






Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, Illinois 60611-3154312.751.5190

BOARD OF COMMISSIONERS Kathleen Therese Meany President Barbara J McGowan Vice President Mariyana T. Spyropoulos Chairman of Finance Michael A. Alvarez Frank Avila Cynthia M. Santos Debra Shore Kari K. Steele Patrick D. Thompson

**THOMAS C. GRANATO, Ph.D.** Director of Monitoring and Research

312.751.5190 f: 312.751.5194 thomas.granato@mwrd.org

September 26, 2014

Ms. Marcia Willhite Bureau Chief Bureau of Water Illinois Environmental Protection Agency P. O. Box 19276 Springfield, IL 62794-9276

Dear Ms. Willhite:

Subject: Tunnel and Reservoir Plan, Mainstream Tunnel System, Annual Groundwater Monitoring Report for 2013

Attached are three copies of the "Tunnel and Reservoir Plan, Mainstream Tunnel System, Annual Groundwater Monitoring Report for 2013."

Very truly yours,

Thomas C. Granato, Ph.D. Director Monitoring and Research

TCG:PL:cm Attachment cc w/att: Ms. Sally K. Swanson (USEPA Region 5 - WC15J) - (2) Dr. Zhang Dr. Cox Dr. Hundal Dr. Lindo cc w/o att: Mr. St. Pierre Ms. Sharma Mr. Cohen Metropolitan Water Reclamation District of Greater Chicago 100 East Erie Street Chicago, Illinois 60611-2803 (312) 751-5600

#### TUNNEL AND RESERVOIR PLAN MAINSTREAM TUNNEL SYSTEM ANNUAL GROUNDWATER MONITORING REPORT FOR 2013

Monitoring and Research Department Thomas C. Granato, Director

September 2014

#### TABLE OF CONTENTS

|                                                  | Page |
|--------------------------------------------------|------|
| LIST OF TABLES                                   | ii   |
| LIST OF FIGURES                                  | iii  |
| ANNUAL DATA FOR MONITORING AND OBSERVATION WELLS | 1    |
| Introduction                                     | 1    |
| Summary of Data                                  | 1    |
| Monitoring Wells                                 | 1    |
| Observation Wells                                | 1    |
| APPENDIX                                         |      |

A December 16, 2011, Letter From the Illinois Environmental A-1 Protection Agency to the Metropolitan Water Reclamation District of Greater Chicago Authorizing Abandonment of Observation Well OP-17 in the Mainstream Tunnel System of the Tunnel and Reservoir Plan

#### LIST OF TABLES

.

| Table<br>No. |                                                                                                                                                                         | Page |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | Analysis of Water From Monitoring Wells QM-53 Through QM-82 in<br>the Mainstream Tunnel System of the Tunnel and Reservoir Plan<br>Sampled During 2013                  | 4    |
| 2            | Descriptive Statistics for Groundwater Data of Monitoring Wells QM-<br>53 Through QM-82 in the Mainstream Tunnel System of the Tunnel<br>and Reservoir Plan During 2013 | 9    |
| 3            | Groundwater Elevations for Observation Wells OM-1 Through OM-23 in the Mainstream Tunnel System of the Tunnel and Reservoir Plan Measured During 2013                   | 16   |

#### LIST OF FIGURES

| Figure<br>No. |                                                                                                                                                                                  | Page |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1             | Map of Monitoring Wells in the Mainstream Tunnel System                                                                                                                          | 2    |
| 2             | Map of Observation Wells in the Mainstream Tunnel System                                                                                                                         | 3    |
| 3             | Minimum, Mean, and Maximum Water Elevations for Observation<br>Wells OM-1 Through OM-23 in the Mainstream Tunnel System of<br>the Tunnel and Reservoir Plan Measured During 2013 | 19   |

#### ANNUAL DATA FOR MONITORING AND OBSERVATION WELLS

#### Introduction

The monitoring and observation wells are located along the length of the Mainstream Tunnel System between Morton Grove and Hodgkins, Illinois (Figures 1 and 2). The elevations for observation wells are measured at least six times per year, while the monitoring wells are sampled at Monitoring wells QM-53, -56, -58, -61, -66, -68 through -74, various frequencies. -76, -77, and -81 are sampled three times per year (Illinois Environmental Protection Agency [IEPA] memoranda dated July 9, 2004, and February 23, 2006). Monitoring wells QM-62 through -65, -67, -75, -78 through -80, and -82 are all sampled six times per year (IEPA memorandum dated July 9, 2004). Sampling of monitoring wells QM-51, -52, -54, -55, -57, and -60 was discontinued with the approval of the IEPA (memorandum dated May 4, 1994). Monitoring well QM-65 could not be sampled throughout the year due to a faulty pump, which is scheduled for replacement soon. Samples were retrieved from Well QM-66 in 2013, unlike during the previous year. This well may be classified as intermittently dry. Monitoring well QM-59 has been dry since February 1995 and is no longer monitored. Since observation well OM-17 was damaged in an accident about five years ago, the IEPA granted permission to the Metropolitan Water Reclamation District of Greater Chicago to abandon this well (Appendix A).

All monitoring wells in the Mainstream Tunnel System were sampled at the required frequencies. However, in a few instances, samples from specific wells could not be collected for various reasons. Monitoring wells QM-56 and -58 could not be sampled during 2013 because construction in the area rendered them inaccessible. The required six samples were retrieved during the year from Wells QM-62 and -82, unlike previous years. Both wells could be considered intermittently dry.

#### Summary of Data

**Monitoring Wells.** The analytical data for groundwater sampled during 2013 from monitoring wells QM-53 through QM-82 are presented in <u>Table 1</u>. Physical characteristics, such as elevation, groundwater temperature, and estimated time of recharge for each well between initial drawdown and sampling, are also included. Fecal coliform counts for Wells QM-62, -63, -67, and -81 were much higher than expected at various times during the year, so these wells are scheduled for decontamination before the end of 2014. <u>Table 2</u> lists the descriptive statistics for groundwater data of monitoring wells QM-53 through QM-82 for the year 2013.

**Observation Wells.** Groundwater elevations for observation wells OM-1 through -23 were measured at the required frequencies. Adjusted elevations were calculated relative to the Chicago city datum (579.48 ft above mean sea level) at the intersection of Madison and State Streets (<u>Table 3</u>). The minimum, mean, and maximum values for each well were calculated and plotted to determine fluctuations in groundwater elevations during the year (<u>Figure 3</u>). These fluctuations appeared to be minimal throughout the year.

