

#### "RISK ASSESSMENT OF HUMAN HEALTH IMPACTS OF DISINFECTION VS. NO DISINFECTION OF THE CHICAGO AREA WATERWAYS SYSTEM"

by Chriso Petropoulou, Ph.D., P.E. Keith Tolson, Ph.D.



17 November 2006 04-RFP-15 Requisition No. 1138814

The GeoSyntec Team

# BACKGROUND

IEPA is conducting a Use Attainability Analysis (UAA) on the Chicago Area Waterways

IEPA will determine the need for bacterial water quality standards

> This District study is done to assist IEPA in making its determination

# **STUDY OBJECTIVES**

Conduct a comparative risk assessment of the human health impact of not disinfecting versus disinfecting the effluents from the Calumet, North Side and Stickney Water Reclamation Plans (WRPs):

- 1. Quantify the decrease if any in the incidence of disease to a representative recreational user of the CWS if effluent disinfection is initiated
- 2. Quantify the decrease if any in the incidence of disease that could be predicted for the entire number of estimated recreational users of the CWS if effluent disinfection is initiated

# **PATHOGEN SOURCES IN THE CWS**

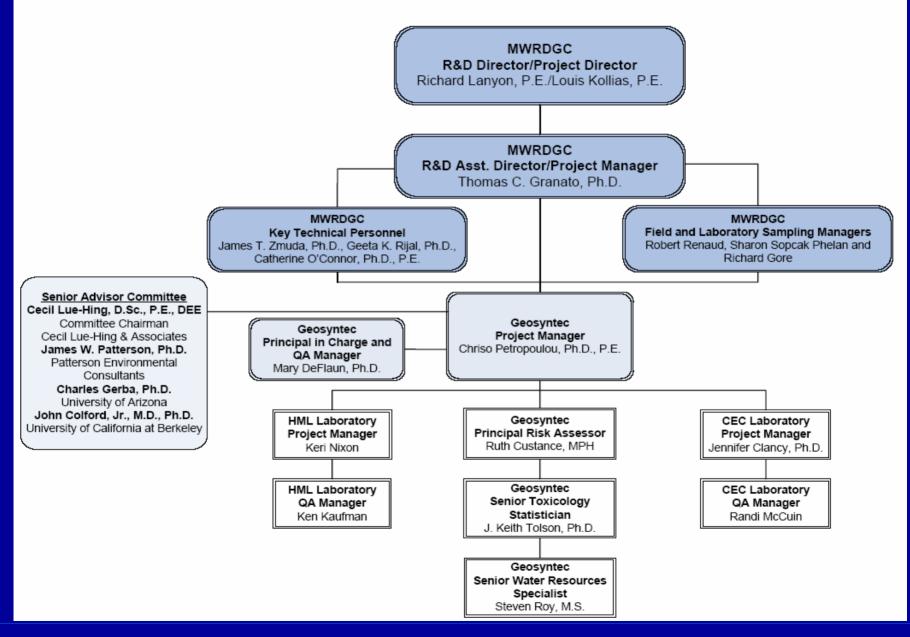
Sources that contribute to the presence of pathogens in the waterways include:

- **1.** Faulty sewage disposal systems
- 2. Combined sewer overflows (CSOs)
- **3.** Wild and domestic animal waste
- 4. Illegal discharges to drains and sewers
- 5. Storm water runoff
- 6. Treated, but non-disinfected wastewater effluent

Source: <u>http://www.ChicagoAreaWaterways.org</u>

# WATERWAY USE

#### **Designated uses of the CWS include:**


- 1. Recreational boating
- 2. Canoeing
- 3. Fishing
- 4. Other streamside recreational activities
- **5.** Aquatic habitat for wildlife

Swimming and other primary contact recreation is <u>not</u> a designated use of the CWS

# **PROJECT STRATEGY**

- **1. Dry/wet weather effects**
- 2. Barge and boat traffic effects (such as sediment re-suspension)
- **3.** Use UAA recreational user survey data
- 4. Compile disinfection technology performance data for pathogens
- Obtain the minimal infectious dose results from the peer reviewed literature

#### **PROJECT TEAM**



### **PROJECT TEAM DISCIPLINES**

- Risk assessment
- Statistical analysis of analytical results
- Environmental microbiology
- > Virology
- > Epidemiology
- Development of sampling, analysis and quality assurance plans
- Microbial water sampling
- > Water resources
- Disinfection
- Environmental engineering
- Environmental laws and regulations

# **OVERVIEW**

Dry/Wet Weather Microbial Sampling

Microbial Characterization/Analysis

# Risk Assessment

- **1. Exposure Assessment Overview**
- 2. Dose Response Overview
- **3.** Risk Characterization Approach
- 4. Risk Assessment Results

# **DRY WEATHER SAMPLING**

- Five weekly sampling events (July-September 2005)
- Each event included sampling at North Side, Stickney, and Calumet
- Five samples were collected at each WRP :
  - Two upstream (surface and 1-meter depth)
    (composites from the left side, center and right side)
  - Two downstream (surface and 1-meter depth)
    (composites from the left side, center and right side)
  - One at the outfall (six hour composites)
- Seventy five samples were collected (five events x 15 samples per event)

