

- 1. Fate of RDII Projects An Overview
- 2. Basin Size Affects the Rehabilitate/Replace Decision
- 3. Getting More Knowledge from Flow Metering.
- 4. Discussion of Agency Approaches

National Perspective

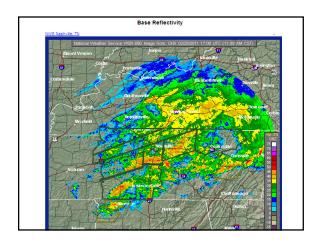
- WERF Project (99-WWF-8) studied I/I removal programs around the US.
- Unsuccessful because:
 - Data were not generated or archived suitably
 - Data were incomplete or unreliable
 - Mismatch of methods and procedures for evaluating I/I
 Lack of uniformity of methods among agencies

,

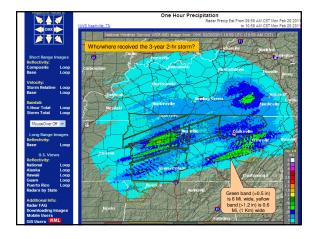
The Tell-Tale Language of Failed Post-rehab Conclusions by Consultant for City of Cedar Lake

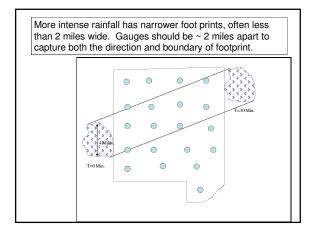
"Due to the inequality of the conditions in Post-rehab flow monitoring versus Pre-rehab flow monitoring ...the magnitude of improvements made to the collection system cannot be measured. Given equal antecedent conditions in Post-rehab versus Pre-rehab, significant improvements will be clearly evident. Therefore, this comparison does not show the totality of the improvements made to the collection system".

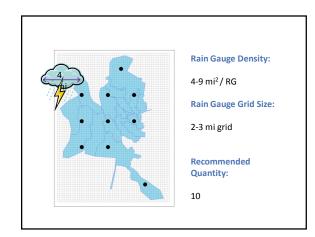
12 Stumbling Blocks to Measurement

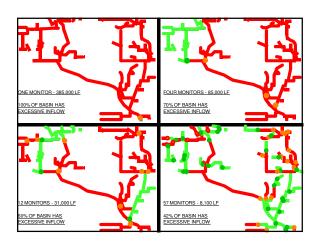

- 1. Rain Gauge Strategy
- 2. Basin Size 3. QA/QC To
- 3. QA/QC Touchstones, Scattergraphs & Q vs. i
- 4. Metering Depth Technology
- 5. Duration
- 6. Season
- 7. Rainfall Data Frequency
- 8. Tight Subtractions
- 9. Method of Calculating RDII
- 10. Dynamics of Sewers (restricted)
- 11. Control Basin
- 12. Site Hydraulics at Metering Manhole

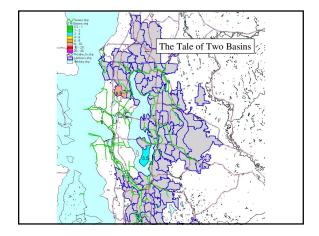
Stumbling Block #1 Rain Gauge Strategy


- · Don't rely on RG at the airport
- + 1 -2 Mi^2/RG in convective storm season or in hilly area.
- 3 -4 Mi²/RG in cyclonic/frontal storm season.
- · Place RGs in grid not by sewershed.
- · Never Less than Two (always assume one will fail)