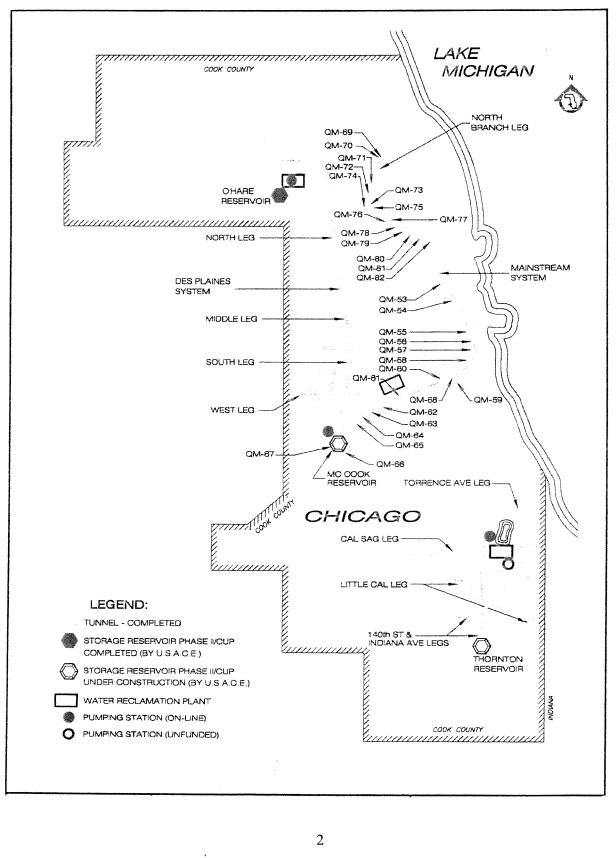



FIGURE 1: MAP OF MONITORING WELLS IN THE MAINSTREAM TUNNEL SYSTEM

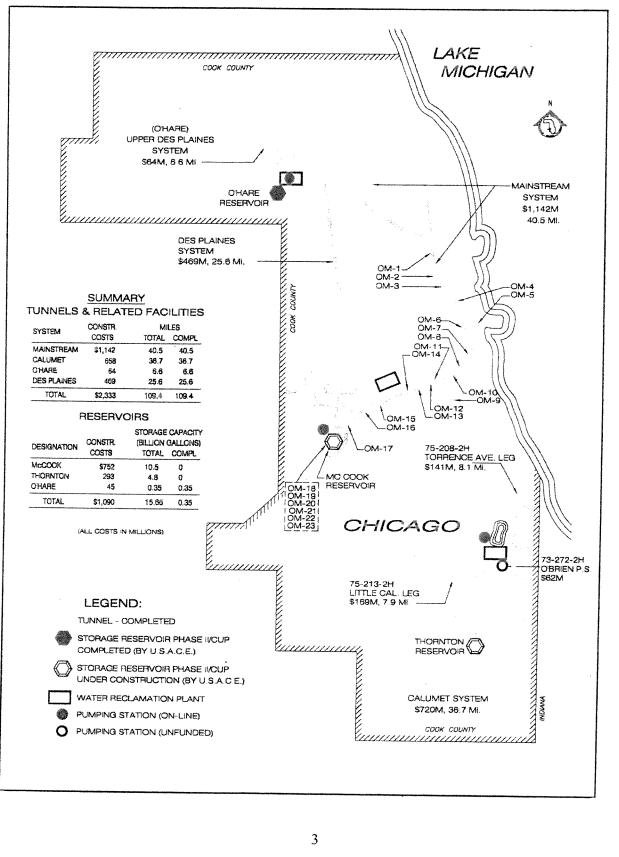



FIGURE 2: MAP OF OBSERVATION WELLS IN THE MAINSTREAM TUNNEL SYSTEM

### TABLE 1: ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QM-53 THROUGH QM-82 IN THEMAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