### Sampling Crew Training by Dr. Gerba (University of Arizona)







# **Chicago Area Waterways**



# North Side WRP



### Stickney WRP



### **Calumet WRP**



#### **MICROBIAL TEST RESULTS**

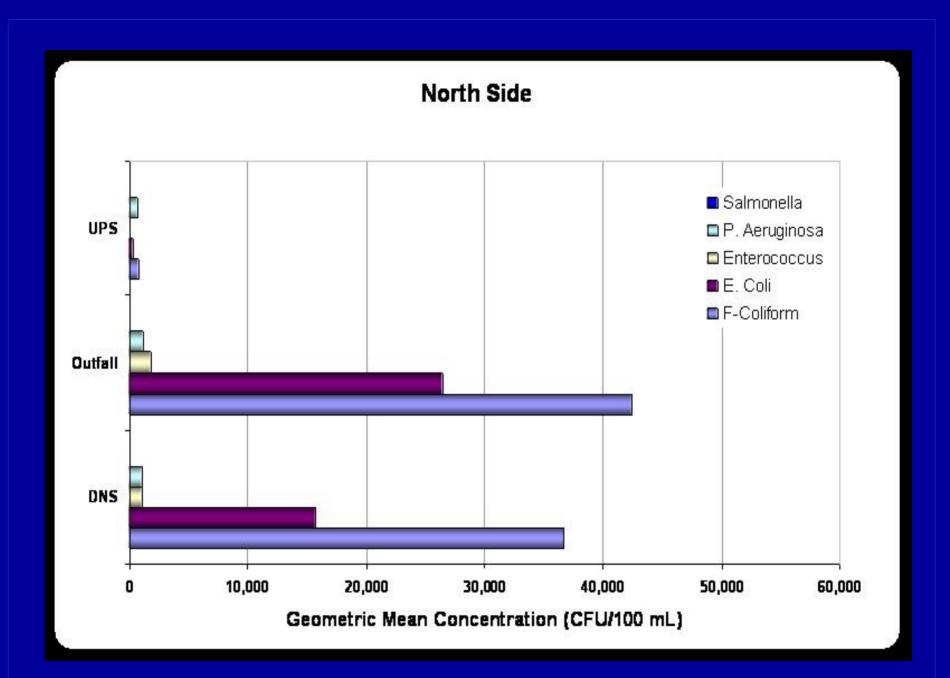
- Enteric viruses: i) total culturable viruses, (ii) adenovirus; and (iii) calicivirus
- Cryptosporidium parvum and Giardia lamblia
- Salmonella
- Pseudomonas aeruginosa
- Fecal coliforms
- Escherichia coli
- Enterococci