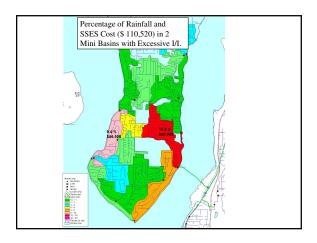




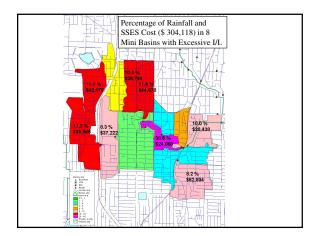


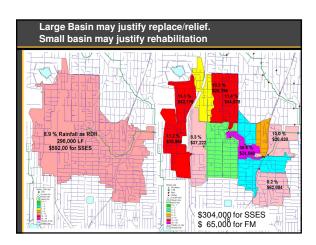


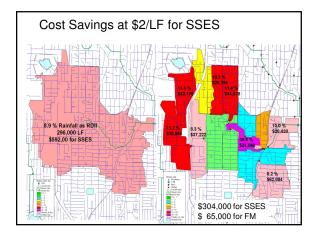

4

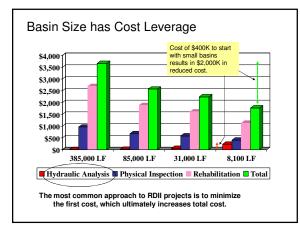

Stumbling Block #2 Basin Size is an Important Variable

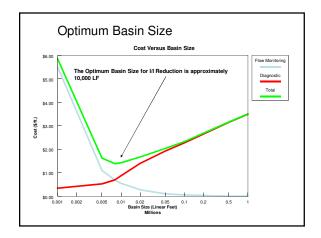
- Meter Basins Should be Small and Uniform in Size
- Small Basins Isolate RDII (80/20 Rule)
- Small Basins Change the location of apparent problems
- Smallest Amount and Cost of Rehabilitation
- Easier to Demonstrate Improvement

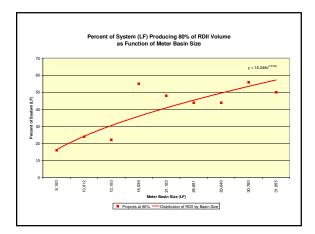


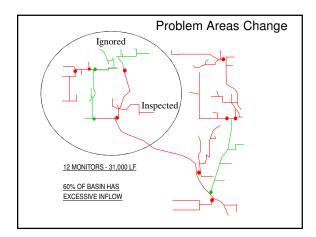


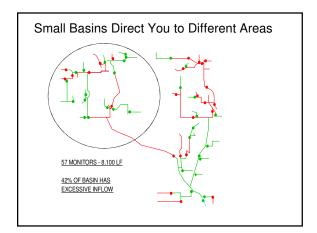


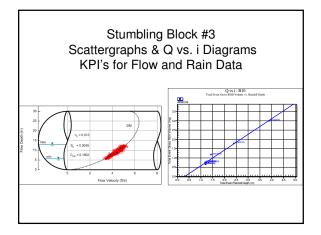


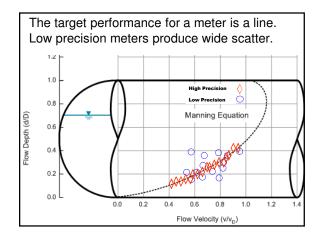




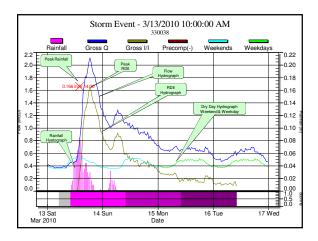


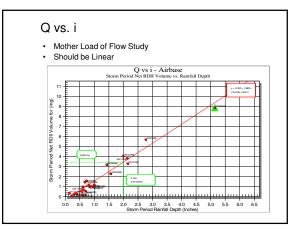


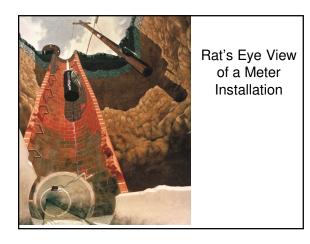


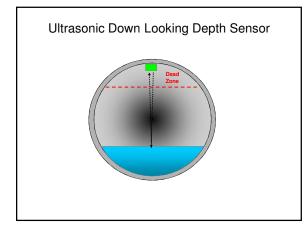


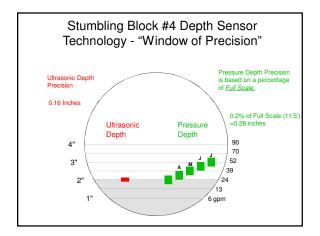
The 10/20 Rule

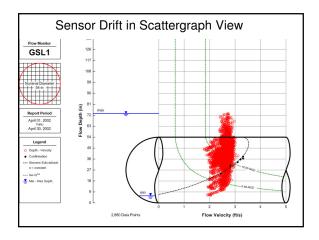

- 1. Treat sewer system like a tree with leaves, branches and a trunk.
- Layout meter basins in the 'leaves' with 10,000 LF basins (approximate size of subdivisions)
- 3. Layout meters to avoid subtractions
- 4. Make sure downstream meters are far enough apart to create a 'Net' flow of at least 20% of the 'Gross' flow
- 5. Place meters upstream of modeling 'nodes' or logical restrictions (e.g. siphons) to determine Operation Capacity

