDS AND TOPSOIL SOLD IN CHICAGO AREA

Parameter	Unit	Biosolids	Topsoil
рН		6.0 - 7.5	5.4 – 11.3 *
EC	dS/m	3 – 10	0.5 – 4.2 *
Organic C	%	15 – 25	1.3 – 24.0 *
TKN	%	1.5 – 2.5	0.05 – 2.2 *
NO ₃ +NH ₃ -N	mg/kg	1,000 — 3,000	1.0 – 2,000 *
Total P	%	1.5 – 2.5	0.02 – 0.3 *
Bulk Density	g/cm ³	0.7	1.18
Permeability	ln/hr	17 – 30	0.07

*Data from R&D Report Number 03 – 19.

The USX Site Location

Research and Demonstration Project

COOPERATIVE AGENCIES

AGENCY	DEPARTMENT
District	R&D and M&O
City of Chicago	Planning and Development Dept. of the Environment Streets and Sanitation
Chicago Park District	Landscape Architecture
USX Corporation	Realty Development

Project Goals

- Demonstrate that the quantity of expensive topsoil needed for capping the slag at USX site can be reduced by using biosolids
- Demonstrate the benefits of using biosolids for establishing quality turf and trees at USX
- Demonstrate that use of biosolids at the USX site is environmentally safe

- Project was designed to test and compare effectiveness of:
 - Topsoil
 - Biosolids
 - 50% Biosolids/50%Topsoil mixture
 - 25% Biosolids/75% Topsoil mixture

Evaluated 4 turfgrass mixtures

- Standard CPD mix 70% Kentucky bluegrass, 15% creeping red fescue, 10% perennial rye, 5% redtop
- Standard MWRDGC mix 70% tall fescue, 30% Kentucky bluegrass
- IDOT 1 B mix 75% tall fescue, 15% perennial rye, 10% creeping red fescue

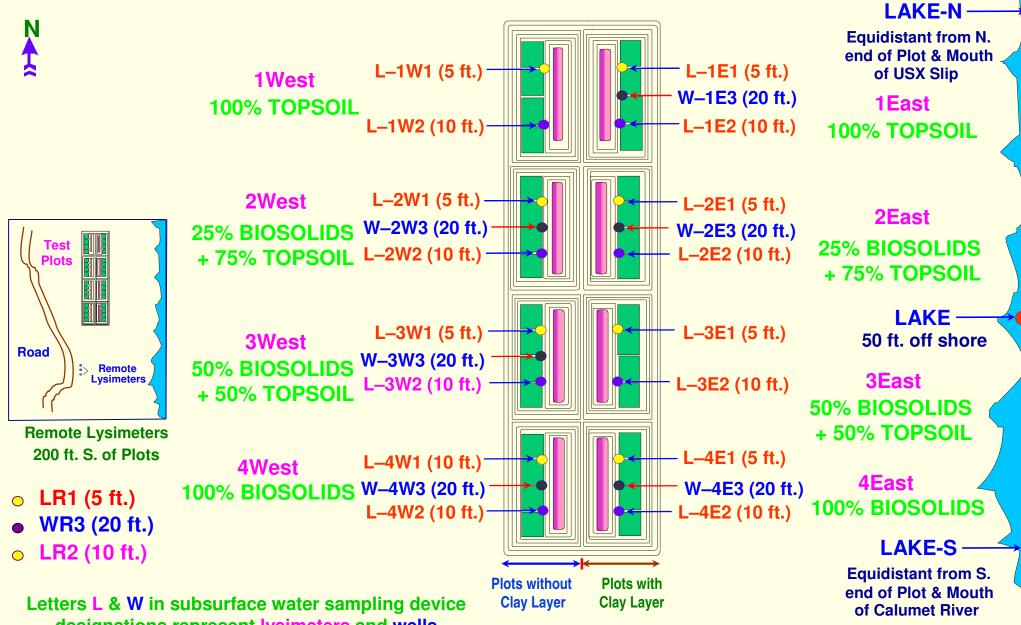
VIDOT 1 mix – 50% perennial rye, 30% Kentucky bluegrass, 20% creeping red fescue

Tested Six Shade Tree Species

- Maple v. Marmo
- **White Ash v. Autumn Purple**
- Honey Locust v. Skyline
- Cottonless Cotonwood v. Siouxland
- Red Oak
- Elm v. Homestead