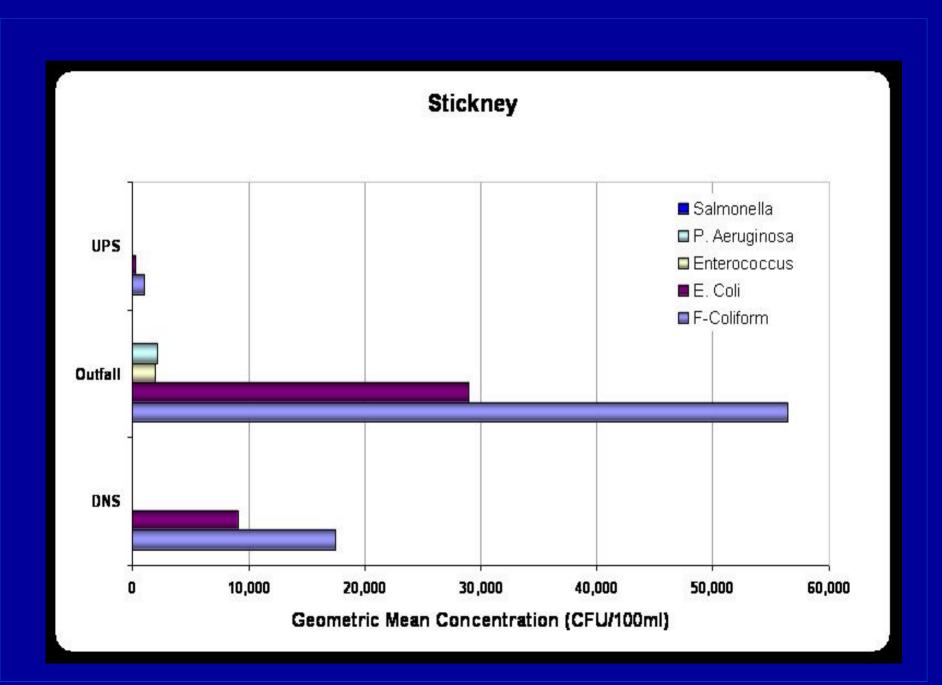
# **Summary of Protozoa Results**

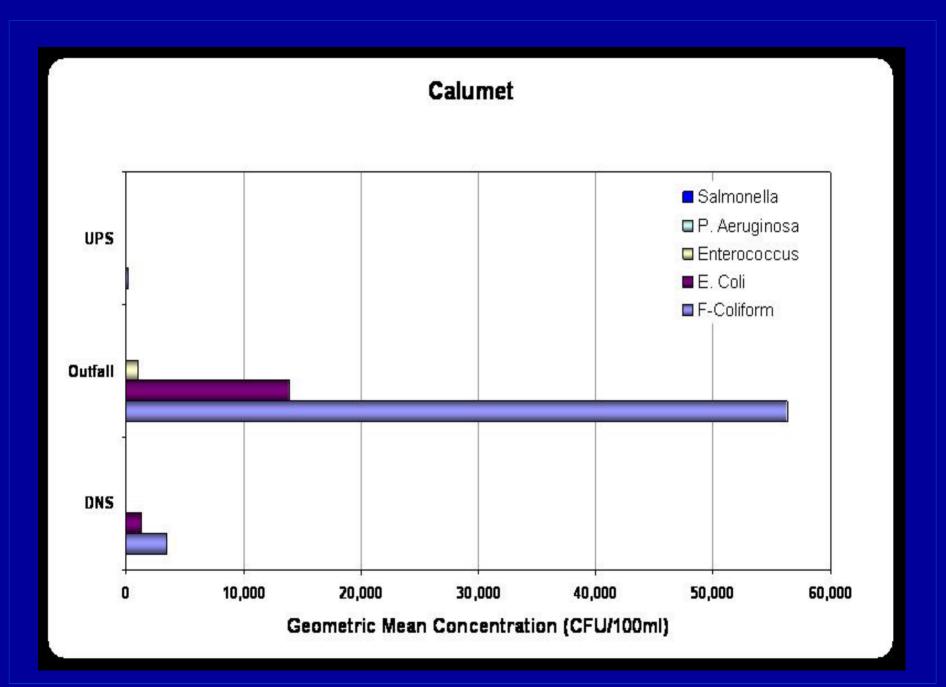
- No infectious Cryptosporidium oocysts were detected in the samples analyzed
- Most Giardia cysts found in the samples at all sites were non-viable
- Outfall samples at the Stickney and North Side WRPs contained the highest level of viable cysts
- Viable cysts were also found in upstream samples at North Side and Stickney
- Not all viable Giardia cysts are capable of causing infection

# **Virus Results**

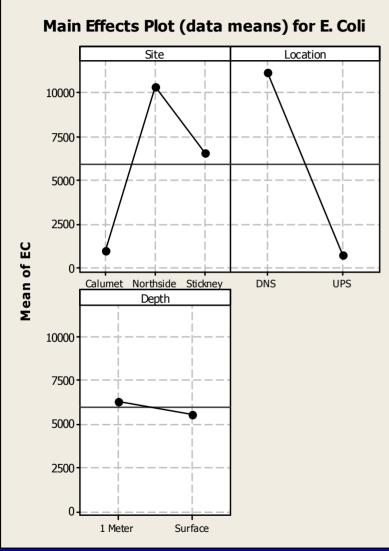
| <u>Positive (%)</u> | <u>Cell Line</u>               | <u>Virus</u>                   |  |
|---------------------|--------------------------------|--------------------------------|--|
| 23                  | BGM                            | Enteric viruses                |  |
| 56<br>41            | PLC/PRF5<br>[PCR confirmation] | Total Culturable<br>Adenovirus |  |
| 7                   | PCR                            | Calicivirus                    |  |


| Virus              | North Side                 | Stickney           | Calumet           |
|--------------------|----------------------------|--------------------|-------------------|
| Enteric            | 8/25 (29%)                 | 6/25 (24%)         | 3/25 (12%)        |
| Upstream           | 1.04-3.25MPN/100L          | 1.03-3.25 MPN/100L | 1.04MPN/100L      |
| Downstream         | 2.12 -16.07MPN/100L        | 1.02-1.03MPN/100L  | 1.04MPN/100L      |
| Outfall            | 1.33MPN/77.14L-21MPN/84.9L | <1MPN/100L         | 1.02MPN/100L      |
| Adenovirus         | <b>12/25 (48%)</b>         | <b>13/25 (52%)</b> | 6/25 (24%)        |
| Upstream           | 1.5-2.94MPN/100L           | 11-117MPN/100L     | <1MPN/100L        |
| Downstream         | 5.03-27.6MPN/100L          | 1.39-112MPN/100L   | 1.31-3.05MPN/100L |
| Outfall            | 45.1-256MPN/100L           | 8.39-36.9MPN/100L  | 7.52-15.5MPN/100L |
| <b>Calicivirus</b> | 1/25 (4%)                  | 3/25(12%)          | 1/25 (4%)         |
| Upstream           | ND                         | 181-511PCRMPN/100L | ND                |
| Downstream         | ND                         | 176 PCRMPN/100L    | ND                |
| Outfall            | 35,000 PCRMPN/100L         | ND                 | 781 PCRMPN/100L   |