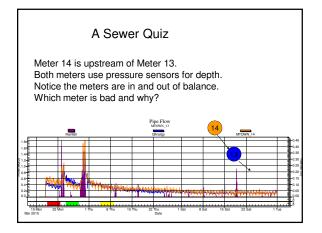


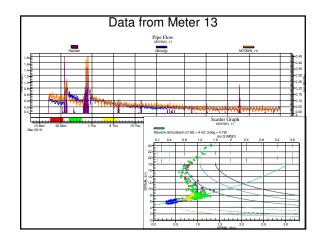


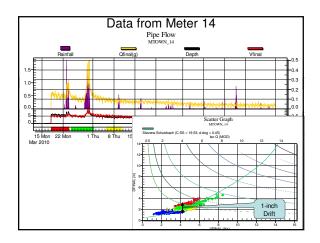


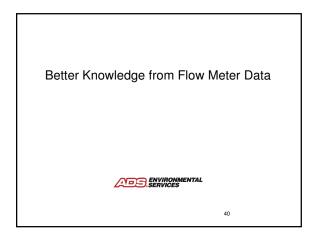

- Depth
- Pressure Sensor
- (Pressure Bubbler)
- Ultrasonic Down-looker
- Ultrasonic Up-looker
- Velocity
- Average Doppler
- Peak Doppler
- Gated Doppler
- looker Time of Travel
 - Faraday
 - Surface Radar







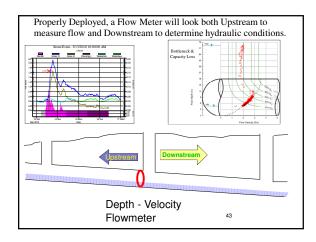




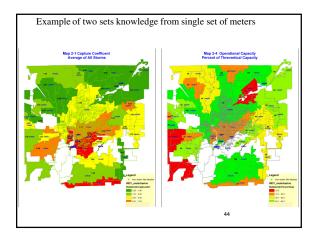
ſ		Q vs i - MTOWN_13 Total Event Net RDII Volume vs. Rainfall Depth						
	0.7-	-				Subtraction be close enough		
(ma) amu	0.5-	-			• ^(3/22/2010)			
<u> 01al Event Net KUILV 014me (mg)</u>	0.4-	-						
Event Ne	0.3-	-						
013	0.2	-						
	0.0-	16281	9)(5/18/2010)	<u> </u>			•(3/29/2010)	
	Total Event Rainfall Depth (in)							

. <u> </u>		

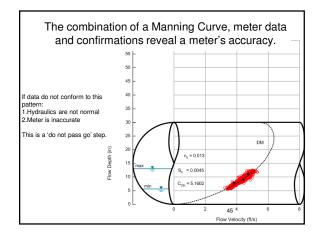
RDII Project Elements to Specify as a Minimum					
RG Strategy	1 every 4 sq. miles				
Duration	Minimum of 90 days				
QA/QC Touchstones KPIs	Make sure Scattergraphs and Q vs i plots are deliverables.				
Metering depth	Ultrasonic Depth technology - pressure backup				
Basin Size	10,000 LF Upper end - 20% Net subtraction down				
Season	Start in dry - end in wet				
RG data	Five-minute data				
Tight subtractions	Net Subtraction no less than 20% of Gross flow				
RDII Calculation	Capture Coefficient and Gallons/inch/LF (rainfall in the denominator)				
Sewer Dynamics	Scattergraph and Q-i will spot restricted sewers and Potential RDII				
Control basin	Identify at beginning & Use to evaluate pre- and post metering of rehabilitated basins.				
Site Hydraulics	Avoid Silt, Hydraulic Jumps and Dead Dogs				

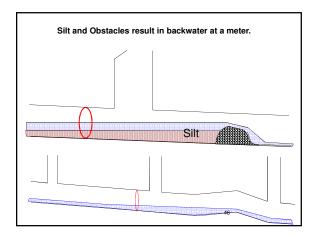

Basic Questions of Collection System Management

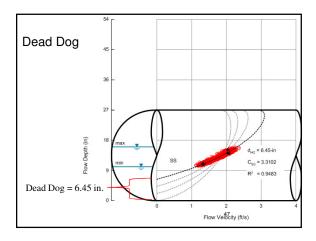
- 1. How much water is coming from upstream (dry and wet) and where is it entering system?
- 2. What is capacity of downstream pipe?
- 3. Rehabilitate or replace problem sewer?