Tested Five Ornamental Tree Species

- > Amur Maple
- Apple Serviceberry
- > Thornless Cockspur Hawthorn
- Crabapple v. Zumi
- Crabapple v. Donald Wyman



- **Subsurface Water Sampling Devices**
- **>** Installed 9 lysimeters, 5-ft beneath the surface
- **>** Installed 9 lysimeters, 10-ft beneath the surface
- Installed 7 wells, 20-ft beneath the surface

Lake Michigan Water Sampling

- Lake water samples taken from 3 locations 50-ft off shore corresponding to north end, midpoint, and south end of plots
- The Project was Approved By The IEPA

Plot Layout and Water Sampling Locations

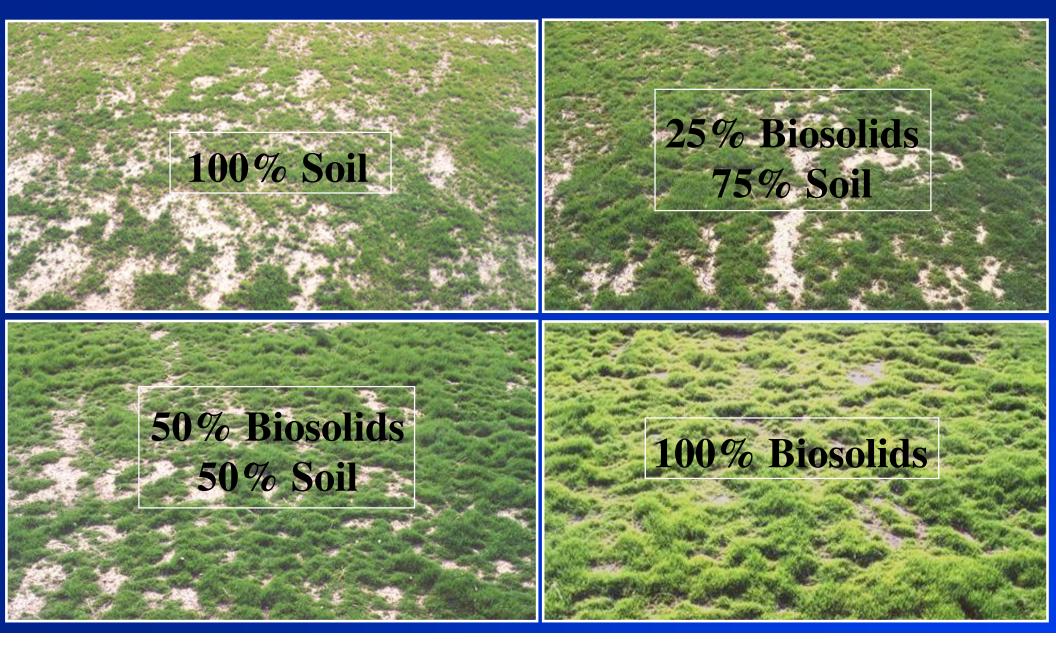
designations represent lysimeters and wells