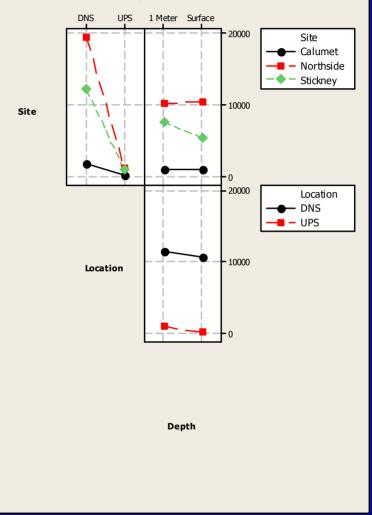

### **BACTERIA RESULTS OVERVIEW**


Geometric Means

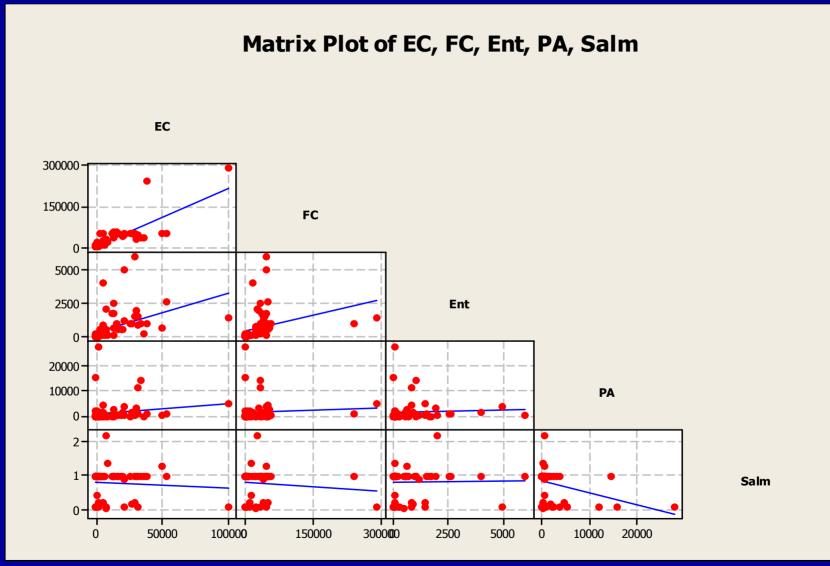
Analysis of Variance (ANOVA)
 Site: North Side, Stickney, Calumet
 Location: Upstream, Downstream
 Depth: Surface, 1 meter


Pathogen/Indicator Correlations









#### ANOVA : E. coli versus Site, Location, Depth



Interaction Plot (data means) for E. Coli

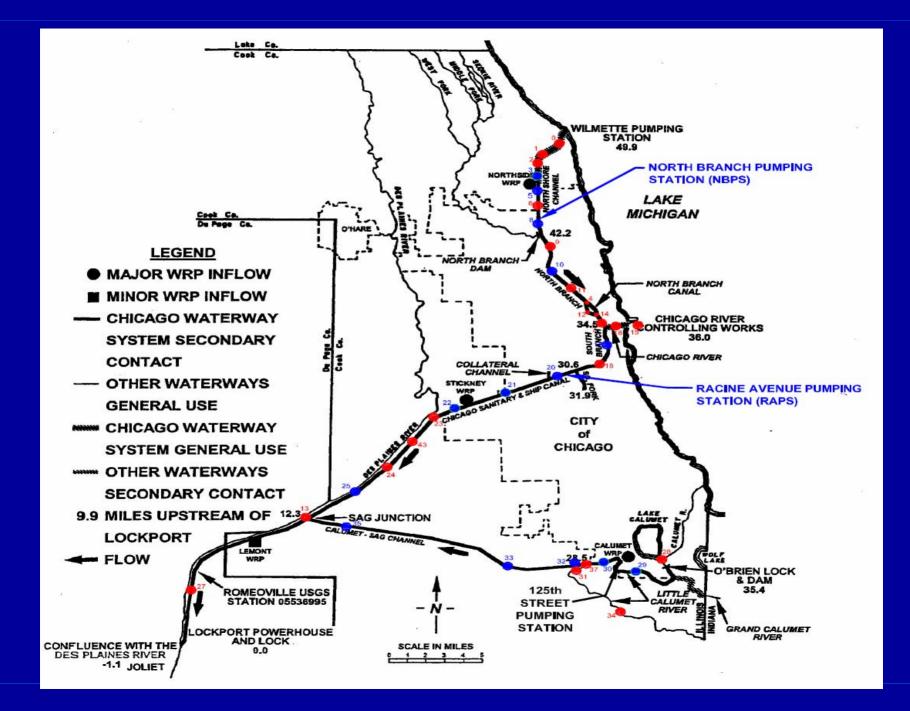


#### **Correlations Of In-Stream Bacteria Correlations**



# **SUMMARY OF BACTERIA RESULTS**

- The concentrations at North Side, Stickney, and Calumet are statistically different
- The concentrations upstream are statistically different (lower) than the concentrations downstream
- There is no statistical difference in bacteria concentrations by depth (1-meter and surface)


There is a good correlation between *E. coli* and fecal coliform concentrations

### WET WEATHER SAMPLING OBJECTIVES

- Evaluate the impact of Pumping Station CSOs and other wet weather impacts on the microbial quality of the CWS
- Estimate pathogen risk to recreational users of the CWS due to wet weather conditions

## WET WEATHER SAMPLING

- Nine sampling events (June-October)
- Five waterway sampling locations and outfall
- Analyze for the same microorganisms as for dry weather
  - Criteria for wet weather sampling



#### WET WEATHER SAMPLING LOCATIONS

#### Upstream of Stickney WRP at the CSSC

CSSC-Damen Avenue CSSC-Cicero Avenue RAPS outfall Downstream of Stickney WRP at the CSSC CSSC- Harlem Avenue