| Well <sup>1</sup> | Sample Date | pН  | EC <sup>2</sup> | TDS <sup>2</sup>                                           | TOC <sup>2</sup>                                                     | Cl  | SO4 <sup>2-</sup> | NH3-N                                                                                                            | Hardness | Fecal<br>Coliform | Temp | Water<br>Elevation <sup>3</sup> | Recharge<br>Time |
|-------------------|-------------|-----|-----------------|------------------------------------------------------------|----------------------------------------------------------------------|-----|-------------------|------------------------------------------------------------------------------------------------------------------|----------|-------------------|------|---------------------------------|------------------|
|                   |             |     |                 |                                                            |                                                                      |     |                   |                                                                                                                  |          | MPN/100<br>mL     | °C   | ft.                             | hr.              |
|                   |             |     | mS/m            | 447 448 347 <sup>348</sup> 447 449 341 341 347 449 348 347 | ana any kita laka mina ana alao piki itoa kaka vaar kan way rife Ada |     | mg/L              | 1999 (1999 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 (1997 |          | IIIL.             |      | It.                             | nr.              |
| QM-53             | 04/04/13    | 7.9 | 41              | 198                                                        | <1                                                                   | 19  | 34                | 0.12                                                                                                             | 152      | <1                | 11.9 | -37                             | <48              |
| QM-53             | 06/13/13    | 7.4 | 51              | 226                                                        | <1                                                                   | 14  | 36                | 0.10                                                                                                             | 150      | <1                | 12.3 | -33                             | <48              |
| QM-53             | 10/09/13    | 8.2 | 25              | 186                                                        | <1                                                                   | 15  | 33                | <0.10                                                                                                            | 150      | <1                | 12.4 | -40                             | <48              |
| QM-61             | 01/02/13    | 7.3 | 28              | 336                                                        | 1                                                                    | 60  | 21                | 0.27                                                                                                             | 138      | 110               | 8.4  | -174                            | . <4             |
| QM-61             | 05/13/13    | 7.6 | 47              | 378                                                        | 2                                                                    | 67  | 23                | 0.60                                                                                                             | 147      | 28                | 13.9 | -164                            | <4               |
| QM-61             | 09/04/13    | 8.1 | 51              | 306                                                        | 1                                                                    | 45  | 6                 | 0.31                                                                                                             | 114      | <1                | 14.4 | -164                            | <4               |
| QM-62             | 03/27/13    | 6.9 | 57              | 430                                                        | 1                                                                    | 100 | 33                | 0.82                                                                                                             | 189      | 2,200             | 13.7 | -191                            | <48              |
| QM-62             | 05/15/13    | 7.3 | 60              | 396                                                        | 1                                                                    | 57  | 36                | 0.67                                                                                                             | 188      | 23                | 14.7 | -183                            | <48              |
| QM-62             | 08/22/13    | 7.8 | 51              | 412                                                        | 3                                                                    | 47  | 43                | 0.64                                                                                                             | 188      | 11                | 14.1 | -188                            | <48              |
| QM-62             | 09/18/13    | 7.8 | 52              | 428                                                        | 1                                                                    | 47  | 43                | 0.49                                                                                                             | 183      | 1                 | 14.1 | -86                             | <48              |
| QM-62             | 10/10/13    | 7.6 | 44              | 370                                                        | 1                                                                    | 46  | 41                | 0.52                                                                                                             | 177      | 870               | 13.7 | -191                            | <48              |
| QM-62             | 11/07/13    | 7.5 | 49              | 394                                                        | 1                                                                    | 43  | 40                | 0.62                                                                                                             | 171      | 14,000            | 13.4 | -162                            | <48              |
| QM-63             | 02/28/13    | 7.2 | 103             | 1,812                                                      | 3                                                                    | 49  | 1,002             | 2.2                                                                                                              | 1,051    | <1                | 13.5 | -191                            | <48              |
| QM-63             | 05/15/13    | 7.4 | 198             | 1,862                                                      | 2                                                                    | 48  | 982               | 2.4                                                                                                              | 945      | 15                | 14.4 | -186                            | <48              |
| QM-63             | 08/22/13    | 7.6 | 164             | 1,988                                                      | 3                                                                    | 50  | 993               | 2.3                                                                                                              | 949      | <1                | 14.2 | -188                            | <48              |
| QM-63             | 09/18/13    | 7.5 | 79              | 1,902                                                      | 3                                                                    | 52  | 1,023             | 2.4                                                                                                              | 946      | <1                | 14.9 | -192                            | <48              |
| QM-63             | 10/10/13    | 7.6 | 159             | 1,748                                                      | 2                                                                    | 50  | 935               | 2.2                                                                                                              | 920      | 380               | 13.4 | -217                            | $<\!\!48$        |
| QM-63             | 11/07/13    | 7.6 | 151             | 1,658                                                      | 2                                                                    | 47  | 849               | 2.4                                                                                                              | 834      | 3,300             | 13.2 | -194                            | <48              |
| QM-64             | 01/02/13    | 7.7 | 42              | 424                                                        | 1                                                                    | 50  | 41                | 1.6                                                                                                              | 209      | 22                | 10.9 | -174                            | <4               |
| QM-64             | 05/13/13    | 7.2 | 54              | 428                                                        | 2                                                                    | 56  | 34                | 1.7                                                                                                              | 203      | 36                | 14.1 | -161                            | <4               |
| QM-64             | 08/05/13    | 7.4 | 62              | 468                                                        | 2                                                                    | 48  | 41                | 1.7                                                                                                              | 239      | 51                | 13.9 | -171                            | <4               |
| QM-64             | 09/04/13    | 7.8 | 56              | 408                                                        | 1                                                                    | 48  | 30                | 1.5                                                                                                              | 189      | 1                 | 15.1 | -166                            | <4               |

## TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QM-53 THROUGH QM-82 IN THEMAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

| Well <sup>1</sup> | Sample Date | рН  | $EC^2$     | TDS <sup>2</sup> | $TOC^2$  | Cľ     | SO4 <sup>2-</sup> | NH3-N | Hardness | Fecal<br>Coliform | Temp | Water<br>Elevation <sup>3</sup> | Recharge<br>Time |
|-------------------|-------------|-----|------------|------------------|----------|--------|-------------------|-------|----------|-------------------|------|---------------------------------|------------------|
|                   |             |     | mS/m       |                  |          | r      | ng/]              |       |          | MPN/100<br>mL     | °C   | ft                              | hr               |
|                   |             |     | 111.5/ 111 |                  |          | 1      | 19.12             |       |          | me                | C    |                                 |                  |
| QM-64             | 10/23/13    | 7.6 | 53         | 414              | 2        | 52     | 37                | 1.6   | 193      | 27                | 13.0 | -168                            | <4               |
| QM-64             | 11/25/13    | 7.6 | 57         | 430              | 2        | 54     | 38                | 1.7   | 203      | 240               | 14.4 | -166                            | <4               |
| QM-66             | 04/04/13    | 10  | 89         | 1,244            | <]       | 184    | 149               | 1.1   | 3        | <1                | 13.0 | -312                            | <48              |
| QM-66             | 06/13/13    | 8.2 | 72         | 1,184            | 1        | $NA^4$ | 235               | 0.92  | 19       | 8                 | 13.3 | -316                            | <48              |
| QM-66             | 10/10/13    | 11  | 283        | 1,400            | <1       | 167    | 174               | 0.67  | 4        | <1                | 14.2 | -309                            | <48              |
| QM-67             | 02/28/13    | 7.0 | 90         | 622              | 9        | 157    | <5                | 12    | 294      | 1,300             | 12.4 | -153                            | <48              |
| QM-67             | 04/04/13    | 7.0 | 92         | 748              | 7        | 221    | 7                 | 13    | 324      | 370               | 13.2 | -151                            | <48              |
| QM-67             | 06/13/13    | 7.3 | 83         | 744              | 3        | 311    | 8                 | 12    | 289      | 2,600             | 12.1 | -151                            | $<\!\!48$        |
| QM-67             | 08/29/13    | 7.5 | 106        | 714              | 3        | 190    | <5                | 12    | 270      | 11                | 14.5 | -151                            | <48              |
| QM-67             | 09/18/13    | 7.6 | 98         | 668              | 3        | 161    | 11                | 11    | 243      | 85                | 14.3 | -153                            | <48              |
| QM-67             | 10/10/13    | 7.5 | 87         | 576              | 3        | 139    | 13                | 11    | 230      | 570               | 13.9 | -156                            | <48              |
| QM-68             | 04/04/13    | 6.8 | 51         | 262              | <1       | 31     | 39                | 0.62  | 212      | 17                | 13.5 | -130                            | <48              |
| QM-68             | 06/13/13    | 7.1 | 41         | 306              | $\leq 1$ | 25     | 37                | 0.60  | 204      | 11                | 12.5 | -126                            | <48              |
| QM-68             | 10/09/13    | 8.1 | 33         | 260              | <1       | 26     | 33                | 0.63  | 196      | 570               | 13.6 | -133                            | <48              |
| QM-69             | 02/07/13    | 8.2 | 27         | NA               | 3        | 35     | NA                | 0.92  | 165      | <]                | 10.5 | -33                             | <48              |
| QM-69             | 07/25/13    | 7.7 | 32         | 302              | 2        | 34     | 40                | 0.95  | 159      | <1                | 14.0 | -24                             | <48              |
| QM-69             | 09/19/13    | 7.6 | 41         | 296              | 1        | 38     | 40                | 0.92  | 158      | <1                | 10.8 | -44                             | <48              |
| QM-70             | 02/07/13    | 8.1 | 24         | NA               | 1        | 47     | NA                | 0.39  | .162     | <1                | 11.0 | -52                             | <48              |
| QM-70             | 07/25/13    | 7.7 | 29         | 318              | 2        | 47     | 51                | 0.41  | 164      | <1                | 19.1 | -52                             | <48              |
| QM-70             | 09/19/13    | 7.4 | 38         | 318              | <1       | 48     | 49                | 0.40  | 162      | <1                | 10.9 | -73                             | <48              |

# TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QM-53 THROUGH QM-82 IN THE MAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

| Well <sup>1</sup> | Sample Date | pН  | EC <sup>2</sup> | TDS <sup>2</sup> | $TOC^2$ | Cľ  | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal<br>Coliform | Temp | Water<br>Elevation <sup>3</sup> | Recharge<br>Time |
|-------------------|-------------|-----|-----------------|------------------|---------|-----|-------------------|--------------------|----------|-------------------|------|---------------------------------|------------------|
|                   |             |     | 0/              |                  |         |     | ~/1               |                    |          | MPN/100<br>mL     | °C   | ft                              | hr               |
|                   |             |     | mS/m            |                  |         | m   | 1g/L,             |                    |          | IIII.2            | C    | п                               | 111              |
| QM-71             | 02/07/13    | 7.7 | 30              | NA               | <1      | 126 | NA                | 0.46               | 209      | <1                | 10.9 | -59                             | <48              |
| QM-71             | 07/25/13    | 7.7 | 38              | 482              | <1      | 122 | 66                | 0.48               | 211      | <1                | 13.5 | -58                             | <48              |
| QM-71<br>QM-71    | 09/19/13    | 7.6 | 48              | 506              | <1      | 122 | 66                | 0.47               | 210      | <1                | 10.4 | -62                             | <48              |
| QM-72             | 02/07/13    | 7.4 | 25              | 418              | <1      | 124 | <5                | 0.39               | 212      | <1                | 11.5 | -75                             | <48              |
| QM-72             | 07/25/13    | 7.7 | 35              | 464              | 1       | 123 | <5                | 0.40               | 230      | <1                | 12.8 | -79                             | <48              |
| QM-72             | 09/19/13    | 7.3 | 42              | 514              | 1       | 126 | <5                | 0.39               | 227      | <1                | 10.4 | -82                             | <48              |
| QM-73             | 04/11/13    | 7.7 | 28              | 296              | 1       | 41  | <5                | 0.31               | 168      | <1                | 12.8 | -166                            | <48              |
| QM-73             | 08/22/13    | 7.8 | 38              | 302              | 1       | 34  | <5                | 0.34               | 163      | <1                | 13.9 | -136                            | <48              |
| QM-73             | 10/30/13    | 7.9 | 37              | 280              | 1       | 35  | <5                | 0.35               | 162      | <1                | 12.1 | -161                            | <48              |
| QM-74             | 04/11/13    | 8.1 | 27              | 254              | 2       | 15  | <5                | 0.28               | 117      | <1                | 12.7 | -13                             | <48              |
| QM-74             | 08/22/13    | 8.0 | 35              | 292              | 2       | 53  | <5                | 0.17               | 113      | <1                | 12.9 | -13                             | <48              |
| QM-74             | 10/30/13    | 8.0 | 35              | 262              | 2       | 56  | <5                | 0.22               | 111      | <1                | 12.4 | -14                             | <48              |
| QM-75             | 01/31/13    | 8.5 | 278             | 226              | <1      | 12  | 15                | 0.18               | 707      | <1                | 7.7  | -77                             | <48              |
| QM-75             | 04/11/13    | 7.4 | 24              | 216              | <1      | 15  | 9                 | 0.27               | 73       | 8                 | 11.5 | -62                             | <48              |
| QM-75             | 06/13/13    | 8.0 | 166             | 234              | <1      | 10  | 12                | 0.23               | 69       | 4                 | 12.2 | -78                             | <48              |
| QM-75             | 09/19/13    | 7.8 | 25              | 222              | <1      | 12  | 11                | 0.24               | 66       | <1                | 12.3 | -62                             | <48              |
| QM-75             | 10/09/13    | 8.2 | 27              | 216              | <1      | 13  | 8                 | 0.28               | 64       | 40                | 12.4 | -62                             | <48              |
| QM-75             | 11/07/13    | 8.4 | 28              | 288              | <1      | 14  | 6                 | 0.29               | 64       | 270               | 11.9 | -81                             | <48              |
| QM-76             | 04/11/13    | 7.8 | 32              | 304              | I       | 15  | 46                | 0.36               | 46       | <1                | 12.5 | -187                            | <48              |
| QM-76             | 09/18/13    | 8.2 | 41              | 328              | <1      | 12  | 17                | 0.28               | 42       | <1                | 12.7 | -187                            | <48              |
| QM-76             | 10/09/13    | 8.7 | 36              | 292              | <1      | 14  | 16                | 0.32               | 34       | <1                | 13.1 | -185                            | <48              |

