

Perspectives on Private Sector Infiltration/Inflow Identification and Rehabilitation

Prepared by Alan J. Hollenbeck, P.E., BCEE President/CEO RJN Group, Inc.

- Over 20 Years Since Original ICAP Rehabilitation
- SSO's at MWRD Pump Stations
- Increased Wet-Weather Flows at MWRD WRP's
- Recent Increase in Frequency of Very Intense Storms
- Impact of USEPA/IEPA and NPDES Permit Renewal TBD?
- NPDES Permits for Satellite Sewer Systems TBD?
- Public Sector Sewers Have Deteriorated Over 20 Years
- Higher Concentration on Private Sector in ICAP "Revisited"

- Stormwater Runoff 40%
- Soil Absorption / Groundwater Recharge 40%
- Evaporation 15%

ngroup

Sanitary Sewer System – 5%

Rainfall/Inflow Correlation

The Choice for Collection System Solutions

BASIN 04 Q vs i Regression Analysis							
							OBSERVED
INFLOW	Rain				INFLOW		
(mgd)	(in/hr)	LOG Q	LOG i		(mgd)		
1.093	1.070	0.039	0.029	-0.026	0.941		
0.588	0.770	-0.231	-0.114	-0.155	0.700		
0.326	0.350	-0.487	-0.456	-0.463	0.344		
0.265	0.240	-0.577	-0.620	-0.611	0.245		
1 Year Storm @	1.600		0.204	0.131	1.352		
5 Year Storm @	2.550		0.407	0.313	2.058		
10 Year Storm @	2.900		0.462	0.364	2.310		
Regression Output:							
	Constant		-0.053				
	Std Err of Y Est		0.076				
R Squared			0.949	0.974			
No. of Observations			4.000				
Degrees of Freedom			2.000				
	X Coefficient(s)	0.901					
	Std Err of Coef.	0.147					
Rainfall Intensity & Inflow Relationship							
Basin U2							

% Capture of Rainfall in Sanitary Sewer

Rainfall / Inflow Relationship

Percentage Rainfall Captured

Basin 21 – Elmhurst, Illinois

Storm Date	Rainfall Intensity (inches / hour)	Percentage Peak Rainfall Runoff Captured	Percentage Rainfall Volume Captured
March 15, 1999	0.19	5.3	4.6
March 18, 1999	1.00	4.6	4.1
March 22, 1999	0.60	5.1	5.0
April 1, 1999	0.55	5.2	5.2
April 7, 1999	0.91	4.8	4.6
April 9, 1999	0.40	5.8	5.5
	Average	5.1	4.9

Flow Balancing – Wet-Weather Inflow

The Choice for Collection System Solutions

Clearwater Inflow Sources Into Sanitary Sewer

- Public Sector
 - Manholes
 - Main sewers
 - Storm sewer cross connections

Private Sector

- Interior sources sump pumps and foundation drains
- <u>Exterior</u> sources driveway, stairwell, patio, area drains, cleanouts
- Service laterals and service lateral connection to main sewer

Pre-ICAP 1985 - Typical Inflow Distribution in Chicago Area

City of Wheaton Basin 4

- 90% of Manholes Rehabilitated
- 95% of Main Line
 Sewers Rehabilitated with CIPP
- Peak Flows Still Exceed Seven Times Dry-Weather Flow for One-Year Storm

Inflow Source Distribution -Basin 4

Elmhurst Inflow Distribution in 1987

ringroup

Public Sector Infiltration/Inflow – Main Line

Public Sector Infiltration/Inflow – Main Line

Main Sewer Defects

The Choice for Collection System Solutions

Indirect Cross Connections

The Choice for Collection System Solutions

Rehabilitate from Manhole to Manhole

- Excavation Not Required Using "Trenchless Technology"
- Most Common in Illinois Cured In Place Pipe (CIPP)