CSSC-Route 83

#### **Upstream of the Calumet WRP at the Little Calumet**

**Little Calumet-Indiana Avenue** 

#### **Downstream of the Calumet WRP at the Little Calumet CSC**

Little Calumet-Halsted Street CSC-Ashland Avenue CSC-Cicero Avenue CSC-Route 83

#### **Upstream of the North Side WRP at the NSC**

NSC-Oakton Avenue Downstream of the North Side WRP at the NSC and Chicago River NSC-Touhy Avenue NBPS or North Branch-Wilson Avenue North Branch-Diversey Parkway

**South Branch-Madison Street** 

### Wet Weather Sampling Summary

| WRP        | UPS<br>(per event) | DNS<br>(per event) | PS<br>(per event) | No. of<br>Events | Outfall | Total No. |
|------------|--------------------|--------------------|-------------------|------------------|---------|-----------|
| Stickney   | 2                  | 2                  | 1                 | 3                | 1       | 16        |
| Calumet    | 1                  | 4                  | 0                 | 3                | 3       | 18        |
| North Side | 1                  | 3                  | 1                 | 3                | 1       | 16        |
| Total      |                    |                    |                   |                  | 50      |           |

#### WET WEATHER SAMPLING PROTOCOL

- Track storm front
- Wet weather sampling criteria
  - 1. Following dry period (72-hour)
  - Rainfall depth/duration -At least 1" of precipitation in a six hour period
- Alert sampling crew
- Alert laboratory
- Trigger monitoring

#### **Historical Rainfall Depth**

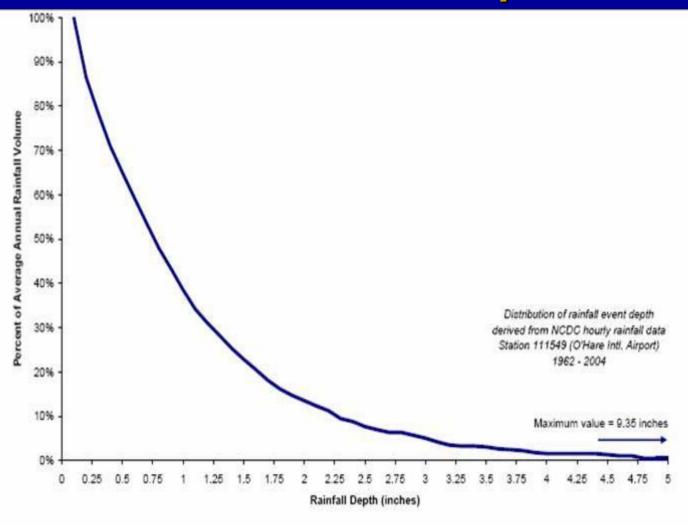



Figure 1. Frequency distribution for rainfall event depth NCDC Station 11549 (O'Hare Intl. Airport) 1962-2004

#### **Historical Rainfall Event Intensity**

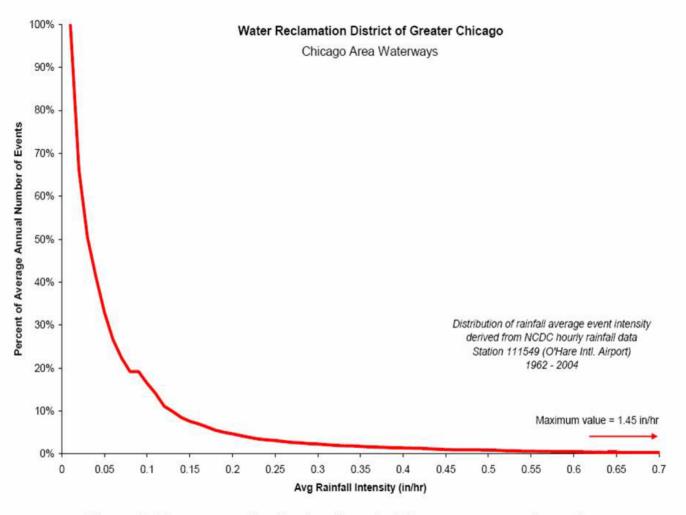
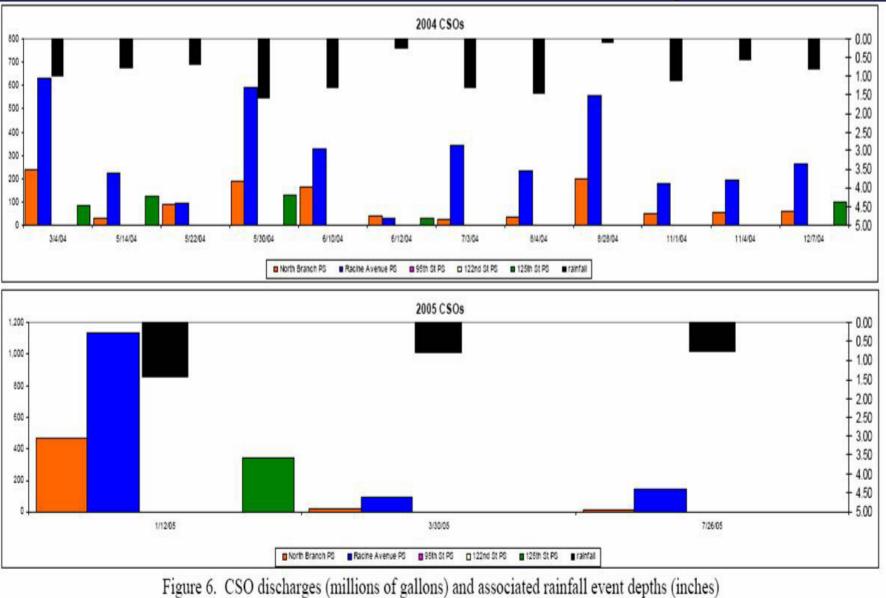