Plot Set-Up

Installation of Water Sampling Devices

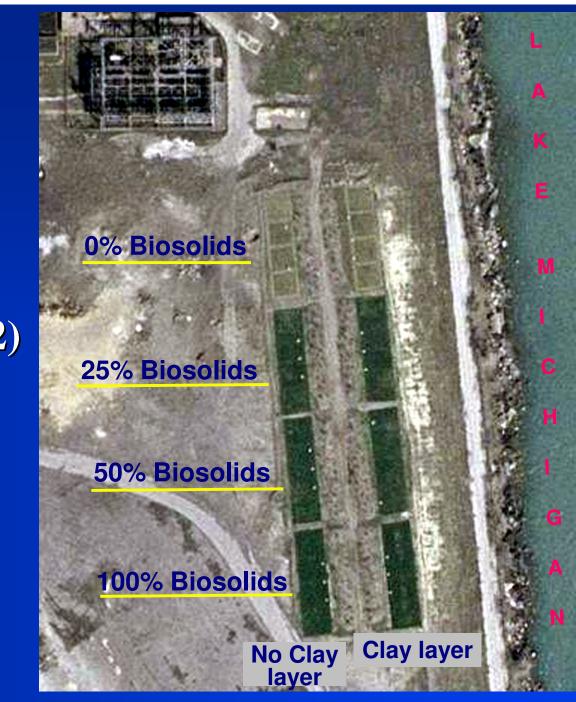
Plots Seeded in Fall 2000

Monitoring Schedule


Sampling Type	Frequency	Parameter
Lysimeters, Wells, & Lake	Monthly Quarterly	Nutrients, Fecal Coliform, Trace Elements, Soluble Salts, Organic Priority Pollutants
Soils	Twice Annually	Nutrients, Trace Elements, Organic Carbon, pH, EC
Turf	Twice Annually	Growth, Macro/Micro Nutrients, Trace Elements, Turf Performance (appearance, color, coverage)
Trees	Annually	Growth, Macro/Micro Nutrients, Plant performance (height, stem diameter)

Soil Fertility Status of The USX Plots

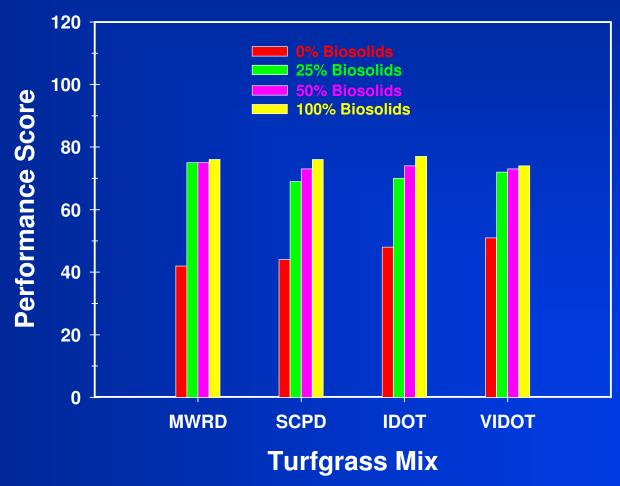
	_	USX Plots			Prairie
Parameter	Unit	Topsoil	25% BS	100% BS	Soils
Organic C	%	2.3	6.2	15.7	4.6
рН		7.4	7.1	6.4	6.2
EC	dS/m	0.3	0.6	2.0	0.13
TKN	mg/kg	1,575	4,780	13,340	4,150
InorgN	mg/kg	5.2	48.4	227.2	6.9
Avail. P	mg/kg	20	245	520	21


BS = Biosolids

Research Plots About A Month Later

An Aerial View of The USX Plots

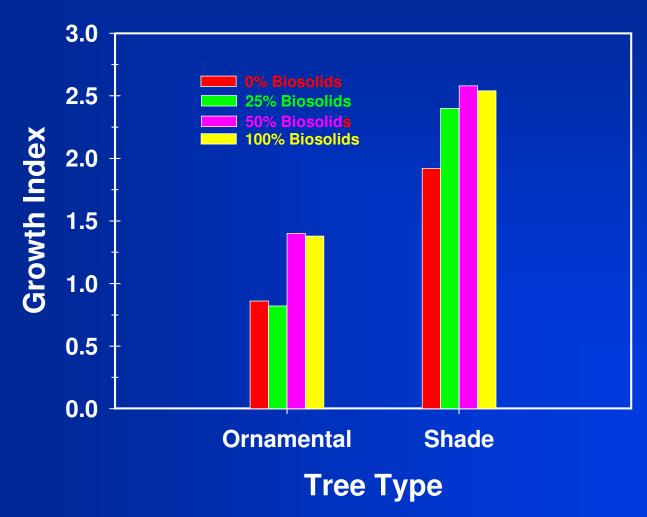
(Photo taken on 4/10/02)