| Well <sup>1</sup> | Sample Date | pН  | EC <sup>2</sup> | TDS <sup>2</sup> | TOC <sup>2</sup> | Cl | SO4 <sup>2-</sup> | NH3-N  | Hardness | Fecal<br>Coliform | Temp | Water<br>Elevation <sup>3</sup> | Recharge<br>Time |
|-------------------|-------------|-----|-----------------|------------------|------------------|----|-------------------|--------|----------|-------------------|------|---------------------------------|------------------|
|                   |             |     | mS/m            |                  |                  | n  | ng/L              |        |          | MPN/100<br>mL     | °C   | ft                              | hr               |
| QM-77             | 04/11/13    | 7.5 | 21              | 162              | <1               | 13 | <5                | 0.16   | 50       | 8                 | 11.2 | -174                            | <48              |
| QM-77             | 09/18/13    | 8.1 | 22              | 188              | <1               | 11 | <5                | < 0.10 | 47       | <1                | 13.7 | -177                            | <48              |
| QM-77             | 10/09/13    | 8.0 | 18              | 138              | <1               | 10 | <5                | < 0.10 | 48       | 22                | 12.2 | -174                            | <48              |
| QM-78             | 01/31/13    | 8.0 | 338             | 298              | <1               | 10 | 45                | < 0.10 | 782      | <1                | 6.4  | -162                            | <48              |
| QM-78             | 04/11/13    | 8.9 | 40              | 276              | <1               | 13 | 42                | 0.10   | 11       | <1                | 11.6 | -166                            | <48              |
| QM-78             | 06/13/13    | 8.7 | 227             | 300              | <1               | 10 | 41                | < 0.10 | 10       | <1                | 12.4 | -160                            | <48              |
| QM-78             | 08/29/13    | 9.0 | 34              | 322              | <1               | 11 | 35                | 0.14   | 10       | <1                | 12.9 | -156                            | <48              |
| QM-78             | 09/19/13    | 8.5 | 35              | 284              | <1               | 11 | 42                | < 0.10 | 32       | <1                | 12.1 | -170                            | <48              |
| QM-78             | 12/05/13    | 8.1 | 34              | 284              | <1               | 11 | 39                | 0.10   | 10       | <1                | 10.9 | -160                            | <48              |
| QM-79             | 01/31/13    | 7.9 | 362             | 322              | <1               | 18 | 18                | < 0.10 | 415      | <1                | 9.1  | -152                            | <48              |
| QM-79             | 04/11/13    | 9.0 | 38              | 446              | <1               | 18 | 19                | 0.11   | 15       | <1                | 11.5 | -154                            | <48              |
| QM-79             | 06/13/13    | 8.8 | 253             | 306              | <1               | 15 | 17                | < 0.10 | 12       | <1                | 11.8 | -149                            | <48              |
| QM-79             | 08/29/13    | 8.6 | 37              | 318              | <1               | 15 | 20                | < 0.10 | 14       | <1                | 14.1 | -153                            | <48              |
| QM-79             | 09/19/13    | 8.5 | 39              | 316              | <1               | 20 | 14                | 0.11   | 8        | <1                | 12.9 | -156                            | <48              |
| QM-79             | 12/05/13    | 8.0 | 35              | 274              | <1               | 16 | 18                | <0.10  | 12       | <1                | 11.8 | -147                            | <48              |
| QM-80             | 02/07/13    | 8.0 | 22              | 180              | <1               | 12 | <5                | < 0.10 | 24       | <1                | 11.8 | -145                            | <48              |
| QM-80             | 04/11/13    | 8.8 | 28              | 218              | <1               | 15 | <5                | < 0.10 | 26       | <1                | 11.9 | -138                            | <48              |
| QM-80<br>QM-80    | 06/13/13    | 8.4 | 194             | 202              | <1               | 11 | <5                | < 0.10 | 23       | <1                | 12.1 | -145                            | <48              |
| QM-80             | 08/29/13    | 8.7 | 24              | 214              | <1               | 13 | <5                | < 0.10 | 23       | <1                | 13.1 | -146                            | <48              |
| QM-80             | 09/19/13    | 8.5 | 24              | 186              | <1               | 14 | <5                | < 0.10 | 23       | <1                | 13.0 | -144                            | <48              |
| QM-80             | 12/05/13    | 8.2 | 23              | 188              | <1               | 13 | <5                | < 0.10 | 22       | <1                | 11.2 | -137                            | <48              |

### TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QM-53 THROUGH QM-82 IN THEMAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

### TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QM-53 THROUGH QM-82 IN THE MAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

| Well <sup>1</sup>                                  | Sample Date                                                          | рН                                     | EC <sup>2</sup>                  | TDS <sup>2</sup>                       | TOC <sup>2</sup>      | Cl                               | SO4 <sup>2-</sup>              | NH <sub>3</sub> -N                               | Hardness                         | Fecal<br>Coliform                | Temp                                         | Water<br>Elevation <sup>3</sup>              | Recharge<br>Time                                     |
|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|-----------------------|----------------------------------|--------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|
| QM-81                                              | 02/07/13                                                             | 7.8                                    | mS/m<br>22                       |                                        |                       |                                  | ng/L,                          |                                                  |                                  | MPN/100<br>mL                    | °C                                           | ft                                           | hr                                                   |
| QM-81<br>QM-81                                     | 04/11/13<br>09/19/13                                                 | 8.3<br>8.2                             | 40<br>30                         | 230<br>232<br>242                      | <1<br><1<br><1        | 20<br>23<br>18                   | 13<br>11<br>15                 | <0.10<br><0.10<br><0.10                          | 35<br>37<br>34                   | <1<br><1<br>760                  | 11.4<br>12.2<br>12.3                         | -130<br>-127<br>-132                         | <48<br><48<br><48                                    |
| QM-82<br>QM-82<br>QM-82<br>QM-82<br>QM-82<br>QM-82 | 02/07/13<br>04/11/13<br>06/13/13<br>08/29/13<br>09/19/13<br>12/05/13 | 8.3<br>8.8<br>8.6<br>8.6<br>8.6<br>8.3 | 29<br>50<br>25<br>38<br>36<br>35 | 286<br>276<br>318<br>342<br>284<br>276 | 1<br>1<br>1<br>1<br>1 | 29<br>30<br>28<br>29<br>29<br>30 | 9<br>800<br>12<br>8<br>7<br>10 | <0.10<br>0.10<br>0.10<br><0.10<br><0.10<br><0.10 | 15<br>18<br>14<br>15<br>16<br>15 | <1<br><1<br><1<br><1<br><1<br><1 | 11.9<br>12.3<br>13.2<br>15.1<br>14.3<br>12.5 | -186<br>-188<br>-189<br>-184<br>-189<br>-185 | <48<br><48<br><48<br><48<br><48<br><48<br><48<br><48 |

<sup>1</sup>Samples retrieved from QM-66 during 2013; well classified as intermittently dry.