Figure 2. Frequency distribution for rainfall event average intensity NCDC Station 11549 (O'Hare Intl. Airport) 1962-2004

#### **CSO Volumes and Rainfall Depths**



# **Dry Weather Risk Assessment**



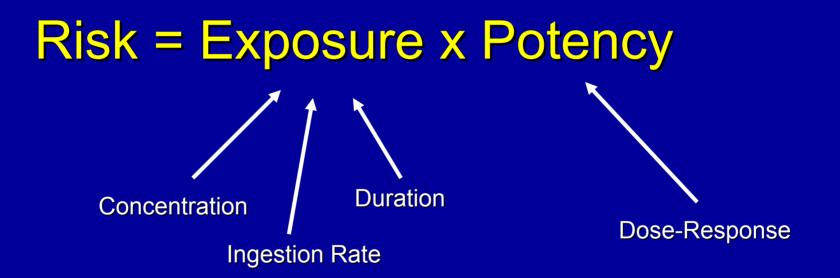
# **Risk Components**

### Concentration Term

- What are the Levels of Pathogens in the Waterway?
  - Spatial distribution (location of exposure)
  - Temporal distribution (CSO, wet weather, dry weather)

### Exposure Parameters

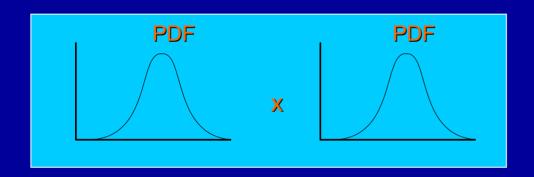
- What is the Dose?
  - Type of recreation
  - Exposure location (launch point)
  - Ingestion rate
  - Exposure duration


### Dose Response

- What is the Relationship Between Dose and Risk?
  - Primary infection
  - Risk of illness given infection
  - Secondary transmission



# **Risk Calculations**


The probability of illness can be calculated by developing simple average exposure inputs – Deterministic Analysis.



Use of averages for exposure inputs loses information on the range of exposures possible.

# **Probabilistic Risk Calculation**

Input values in the Risk Assessment are represented by a distribution rather than a single number.



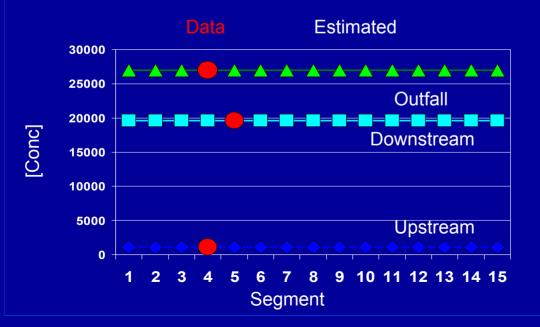
### Distribution of Risks

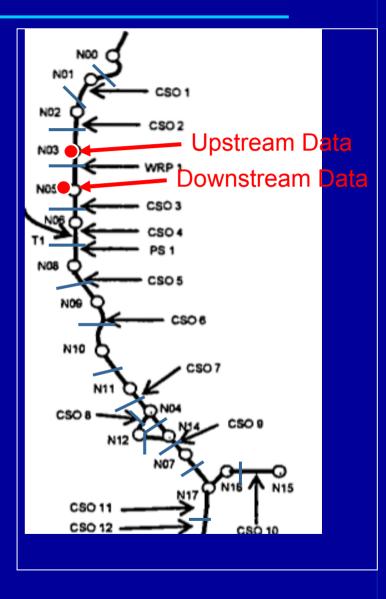
Monte Carlo analysis (simulations) used to estimate solutions for mathematical problems with difficult or impossible closed form analytical solutions.



# Waterway Divisions

Waterway is divided in three sections and designated according to the WRP.