Research Plots In Late Summer 2003

Turfgrass In Late Summer 2003

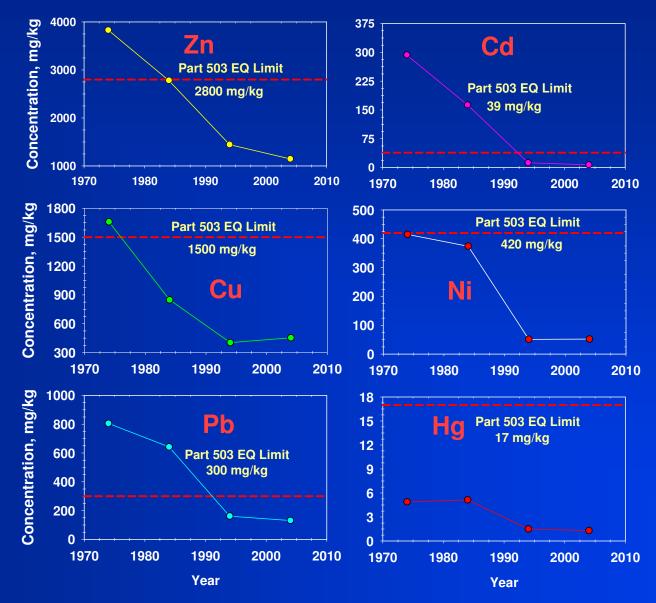
Performance of Turfgrass Mixes


Performance Score = 0.75 x turf density score + 0.25 x turf color quality score

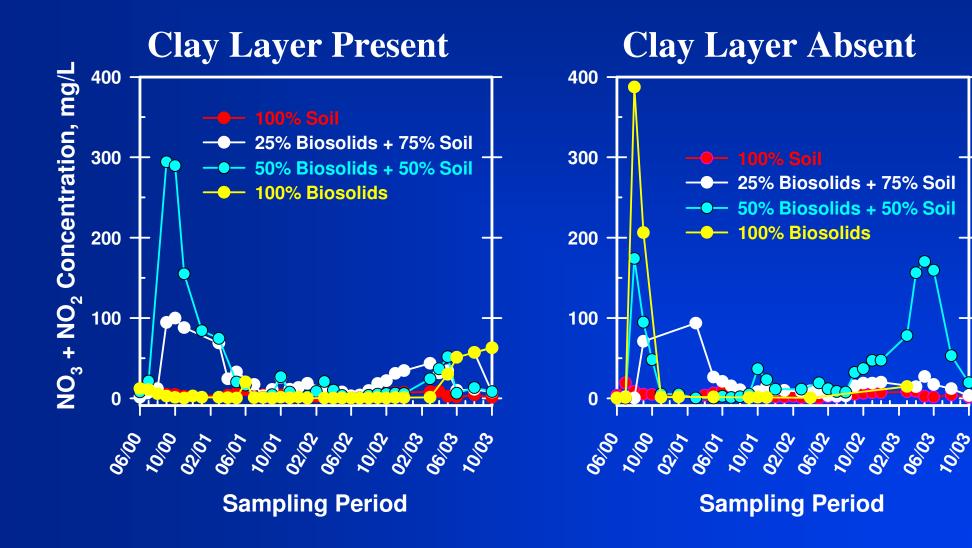
Performance of Ornamental and Shade Trees

Growth Index = Tree trunk diameter (ft) x tree height (ft)

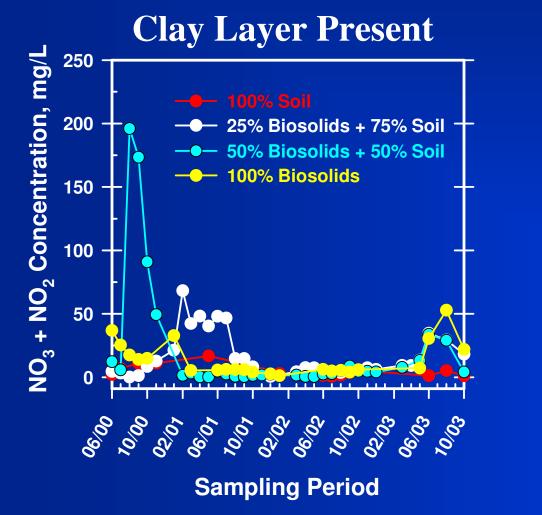
Trace Metals in Leaves of Ornamental Trees from the USX Plots and a Local Park