Public Sector Infiltration/Inflow -Manholes

Manhole Infiltration/Inflow Defects

The Choice for Collection System Solutions

for Collection System Solutions

Manhole Rehabilitation

<u>Cover Defects</u> - frame & lid - MH Insert

Bench/Trough & Pipe Seal

- chemical grouting
- hydro cement patching
- rubber gaskets

<u>Adjustment</u>

- new adjustment rings
 - chimney seals
 - polyethylene sheeting
 - Manhole Walls
 - chemical grouting
 - cement linings
 - epoxy coatings
 - CIP systems
 - oakum rope

Manhole Rehabilitation

The Choice for Collection System Solutions

"Permacast"

"Raven 405"

Manhole Rehabilitation

Sample Manhole Inspection – Spring 2011

- Inspected 76 Manholes Rehabilitated in 1987
- Locations Near Creek, with Main Sewer Lining, Various Ages
- Result Limited Defects 1987 Rehabilitation Work Still Generally Sound

I/I Migration to Service Laterals

Manhole to Manhole Lining

- Structural integrity
- Eliminate I/I within main sewer
- Groundwater Migration "Up" to Service Laterals
 - Water in sewer trench moves "up" to service laterals
 - Net "reduction" in I/I often limited

Migration Along Pipe Trench

rjngroup

rjngroup

Sanitary System Before CIPP Lining

The Choice for Collection System Solutions

ringroup

Sanitary System After CIPP Lining

The Choice for Collection System Solutions

rjngroup

Typical Public Sector "Recurring" Sources

- Manholes
 - Frame seals
 - Pipe seals

Typical Public Sector "Recurring" Sources

Main Line Cross Connections

- Service laterals / storm sewers
- Service laterals / storm ditches

Private Sector Infiltration / Inflow Sources

- Types of Sources?
- How Do You Find Them?
- How Do You Eliminate Them?
 - Technical Issues
 - Institutional Issues

Wastewater Collection - Textbook

The Choice for Collection System Solutions

Wastewater Collection - Textbook

The Choice for Collection System Solutions

ringroup

The Choice for Collection System Solutions

The Choice for Collection System Solutions

The Choice for Collection System Solutions

The Choice for Collection System Solutions

rjngroup

The Choice for Collection System Solutions

Directly Connected Foundation Drain

The Choice for Collection System Solutions

Foundation Drains

The Choice for Collection System Solutions

Foundation Drain Video

Private Sector Infiltration/Inflow Sources

- Types of Sources?
- How Do You Find Them?
- How Do You Eliminate Them?
 - Technical Issues
 - Institutional Issues

Finding Private Sector Sources

	Smo	oke Testing			and a state
	Watch for "Suspect" Trapped Sources		ed		
	■ D Si	ual Blower With Plugging I noke Through Soil Seams	Drives		
- 77	Dye	M Smoke Te	sting - <mark>L</mark> esson		
		Source	Defects SINGLE		
		Main Sewer Defect	5 4 1		11070
	Drop	Indirect Storm Sewer		A BACK	- Print Print
	μομ	Cross Connection			
	Intern	Building Lateral Defect	29	100	
		Area Drains/Downspouts	2	12	
		Cleanouts	22	80	
		TOTAL	67	234	

Private Sector – Exterior Sources

Window Well

Window WellStairway

rjngroup

The Choice for Collection System Solutions

Private Sector – Exterior Sources

- Window Well
- Stairway
- Cleanout

Private Sector – Exterior Sources

- Window Well
- Stairway
- Cleanout
- Downspouts

Private Sector – Exterior Sources

- Window Well
- Stairway
- Cleanout
- Downspouts
- Driveway Drains

Private Sector – Interior Sources

Collection System Solutions

Internal Inspection Public Relations

Press Release
City Newsletter
Door Hangers
Letter to Residents
Photo Identification

Typical Sump Pump Configuration

Storm Sump to Sanitary Sewer

Typical Sump Pump Configuration

Combination Sump to Sanitary Sewer

Typical Sump Pump Configuration

Typical Sump Pump Configuration

Combination Sump With Diverter Valve FOOTING DRAIN

Typical Sump Pump Configuration

Storm Sump to Laundry Tub

Typical Sump Pump Configuration

Unsealed Sanitary Sump

Sump Discharge Pipes

The Choice for Collection System Solutions

Follow-up Dye Flooding for Confirmation

- Inject Dye in Sump
- Activate Pump
- Check Storm Sewer
- Check Sanitary Sewer
- Check Yard