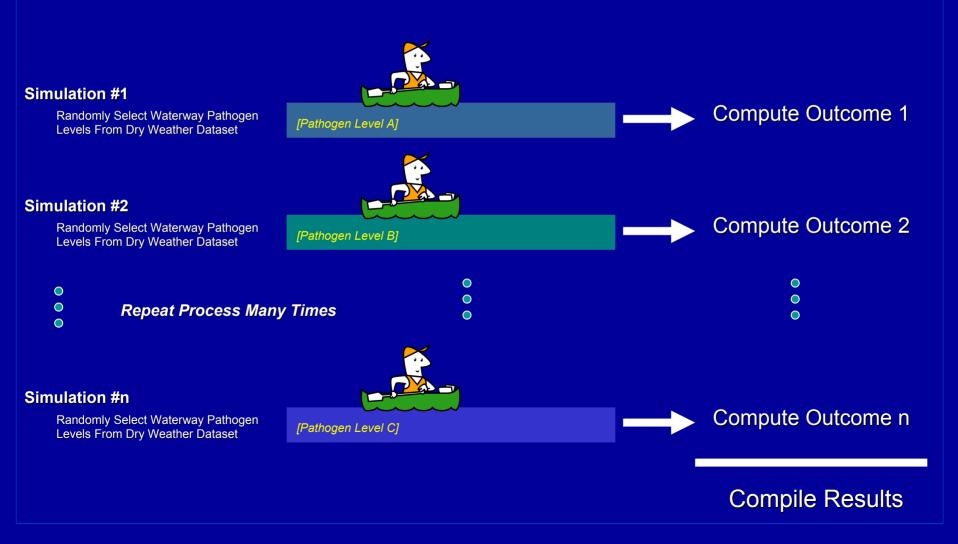

This division scheme works well with the UAA data and intended use designations.




## **Pathogen Concentrations**

The risk assessment requires a concentration term for each segment

In the dry weather assessment, the results were assumed to represent the entire waterway segment. This is a conservative assumption.






# **Concentration Data Inputs**

- The entire pathogen sampling dataset was used as input for the simulations.
- For each simulation the data from a single sampling event was selected to represent that particular recreational users exposure concentration.
- The process was repeated a number of times with a different randomly selected concentration term used in each simulation.
- This data re-sampling technique is commonly used in probabilistic risk assessment and accounts for variation in the input pathogen concentration data.

# **Concentration Data Simulations**



## **Exposure Assessment**

### Canoeist – canoe, scull

- Frequent contact with wet items (paddles, boat deck, equipment)
- Close proximity to water surface
- Occasional direct contact with water (hand immersion)

### Fishing – shoreline, powerboat, rowboat

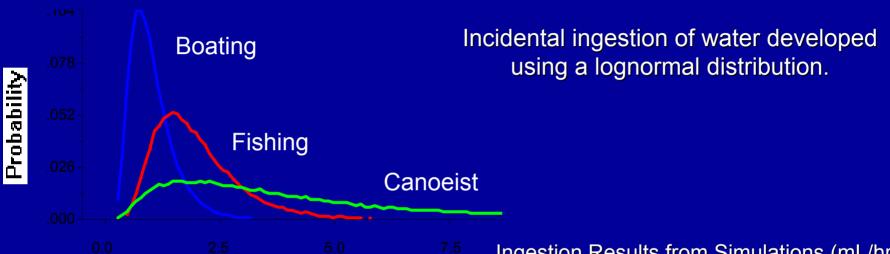
- Occasional contact with wet items (tackle, boat deck, equipment)
- Infrequent direct contact with water

### Pleasure Boating – sailboat, powerboat, tour boats

- Infrequent contact with wet items (boat deck, equipment)
- No direct water contact



### Swimming – Pool


50 mL/hr; USEPA. (1989). Exposure Factors Handbook.

### **Swimming - Recreational Water**

**30mL/event;** Crabtree, K.D., Gerba, C.P., Rose, J.B. and Haas, C.N. (1997). Waterborne adenoviruses: a risk assessment. Water Science Technology, 35, 1–6.

**30mL/event;** Van Heerden, M.M. Ehlers, J.C. Vivier AND W.O.K. Grabow. (2005). Risk assessment of adenoviruses detected in treated drinking water and recreational water. Journal of Applied Microbiology, 99, 926–933.

# **Ingestion Rate**



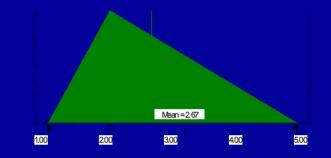
#### Samples were drawn from each input distribution.

#### Ingestion Results from Simulations (mL/hr)

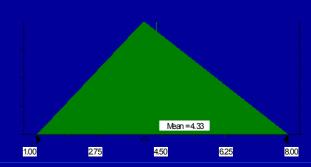
| Percentiles | Boating | Fishing | Canoeing |
|-------------|---------|---------|----------|
| 10%         | 0.49    | 0.98    | 1.21     |
| 25%         | 0.65    | 1.30    | 2.02     |
| 50%         | 0.90    | 1.79    | 3.52     |
| 75%         | 1.23    | 2.47    | 6.15     |
| 90%         | 1.64    | 3.28    | 10.16    |
| 95%         | 1.95    | 3.89    | 13.84    |
| 97.5%       | 2.26    | 4.51    | 17.99    |
| 100%        | 6.43    | 20.13   | 30.00    |

# **Exposure Duration**

### **Canoeing - Triangular Distribution**


- Minimum 1 hour
- Mode 2 hours
- Maximum 5 hours

#### **Fishing - Triangular Distribution**


- Minimum 1 hour
- Mode 3 hours
- Maximum 6 hours

### **Pleasure Boating - Triangular Distribution**

- Minimum 1 hour
- Mode 4 hours
- Maximum 8 hours









### **Proportion of Recreational Use**

|                               | Northside | Stickney | Calumet |
|-------------------------------|-----------|----------|---------|
| Canoeing                      | 20.2%     | 1.2%     | 0.5%    |
| Fishing                       | 72.2%     | 28.4%    | 47%     |
| Pleasure Boating <sup>1</sup> | 7.6%      | 70.4%    | 52.5%   |