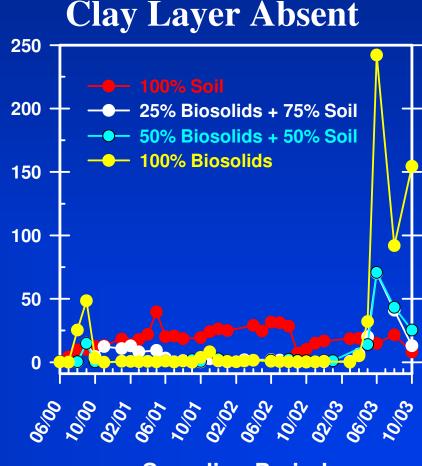

		USX Plots		
Parameter	Topsoil	25% BS	100% BS	Local Park
	mg/kg			
Zn	26	29	36	31
Cd	0.03	0.09	0.19	0.07
Cu	7.8	4.7	6.3	8.9
Cr	0.74	0.83	0.78	0.55
Ni	0.95	0.78	1.49	1.61
Pb	1.06	1.19	0.82	0.2
Мо	0.68	1.09	1.64	0.9

Trace Metals in Leaves of Shade Trees from the USX Plots and a Local Park

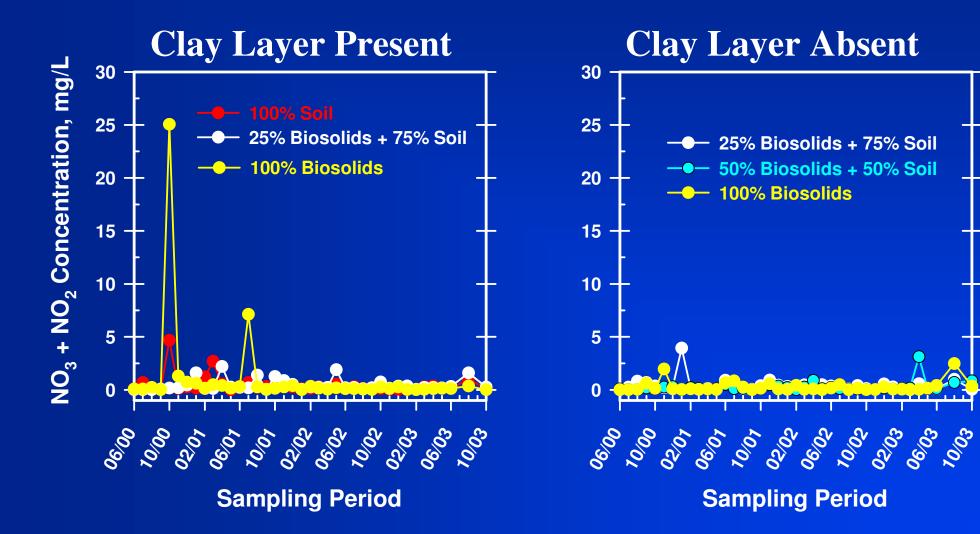

	USX Plots			
Parameter	Topsoil	25% BS	100% BS	Local Park
	mg/kg			
Zn	83	81	99	208
Cd	0.83	0.85	1.25	5.83
Cu	9.6	5.8	6.7	10.5
Cr	0.69	0.71	0.60	0.72
Ni	1.24	0.78	0.84	0.91
Pb	2.15	1.67	0.98	1.10
Мо	0.94	1.47	1.42	0.90

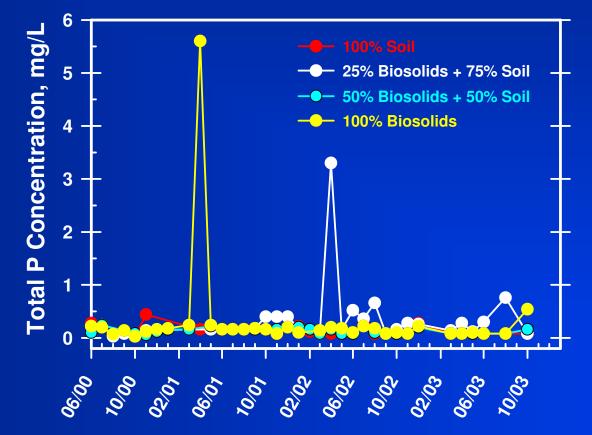
Trace Metals in The District Biosolids & Part 503 EQ Limits				
	Mean Biosolids C	Part 503		
Parameter	Stickney SWRP	Calumet SWRP	EQ Limit	
	mg/kg			
Zn	765	1023	2,800	
Cu	381	397	1,500	
Cd	3	4	39	
Ni	61	35	420	
Pb	126	114	300	
Мо	17	15	75	
Hg	0.6	0.6	17	
As	9	7	41	
Se	2	6	100	