Residential Sump Pump Peak Discharge Rates

Variables Include:

- Capacity of Sump Pump
- Basement Wall Cracks / Seepage
- Runoff From Roof
- Roof Runoff Over Land or Below Ground
- Drainage Away From Home
- Antecedent Moisture in Ground
- Ground Water Elevation at Time of Storm
- Other Site-Specific Conditions

Typical Residential Sump Pumps

The Choice for Collection System Solutions

Pentair Pump Group Copyright © Pentair Pump Group. All Rights Reserved.

ngroup

Residential Roof Runoff

	1 Year Storm Peak Runoff Rate		
Roof Area (Square Feet)	30 Minute Duration (1.00 inches in 30 minutes)	5 Minute Duration (0.33 inches in 5 minutes)	
1000	21 gpm	41 gpm	
1250	26 gpm	51 gpm	
1500	31 gpm	62 gpm	
2000	42 gpm	82 gpm	

Seasonal Impact on Peak Flow / Volume

Service Laterals

The Last Frontier?

Leaking Service Laterals

The Choice for Collection System Solutions

rjngroup

Service Lateral Television Inspection

From the Cleanout
Inspection Port in the House
Lateral Launcher

Service Lateral Television Inspection

Look For:

- Overall condition
 - Just one defect?
- Obstructions
- Narrowing
- Connection is it dropped?
- Illegal I/I connections?
- Material PVC you cannot line it
- Infiltration

Private Defects - Laterals

Typical Flow Rates – Internal

Source	1-Year Storm
	Flow - GPM
Sumps- Storm, Combined, Diverter, Unsealed	5.0 - 7.0
Foundation Drain	5.0 - 7.0

Source	1-Year Storm
	Flow - GPM
Patio/Area Drain	1.0 – 10.0
Downspouts	5.0 – 20.0
Stairwell/Window Well Drain	0.5 – 2.0
Driveway Drain	5.0 – 25.0
Cleanout	0.5 – 2.0
Service lateral	0.5 – 3.0

Private Sector Infiltration/Inflow Sources

- Types of Sources?
- How Do You Find Them?
- How Do You Eliminate Them?
 - Technical Issues
 - Institutional Issues

Sump Pump/Foundation Drain Disconnection

Connection

 Directly Connected Foundation Drain (Basement with NO Sump Pump)

- Storm Sump Connected to Sanitary Sewer (Basement with Sump Pump)
- Combination Sump Connected to Sanitary Sewer (Basement with Laundry Tubs and Single Sump Pump)

Typical Disconnection Procedure

- Excavate Sump Pit in Basement Floor, Install Sump Basin and Sump Pump, Route Discharge to Rear Yard or Storm Sewer External excavation to disconnect foundation drain from lateral
- Reroute Pump Discharge to Rear Yard with Flexible Discharge Pipe Outside or to storm sewer
- Install Laundry Tub Pump and Reroute Existing Sump Discharge to Rear Yard

Sump Pump / Foundation Drain Disconnection

Connection

- Unsealed sanitary Sump
- Diverter Valve

Typical Disconnection Procedure

- Install new storm sump, route discharge to rear yard / storm sewer
- Remove valve, disconnect discharge from sanitary sewer

Sump Pump Disconnection Issues

- Localized Yard Ponding / Erosion
- Mosquito Breeding Areas
- Dangerous Ice Patches on Street / Sidewalk if Front Yard / Driveway Discharge
- "Now We Have Stormwater Flooding"
- PVC Easy to Reconnect