 ${}^{2}\text{EC}$  = electrical conductivity; TDS = total dissolved solids; TOC = total dissolved organic carbon. <sup>3</sup>Relative to Chicago city datum (579.48 ft above mean sea level) at intersection of Madison and State Streets.

<sup>4</sup>No analysis; sample insufficient for re-run.

| Well  | Statistic          | pН  | EC <sup>1</sup> | TDS <sup>1</sup> | TOC <sup>1</sup> | Cľ  | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal Coliform <sup>2</sup> |
|-------|--------------------|-----|-----------------|------------------|------------------|-----|-------------------|--------------------|----------|-----------------------------|
|       |                    |     | mS/m            |                  |                  |     | mg/L              |                    |          | MPN/100 mL                  |
| QM-53 | Minimum            | 7.4 | 25              | 186              | <1               | 14  | 33                | 0.10               | 150      | <1                          |
|       | Mean               | 7.9 | 39              | 203              | <1               | 16  | 34                | 0.11               | 151      | <1                          |
|       | Maximum            | 8.2 | 51              | 226              | <1               | 19  | 36                | 0.12               | 152      | <1                          |
|       | Std. Dev.          | 0.4 | 13              | 21               | 0                | 3   | 2                 | 0.01               | 1        | $NA^3$                      |
|       | Median             | 7.9 | 41              | 198              | <1               | 15  | 34                | 0.11               | 150      | <1                          |
|       | Coeff. of Var. (%) | 5.2 | 34              | 10               | 0                | 17  | 5                 | 13                 | 1        | NA                          |
| QM-61 | Minimum            | 7.3 | 28              | 306              | 1                | 45  | 6                 | 0.27               | 114      | <1                          |
|       | Mean               | 7.7 | 42              | 340              | 2                | 57  | 16                | 0.39               | 133      | 15                          |
|       | Maximum            | 8.1 | 51              | 378              | 2                | 67  | 23                | 0.60               | 147      | 110                         |
|       | Std. Dev.          | 0.4 | 12              | 36               | 1                | 11  | 9                 | 0.18               | 17       | NA                          |
|       | Median             | 7.6 | 47              | 336              | 1                | 60  | 21                | 0.31               | 138      | 28                          |
|       | Coeff. of Var. (%) | 5.7 | 29              | 11               | 36               | 20  | 55                | 46                 | 13       | NA                          |
| QM-62 | Minimum            | 6.9 | 44              | 370              | 1                | 43  | 33                | 0.49               | 171      | 1                           |
|       | Mean               | 7.5 | 52              | 405              | 2                | 57  | 39                | 0.63               | 183      | 138                         |
|       | Maximum            | 7.8 | 60              | 430              | 3                | 100 | 43                | 0.82               | 189      | 14,000                      |
|       | Std. Dev.          | 0.3 | 6               | 23               | 1                | 22  | 4                 | 0.12               | 7        | NA                          |
|       | Median             | 7.5 | 52              | 404              | 1                | 47  | 40                | 0.63               | 186      | 447                         |
|       | Coeff. of Var. (%) | 4.4 | 11              | 6                | 54               | 38  | 11                | 19                 | 4        | NA                          |
| QM-63 | Minimum            | 7.2 | 79              | 1,658            | 2                | 47  | 849               | 2.2                | 834      | 1                           |
|       | Mean               | 7.5 | 142             | 1,828            | 2                | 49  | 964               | 2.3                | 941      | 16                          |
|       | Maximum            | 7.6 | 198             | 1,988            | 3                | 52  | 1,023             | 2.4                | 1,051    | 3,300                       |
|       | Std. Dev.          | 0.2 | 44              | 116              | 0.1              | 2   | 64                | 0.07               | 69       | NA                          |

| Well  | Statistic          | рН  | $EC^1$ | TDS <sup>1</sup> | TOC <sup>1</sup> | Cľ  | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal Coliform <sup>2</sup> |
|-------|--------------------|-----|--------|------------------|------------------|-----|-------------------|--------------------|----------|-----------------------------|
|       |                    |     | mS/m   |                  |                  |     | mg/L              |                    |          | MPN/100 mL                  |
|       | Median             | 7.5 | 155    | 1,837            | 2                | 50  | 987               | 2.3                | 946      | 8                           |
|       | Coeff. of Var. (%) | 2.3 | 31     | 6                | 5                | 4   | 7                 | 3.2                | 7        | NA                          |
| QM-64 | Minimum            | 7.2 | 42     | 408              | 1                | 48  | 30                | 1.5                | 189      | 1                           |
|       | Mean               | 7.6 | 54     | 429              | 2                | 51  | 37                | 1.6                | 206      | 25                          |
|       | Maximum            | 7.8 | 62     | 468              | 2                | 56  | 41                | 1.7                | 239      | 240                         |
|       | Std. Dev.          | 0.2 | 7      | 21               | 0.1              | 3   | 4                 | 0.08               | 18       | NA                          |
|       | Median             | 7.6 | 55     | 426              | 2                | 51  | 37                | 1.6                | 203      | 32                          |
|       | Coeff. of Var. (%) | 2.9 | 13     | 5                | 10               | 6   | 11                | 4.6                | 9        | NA                          |
| QM-66 | Minimum            | 8.2 | 72     | 1,184            | <]               | 167 | 149               | 0.67               | 3        | <1                          |
|       | Mean               | 9.8 | 148    | 1,276            | <1               | 176 | 186               | 0.89               | 9        | 2                           |
|       | Maximum            | 11  | 283    | 1,400            | 1                | 184 | 235               | 1.1                | 19       | 8                           |
|       | Std. Dev.          | 1.4 | 117    | 111              | 0                | 12  | 44                | 0.20               | 9        | NA                          |
|       | Median             | 10  | 89     | 1,244            | 1                | 176 | 174               | 0.92               | 4        | 1                           |
|       | Coeff. of Var. (%) | 15  | 79     | 9                | 0                | 7   | 24                | 23                 | 103      | NA                          |
| QM-67 | Minimum            | 7.0 | 83     | 576              | 3                | 139 | 7                 | 11                 | 230      | 11                          |
|       | Mean               | 7.3 | 93     | 679              | 5                | 197 | 10                | 12                 | 275      | 296                         |
|       | Maximum            | 7.6 | 106    | 748              | 9                | 311 | 13                | 13                 | 324      | 2,600                       |
|       | Std. Dev.          | 0.3 | 8      | 70               | 2                | 63  | 2                 | 0.70               | 35       | NA                          |
|       | Median             | 7.4 | 91     | 691              | 3                | 176 | 10                | 12                 | 280      | 470                         |
|       | Coeff. of Var. (%) | 3.5 | 9      | 10               | 52               | 32  | 25                | 5.9                | 13       | NA                          |