Trends in Trace Metals Concentrations Since Enactment of The Clean Water Act of 1972



NO₃+NO₂ in 5-ft Deep Lysimeters

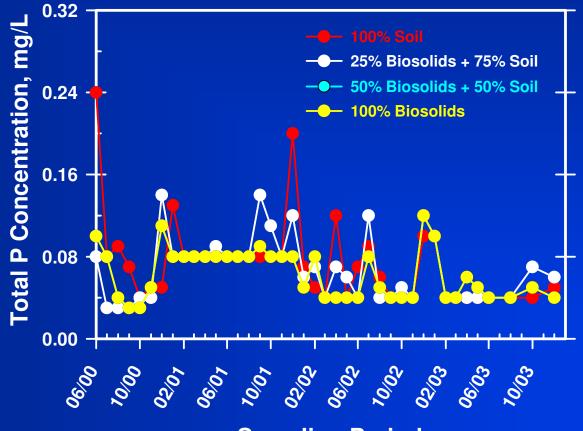

NO₃+NO₂ in 10-ft Deep Lysimeters


Sampling Period

NO₃+NO₂ in 20-ft Deep Wells

Total P in 5-ft Deep Lysimeters

Clay Layer Present


Sampling Period

Total P in 10-ft Deep Lysimeters

Clay Layer Present 0.5 Total P Concentration, mg/L 25% Biosolids + 75% Soil 0.4 50% Biosolids + 50% Soil 100% Biosolids 0.3 0.2 0.1 0.0 00/00 **Sampling Period**

Total P in 20-ft Deep Wells

Clay Layer Present

Sampling Period

Trace Metals in the Lake and 5-ft Deep Lysimeters in the Plots

Parameter	Lake	Slag	Soil	100% Biosolids
			- mg L ⁻¹	
As	0.045	0.107	0.160	0.141
Cd	0.004	0.009	0.014	0.007
Cr	0.005	0.016	0.058	0.027
Cu	0.006	0.202	0.228	0.077
Hg (µg/L)	0.021	0.088	0.080	0.090
Ni	0.019	0.314	0.024	0.100
Pb	0.087	0.087	0.160	0.073
Zn	0.012	0.279	0.080	0.048

Organic Priority Pollutants In The Lysimeters

- Water samples were analyzed for 111 organic Priority Pollutants.
- Most of the compounds detected were below the analytical detection limits except:
 - Bis(2-ethylhexyl)phthalate = 380(2) and 6,133(1) ppb
 - Phenanthrene
 - Anthracene
 - Fluoranthene
 - Phenol
 - Methyl Chloride
 - Methylene Chloride
 - 1,1,1-Tricholoroethane

- = 10(1) and 50(2) ppb
- = 14(1) ppb
- = **27(2) ppb**
- = 129(2), 79(2) and 167(3) ppb
- = 6(2) ppb
- = 4(1) ppb
- = 2(1) ppb

Summary And Conclusions

Benefits

- Mixtures of biosolids and soil were very effective for capping slag materials to establish vegetation.
- Inclusion of biosolids in the soil cap significantly improved its fertility and productivity.
- Turfgrass and trees performed better in the plots amended with biosolids and soil mixtures.
- Use of 25% biosolids + 75% soil mixture for capping slag materials for vegetating a 120-acre parcel would save \$2.4 million.

Summary And Conclusions

Little or No Environmental Impact

- Trace metals in plant tissues from the soil and biosolids plots and a local park were identical.
- Use of biosolids did not result in elevated levels of organic priority pollutants, trace metals, and fecal coliforms in the subsurface water.
- Biosolids use to cap the slag is environmentally safe and had little impact on the subsurface water quality and no impact on the lake water quality.

Next Step!

Biosolids Use in the City of Chicago

- A large market for the District's biosolids is available within the City of Chicago
- The City of Chicago DOE policy dictates that any material (soil or biosolids) used in the city must meet TACO
- Currently, the District is working with DOE to address biosolids/TACO issue

TACO?

It's not lunch time, yet!