Sump Pump Disconnection

Air Gap / Storm Sewer

Combination Sump - Laundry Tub Sump Retrofit

Low Density Residential

Moderate Density Residential

High Density Residential

Rear Yard Storm Drains / Swales

Rain Garden Schematic

The Choice for Collection System Solutions

group

Rain Garden Example

On-Site Detention with Slow Release

Section

"Exterior" Source Disconnection

- Cleanout
- Downspouts
- Driveway Drains

Potential Reverse Slope Driveway Drain Disconnection

Lateral Rehabilitation Options

- Excavate and Replace
- Full Lining
- Pipe Burst
- Connection to Main
 - Partial Lining "Top Hat"
 - Excavate and replace
 - Grout
 - Janssen Process

Service Lateral Rehabilitation

Excavation Not Always Required

Lots of Unpredictable Service Lateral Alignments, Materials and Blockages

Lateral Excavate and Replace

- May Be the Most Cost-Effective for Removing Severe I/I Condition of Lateral Does Not Permit Lining or Pipe Bursting
- Considerations
 - Depth
 - Length
 - Surface conditions restoration
 - No cleanouts needed

Lining - Criteria for Lateral Selection

- Active Leaks
- Concentration of Active Leaks in Vicinity
- Lateral Excavation Not Required
- Not PVC
- Relative Location of Storm Sewers or Storm Ditches

Lateral Lining

Lateral:

- Inversion or pull-in (same as main-line)
- Needs cleanout
- Needs relatively uniform cross-section
- Gentle bends otherwise liner will "pleat" and reduce area
- Paid for per foot (+ cost of TV+ cost of cleanout)
- Short-liner (spot repair)

Importance of Cleanout

Typical Sanitary Sewer Lateral

Installation of Cleanout

Installation of Cleanout

TEE INSTALLED ON SERVICE LINE

"Cadillac of Lateral Rehab"

T-Liner Approach to Lateral Lining

Full-Circle Seal/ a "Stand Alone" Structural Repair

T-Liner - Pros

Very Good Seal Between Lined Pipe and Into Lateral

- Can Vary Length
 - Stubby 6 inches
 - Shorty 3 feet
 - Long 3 to 80+ feet
- Stubby Does Not Need a Cleanout
- If Install Cleanout at Building Connection Can Line Entire Section from Main Line
- Usually Paid Per Segment Set-Up then Per Lateral Per Length (cost is in the connection additional feet are relatively good value \$30-\$40 per foot)

T-Liner - Cons

- "Shorty" and Longer Needs a Cleanout
- Cleanouts Can Be Expensive (even Vac-a-Tee) Based on Depth and Ease of Access
- Cannot Do:
 - Connections with severe running infiltration
 - Dropped connections (pipe will not invert)
 - Laterals with severe bends / turns / splits
 - Expensive excavation can be cheaper

Connection Lining - Top Hat

Top Hat

- Does not need cleanout
- Only seals connection
- Addresses I/I well (not gushing)
- Good for break-ins and PVC to VCP connection
- Some instances of de-lamination
- Paid for per segment set-up and then per connection
- Problems if severe dropped connection

Pipe Bursting

Pipe Bursting

- More Expensive Option
- Excavation Needs Access Pits
 - Cleanout to main
 - Basement to main
 - Main to basement
- When to Consider?
 - Lateral needs upsizing
 - Very difficult access
 - Very deep lateral
 - Lateral "twists and turns"
 - Lateral is very long

Service Connection Point Repair

- May Be the Most Cost-Effective for Removing Severe I/I at the Connection if Laterals Facing Each Other and Both Need Rehabilitation
- Considerations
 - Depth
 - Usually will get the riser replaced main location of I/I
 - Surface conditions restoration
 - No cleanouts needed

Grouting The Connection

Grouting the Connection

Similar to Mainline Grouting, Special Packer Positioned at Service Connection that Extends Up the Lateral 30 Inches

Pros:

- Can be used very effectively at connection and first joint
- Historically long-term improvement (if in wet environment)
- Cheaper than top-hat or T–liner

Grouting

- Cons
 - May need more than one application on severe infiltration
 - If lateral is cracked cannot use
 - Needs to stay wet
 - Not as "neat-looking" on protruding taps
 - Not structural repair