<sup>1</sup>Based on assumptions of 2.5 users per boat

# **Dose Response Models**

#### **Exponential Model**

$$P(D) = 1 - \exp(-D/k)$$

Where:

D = dose (# organisms) k = exponential parameter

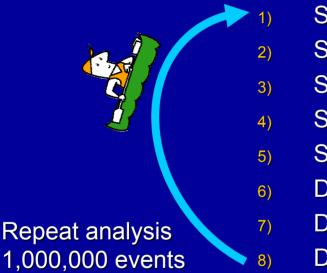
#### Beta Poisson Model

$$P(D) = 1 - \left[1 + \frac{D}{N_{50}} \left(2^{1/\alpha} - 1\right)\right]^{-\alpha}$$

Where:

D = dose (# organisms)  $\alpha$  = beta Poisson parameter N<sub>50</sub> = beta Poisson parameter (median infectious dose)

Secondary β-poisson<sup>c</sup> Expo.<sup>c</sup> Secondary Pathogen b Attack Rate Source r α **Total Enteric Viruses**<sup>a</sup> 78.3 50% **Default Assumption Adenovirus**<sup>a</sup> 78.3 50% Fox, 1989; Foy, et al 1968 Calicivirus (norovirus)<sup>b</sup> 0.251 6.17 86% Rodriguez et al., 1979, J Infec Dis Cryptosporidium Insulander et al., 2005 Scand J Infect Dis 238 10% Giardia 50.5 17% Pickering et al., 1981, J Pediatrics Salmonella 50% 0.3126 23600 **Default Assumption** Escherichia coli 50% Default; DuPont 1969 Applied Microbiology 0.1778 8.60E+07


<sup>a</sup> The dose-response for echovirus 12 was used as a surrogate.

<sup>b</sup> The dose-response for rotovirus was used as a surrogate.

<sup>c</sup> Dose-response relationships taken from Haas, 1999.

# **Dry Weather Probabilistic Risk Analysis**

### **Simulation Procedure**



- Select a day from waterway concentrations dataset
- Select an individual's recreation type
- ) Select an exposure location
- ) Select an exposure duration
- 5) Select an ingestion rate
- ) Develop a dose
  - Determine infection/illness
  - Determine secondary illnesses

#### Express results as illnesses per thousand events

# **Illness Rates for All Pathogens**

#### **Illness Rate Per One Thousand Exposure Events**

| Exposure Input                                        | Waterway  |          |         |
|-------------------------------------------------------|-----------|----------|---------|
|                                                       | Northside | Stickney | Calumet |
| Upstream Samples <sup>c</sup>                         | 0.04      | 0.043    | 0.000   |
| Downstream Samples <sup>c</sup>                       | 0.55      | 0.022    | 0.046   |
| Combined Upstream and Downstream Samples <sup>c</sup> | 0.287     | 0.150    | 0.028   |
| Average Outfall Samples                               | 1.003     | 0.713    | 0.680   |

<sup>a</sup> Includes all primary and secondary (family member) gastrointestinal illnesses expected from the waterway exposures.

<sup>b</sup> Includes combined gastrointestinal illnesses from E. coli, salmonella, total enteric viruses, adenoviruses, giardia, and cryptosporidium. <sup>c</sup> Waterway concentration inputs for the simulations were randomly selected (bootstrap sampled) from datasets that includes the indicated sample sets.

### **Activity Risk Breakdown**

#### **Proportion of Recreational User Type Contributing to Expected Illnesses**

| Recreational Use | Waterway   |          |         |
|------------------|------------|----------|---------|
|                  | North Side | Stickney | Calumet |
| Canoeing         | 51%        | 3%       | 1%      |
| Fishing          | 45%        | 44%      | 70%     |
| Boating          | 4%         | 53%      | 29%     |

Based on Combined Waterway Samples (upstream and downstream) risk estimates

# Pathogen Risk Breakdown

|                                        | Illnesses per 1,000 Exposures |          |         |
|----------------------------------------|-------------------------------|----------|---------|
| Pathogen                               | Northside                     | Stickney | Calumet |
| <i>E coli</i> (pathogenic)             | 0.074                         | 0.034    | 0.007   |
| Salmonella                             | 0.004                         | 0.000    | 0.002   |
| Giardia                                | 0.000                         | 0.000    | 0.000   |
| Cryptosporidium                        | 0.000                         | 0.000    | 0.000   |
| Enteric virus                          | 0.002                         | 0.000    | 0.000   |
| Adenovirus                             | 0.002                         | 0.014    | 0.002   |
| Total Primary Illnesses                | 0.082                         | 0.045    | 0.009   |
| Total Illnesses Including<br>Secondary | 0.287                         | 0.150    | 0.028   |

# **Dry Weather Risk Results**

### Risks of Gastrointestinal Illness Low

- Both primary and secondary risks below EPA recreational guideline of 8 per 1000 exposures.
- Risks predominately from *E. coli*.
- Receptor type and exposure duration most important inputs.

### Risks Developed Using Conservative Assumptions

- Waterway concentrations developed from sampling points near WRPs without accounting for attenuation.
- Ingestion rates and exposure durations account for high exposure events.