豪

| Well  | Statistic          | pH  | $EC^1$ | TDS <sup>1</sup> | TOC <sup>1</sup> | Cľ  | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal Coliform <sup>2</sup> |
|-------|--------------------|-----|--------|------------------|------------------|-----|-------------------|--------------------|----------|-----------------------------|
| QM-68 | Minimum            | 6.8 | 33     | 260              | <1               | 25  | 33                | 0.60               | 196      | 11                          |
|       | Mean               | 7.3 | 42     | 276              | <1               | 27  | 36                | 0.62               | 204      | 47                          |
|       | Maximum            | 8.1 | 51     | 306              | <1               | 31  | 39                | 0.63               | 212      | 570                         |
|       | Std. Dev.          | 0.6 | 9      | 26               | 0                | 3   | 3                 | 0.02               | . 8      | NA                          |
|       | Median             | 7.1 | 41     | 262              | <1               | 26  | 37                | 0.62               | 204      | 17                          |
|       | Coeff. of Var. (%) | 8.7 | 21     | 9                | 0                | 12  | 9                 | 2.5                | 4        | NA                          |
| QM-69 | Minimum            | 7.6 | 27     | 296              | 1                | 34  | 40                | 0.92               | 158      | <1                          |
|       | Mean               | 7.8 | 33     | 299              | 2                | 36  | 40                | 0.93               | 161      | <1                          |
|       | Maximum            | 8.2 | 41     | 302              | 3                | 38  | 40                | 1.0                | 165      | <1                          |
|       | Std. Dev.          | 0.3 | 7      | 4                | 1                | 2   | 0.2               | 0.02               | 4        | NA                          |
|       | Median             | 7.7 | 32     | 299              | 2                | 35  | 40                | 0.92               | 159      | <1                          |
|       | Coeff. of Var. (%) | 3.9 | 21     | 1                | 51               | 6   | 1                 | 1.9                | 2        | NA                          |
| QM-70 | Minimum            | 7.4 | 24     | 318              | 1                | 47  | 49                | 0.39               | 162      | <1                          |
|       | Mean               | 7.7 | 30     | 318              | 1                | 47  | 50                | 0.40               | 163      | <1                          |
|       | Maximum            | 8.1 | 38     | 318              | 2                | 48  | 51                | 0.41               | 164      | <1                          |
|       | Std. Dev.          | 0.3 | 7      | 0                | 0.4              | 1   | 1                 | 0.01               | 1        | NA                          |
|       | Median             | 7.7 | 29     | 318              | 1                | 47  | 50                | 0.40               | 162      | <1                          |
|       | Coeff. of Var. (%) | 4.3 | 23     | 0                | 28               | 1   | 3                 | 2.5                | 1        | NA                          |
| QM-71 | Minimum            | 7.6 | 30     | 482              | <1               | 122 | 66                | 0.46               | 209      | <1                          |
|       | Mean               | 7.6 | 39     | 494              | <1               | 123 | 66                | 0.47               | 210      | <1                          |
|       | Maximum            | 7.7 | 48     | 506              | <1               | 126 | 66                | 0.48               | 211      | <1                          |
|       | Std. Dev.          | 0.0 | 9      | 17               | 0                | 2   | 0.4               | 0.01               | 1        | NA                          |
|       | Median             | 7.7 | 38     | 494              | <1               | 122 | 66                | 0.47               | 210      | <1                          |

| Well  | Statistic          | pH  | EC <sup>1</sup> | TDS <sup>1</sup> | TOC <sup>1</sup> | Cľ  | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal Coliform <sup>2</sup> |
|-------|--------------------|-----|-----------------|------------------|------------------|-----|-------------------|--------------------|----------|-----------------------------|
|       | Coeff. of Var. (%) | 0.5 | 24              | 3                | 0                | 2   | 1                 | 2.1                | 0        | NA                          |
| QM-72 | Minimum            | 7.3 | 25              | 418              | <1               | 123 | <5                | 0.39               | 212      | <1                          |
|       | Mean               | 7.5 | 34              | 465              | l                | 124 | <5                | 0.39               | 223      | <1                          |
|       | Maximum            | 7.7 | 42              | 514              | 1                | 126 | <5                | 0.40               | 230      | <1                          |
|       | Std. Dev.          | 0.2 | 9               | 48               | 0.2              | 2   | 0                 | 0.01               | 10       | NA                          |
|       | Median             | 7.4 | 35              | 464              | 1                | 124 | <5                | 0.39               | 227      | <1                          |
|       | Coeff. of Var. (%) | 2.9 | 26              | 10               | 21               | 1   | 0                 | 1.5                | 4        | NA                          |
| QM-73 | Minimum            | 7.7 | 28              | 280              | 1                | 34  | <5                | 0.31               | 162      | <1                          |
|       | Mean               | 7.8 | 34              | 293              | 1                | 37  | <5                | 0.33               | 164      | <1                          |
|       | Maximum            | 7.9 | 38              | 302              | 1                | 41  | <5                | 0.35               | 168      | <1                          |
|       | Std. Dev.          | 0.1 | 6               | 11               | 0.1              | 4   | 0                 | 0.02               | 3        | NA                          |
|       | Median             | 7.8 | 37              | 296              | 1                | 35  | <5                | 0.34               | 163      | <1                          |
|       | Coeff. of Var. (%) | 1.4 | 17              | 4                | 4                | 10  | 0                 | 6.2                | 2        | NA                          |
| QM-74 | Minimum            | 8.0 | 27              | 254              | 2                | 15  | <5                | 0.17               | 111      | <1                          |
|       | Mean               | 8.0 | 32              | 269              | 2                | 41  | <5                | 0.22               | 114      | <1                          |
|       | Maximum            | 8.1 | 35              | 292              | 2                | 56  | <5                | 0.28               | 117      | <1                          |
|       | Std. Dev.          | 0.1 | 5               | 20               | 0.2              | 23  | 0                 | 0.06               | 3        | NA                          |
|       | Median             | 8.0 | 35              | 262              | 2                | 53  | <5                | 0.22               | 113      | <1                          |
|       | Coeff. of Var. (%) | 0.6 | 15              | 7                | 12               | 55  | 0                 | 25                 | 3        | NA                          |
| QM-75 | Minimum            | 7.4 | 24              | 216              | <1               | 10  | 6                 | 0.18               | 64       | 1                           |
|       | Mean               | 8.0 | 91              | 234              | <1               | 13  | 10                | 0.25               | 174      | 8                           |
|       | Maximum            | 8.5 | 278             | 288              | <1               | 15  | 15                | 0.29               | 707      | 270                         |