Pay Per Segment Set-Up, Then Per Connection or Per Gallon

Relatively New

group

Collection System Solutions

- Full Structural Repair of the Connection
- Addresses I/I Gushing at the Connection Excellently
- Injects Epoxy Concrete Mix
- Can Be Installed with Cracked Laterals (Provided Not Longitudinal)

Packer Inserted

Packer positioned

Post Injection

Gushing Infiltration Abandoned Lateral

The Choice for Collection System Solutions

rjngroup

Abandoned Service Sealed

Source	Average Rehabilitation Cost
Storm Sump	\$300 - \$750
Sump with Diverter Valve	\$300 - \$750
Combination Sump	\$2,500 - \$5,000
Unsealed Sanitary Sump	\$1,500 - \$3,000
Foundation Drain	\$5,000 - \$10,000

Source	Average Rehabilitation Cost
Patio/Area Drain	\$2,500 - \$5,000
Downspouts	\$100 - \$500
Stairwell/Window Well Drain	\$2,500 - \$5,000
Driveway Drain	\$2,500 - \$10,000
Cleanout Cap	\$100 - \$500

rjngroup

Source	Average Rehabilitation Cost
Excavate & Replace	\$5,000 - \$15,000
Full Lining from Cleanout (T Liner)	
- With Cleanout	\$5,000 - \$7,000
- Without Cleanout	\$3,500 - \$5,500
Pipe Burst	\$10,000 - \$15,000

Service Lateral Connection Rehabilitation Costs

Source	Average Rehabilitation Cost
Connection Lining - Top Hat	\$1,500 - \$2,000
Excavate & Replace	\$5,000 - \$15,000
Grout (all connections on line segment)	\$500 - \$1,000
Janssen Process	\$2,000 - \$3,000

Types of Sources?

roup

- How Do You Find Them?
- How Do You Eliminate Them?
 - Technical Issues
 - Institutional Issues
 - Enforcement Mechanisms
 - Funding Options

Private Sector Enforcement Mechanisms

- Sewer Use Ordinances
- Property Transfer Inspection
- Periodic Re-inspection
- Search Warrant
- Service Shutoff
- Sewer Use Surcharge
- Fines

RRWRD Updated Private Property Inflow Source Disconnection Program

Initial Inspection

RRWRD Updated Private Property Inflow Source Disconnection Program

Follow-up Inspection – Illegal Connection Verified During Initial Inspection

Typical Private Sector Funding Mechanisms

- Property Owner Finance
- Municipal Cost Participation
 - Full funding
 - Funding to maximum reimbursement amount
 - Loan for full cost
 - Loan up to maximum amount

Typical Private Sector Funding Sources

- Property Owner Finance
- Municipal Cost Participation
 - Sewer fund
 - Stormwater user charge fund
 - General fund
- IEPA State Revolving Fund Loans
 - Private Sector <u>Not</u> Currently Eligible

When Is Cost Sharing Typically Used?

- Combination Sumps
- Driveway Drains
- Area Drains
- Foundation Drains
- Lateral Lining

"Cost-Effective" Rehabilitation

Private Sector

- Downspouts, storm sumps, diverter valves norm
- Unsealed and combination sumps, patio, driveway, window well, stairwell drains - site specific
- Service laterals emerging with new technology
- Direct foundation drains rare

ringroup

- Lateral condition assessment
- Privately owned pump station operation and maintenance
- Sewer easements
 - **Detailed Information Gathered Includes:**
 - Utility completed questionnaires
 - · Public education materials
 - · Outreach letters to residents
 - · Ordinances and codes
 - · Operating and maintenance procedures
 - · Design details and specifications

Disclaimer

The Private Property Virtual Library (PPVL) provides additional information that may be useful or interesting and is being provided consistent with the intended purpose of the WEF Website. However, WEF cannot attest to the accuracy of information provided by the PPVL. WEF does not endorse the information, products, or views presented in the PPVL or its associated discussion forum.

GO

Advanced Search or

AQUA-AEROBIC SYSTEMS, INC.

Biological Processes

h Mailia Silizada

Mambranes

Cost effective, biological removal of odors, VOCs H.S and HAPs.

Questions?