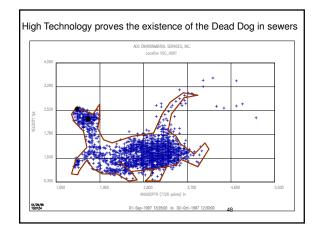

41

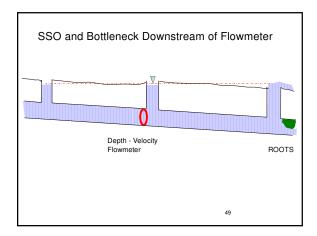
Observations

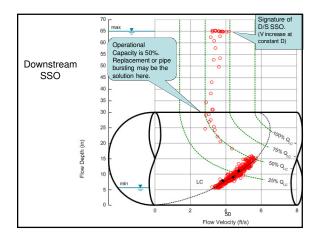

- Without Flow Metering, symptom = problem.
- With Strategic Flow Metering, the problem(s) can be separated from the symptom.
- Knowledge of pipe's Operational Capacity may change the decision replace or rehabilitate a sewer.
- Longer Term metering provides Key Performance Indicator (KPI). 42

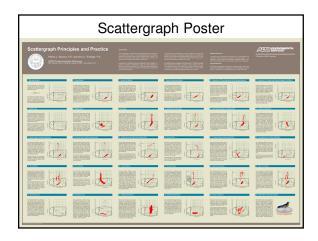


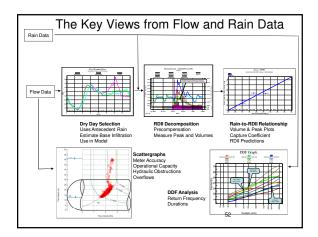


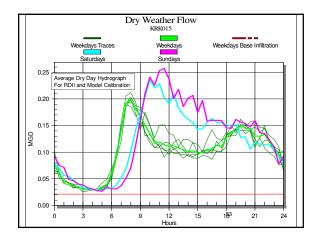


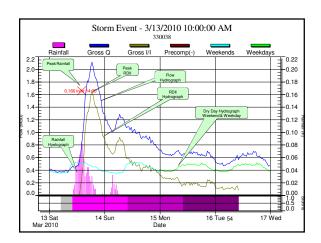


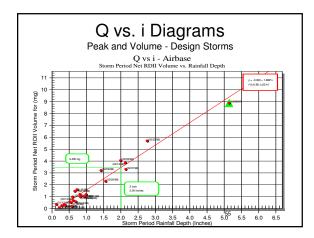


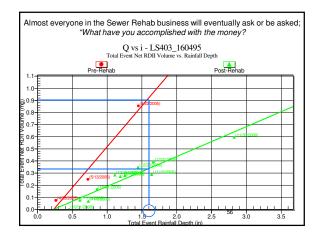


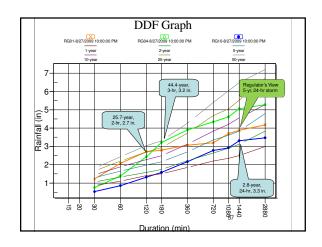












King County, WA	Capital Cost for new WWTP	Funded all metering to avoid disputes and disparities in conditions. Basin size control	
WSSC	Routine RDII, Modeling	LTM for baseline and performance tracking, temp metering for RDII reduction and model calibration. Basin size control	
Baltimore County	RDII reduction City, CD	Flow to City, RDII reduction, control basin size	
Baltimore City	RDII, SSO reduction, CD	Control basin size	
PSA	CSO Modeling		
ALCOSAN	RDII, CD	Originally let satellite conduct flow metering – 13% was useful. Controlled data in 2 nd pass.	
Oakland County, MI	Routine modeling, billing, RDII	Satellites 'own' capacity in trunks, manage peaks.	
San Diego	Billing, modeling, alarming	Billing for 5 satellites and alarming in canyons	
Orange County, CA	Modeling, RDII, Ocean Outfall capacity	Grant Program to fund I/I reduction. Control basin size in second pass.	
Los Angeles	Modeling, RDII	Repeated study after metering technology gave poor results.	
EBMUD	Modeling, CD	Buying or Selling a Property Building or Remodeling in Excess of \$100,000 Changing Water Meter Size	

References For more scattergraph information and to request a poster visit: http://www.adsenv.com/scattergraphs

For Sliicer.com information visit: <u>http://www.Sliicer.com</u>

pstevens2@idexcorp.com

59