Special Requirements

TACO – Tiered Approach to Corrective Action Objectives

- Illinois Administrative Code Title 35 Part 742
- Voluntary program of clean-up objectives for contaminated sites in Illinois (results in issuance of NFR letter)
- Based on potential human exposure to soil and groundwater due to anticipated site redevelopment
- Compliance with any of the 3 tiers of standards:
 - Tier 1 Default, based on worst case scenarios
 - Tier 2 Based on site specific models
 - Tier 3 Based on "Site Specific Risk Assessment"

TACO Standards

- Standards established for over 140 pollutants
- Inorganics 24
- Volatile organic compounds 37
- Semi-volatile organic compounds 43
- Polychlorobiphenyls (PCBs) 6
- Organochlorine pesticides 23
- Other organic compounds 7

TACO Analysis of Biosolids

General Findings

- Nearly 40 pollutants in TACO have levels below the laboratory reporting limits
- Background soil levels of many pollutants exceed the TACO limit
- TACO risk assessment is not specific to biosolids and is very conservative
- Tier 1 Residential Soil Ingestion Pathway
 Only 8 out of ~140 listed pollutants exceeded TACO limit

Biosolids Risk Assessment

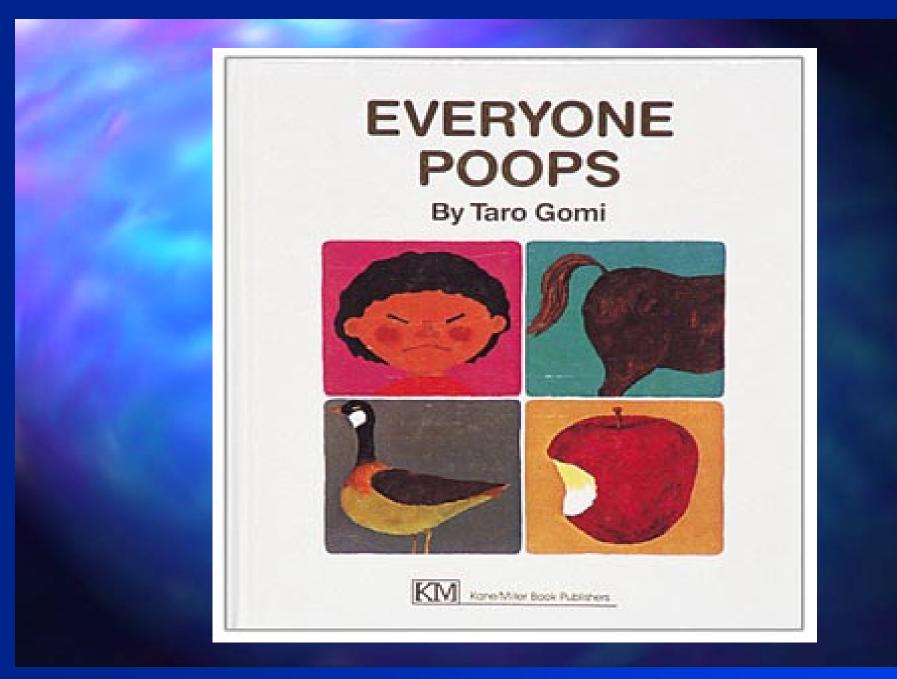
Risk Assessment Model Evaluated

7 Potential Land Use Scenarios

Athletic fields; Playgrounds; Picnic areas; Parking lots Community gardens; Multiuse trails; Park buildings

5 Potential Receptors

Park District employee; Construction worker; Landscaping site preparation worker; Landscaping maintenance worker; Recreational visitor (both child and youth)


3 Exposure Pathways

Soil ingestion; Inhalation of fugitive dust; Dermal contact with soil

Biosolids Risk Assessment Results

Evaluated 7 Polycyclic Aromatic Hydrocarbons (PAHs)

PAH	Conc., mg/kg	Limit, mg/kg
 Benzo[a]anthracene 	0.7 – 5.7	4.7
Benzo[a]pyrene	1.1 – 7.3	1.3
 Benzo[b]fluoranthene 	1.1 – 6.1	4.7
 Benzo[k]fluoranthene 	1.7 – 11	47
Chrysene	1.3 – 8.5	470
 Dibenzo[<i>a,h</i>]anthracene 	<0.8 - <2.2	0.47
 Indeno[1,2,3-cd]pyrene 	0.9 - 4.5	4.7

Questions?