| Well  | Statistic          | pH  | EC <sup>1</sup> | $TDS^1$ | $TOC^1$ | Cl | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal Coliform <sup>2</sup> |
|-------|--------------------|-----|-----------------|---------|---------|----|-------------------|--------------------|----------|-----------------------------|
|       | Std. Dev.          | 0.4 | 107             | 27      | 0       | 2  | 3                 | 0.04               | 261      | NA                          |
|       | Median             | 8.1 | 28              | 224     | <1      | 13 | 10                | 0.26               | 68       | 6                           |
|       | Coeff. of Var. (%) | 5.0 | 117             | 12      | 0       | 14 | 30                | 16                 | 150      | NA                          |
| QM-76 | Minimum            | 7.8 | 32              | 292     | <1      | 12 | 16                | 0.28               | 34       | <1                          |
|       | Mean               | 8.2 | 36              | 308     | 1       | 14 | 26                | 0.32               | 41       | <1                          |
|       | Maximum            | 8.7 | 41              | 328     | 1       | 15 | 46                | 0.36               | 46       | <1                          |
|       | Std. Dev.          | 0.4 | 5               | 18      | 0       | 2  | 17                | 0.04               | 6        | NA                          |
|       | Median             | 8.2 | 36              | 304     | 1       | 14 | 17                | 0.32               | 42       | <1                          |
|       | Coeff. of Var. (%) | 5.2 | 14              | 6       | 0       | 11 | 64                | 13                 | 15       | NA                          |
| QM-77 | Minimum            | 7.5 | 18              | 138     | <1      | 10 | <5                | < 0.10             | 47       | <1                          |
|       | Mean               | 7.8 | 20              | 163     | <1      | 11 | <5                | 0.12               | 48       | 6                           |
|       | Maximum            | 8.1 | 22              | 188     | <1      | 13 | <5                | 0.16               | 50       | 22                          |
|       | Std. Dev.          | 0.3 | 2               | 25      | 0       | 2  | 0                 | 0.03               | 2        | NA                          |
|       | Median             | 8.0 | 21              | 162     | <1      | 11 | <5                | 0.16               | 48       | 8                           |
|       | Coeff. of Var. (%) | 4.4 | 9               | 15      | 0       | 13 | 0                 | 25                 | 3        | NA                          |
| QM-78 | Minimum            | 8.0 | 34              | 276     | <1      | 10 | 35                | < 0.10             | 10       | <1                          |
|       | Mean               | 8.5 | 118             | 294     | <1      | 11 | 41                | 0.11               | 143      | <1                          |
|       | Maximum            | 9.0 | 338             | 322     | <1      | 13 | 45                | 0.14               | 782      | <1                          |
|       | Std. Dev.          | 0.4 | 132             | 16      | 0       | 1  | 3                 | 0.02               | 313      | NA                          |
|       | Median             | 8.6 | 37              | 291     | <1      | 11 | 42                | 0.10               | 11       | <1                          |
|       | Coeff. of Var. (%) | 4.9 | 112             | 6       | 0       | 10 | 8                 | 20                 | 220      | NA                          |

| Well  | Statistic          | рН          | EC <sup>1</sup> | TDS <sup>1</sup> | TOC <sup>1</sup> | Cľ | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal Coliform? |
|-------|--------------------|-------------|-----------------|------------------|------------------|----|-------------------|--------------------|----------|-----------------|
| QM-79 | Minimum            | 7.9         | 35              | 274              | <1               | 15 | 14                | <0.10              | 8        | <1              |
|       | Mean               | 8.5         | 127             | 330              | <1               | 17 | 18                | 0.10               | 79       | <1              |
|       | Maximum            | 9.0         | 362             | 446              | <1               | 20 | 20                | 0.11               | 415      | <1              |
|       | Std. Dev.          | 0.4         | 144             | 59               | 0                | 2  | 2                 | 0.01               | 164      | NA              |
| *     | Median             | 8.5         | 39              | 317              | <1               | 17 | 18                | 0.10               | 13       | <1              |
|       | Coeff. of Var. (%) | 5.3         | 113             | 18               | 0                | 12 | 11                | 5.2                | 207      | NA              |
| QM-80 | Minimum            | 8.0         | 22              | 180              | <1               | 11 | <5                | <0.10              | 22       | <1              |
|       | Mean               | 8.4         | 52              | 198              | <1               | 13 | <5                | < 0.10             | 24       | <1              |
|       | Maximum            | 8.8         | 194             | 218              | <1               | 15 | <5                | < 0.10             | 26       | <1              |
|       | Std. Dev.          | 0.3         | 70              | 16               | 0                | 1  | 0                 | 0.00               | 1        | NA              |
|       | Median             | 8.4         | 24              | 195              | <1               | 13 | <5                | < 0.10             | 23       | <1              |
|       | Coeff. of Var. (%) | 3.4         | 133             | 8                | 0                | 11 | 0                 | 0.00               | 6        | NA              |
| QM-81 | Minimum            | 7.8         | 22              | 230              | <1               | 18 | 11                | < 0.10             | 34       | <1              |
|       | Mean               | <b>8</b> .1 | 31              | 235              | <1               | 20 | 13                | < 0.10             | 35       | 9               |
|       | Maximum            | 8.3         | 40              | 242              | $\leq 1$         | 23 | 15                | < 0.10             | 37       | 760             |
|       | Std. Dev.          | 0.3         | 9               | 6                | 0                | 3  | 2                 | < 0.10             | 2        | NA              |
|       | Median             | 8.2         | 30              | 232              | <1               | 20 | 13                | 0.00               | 35       | 1               |
|       | Coeff. of Var. (%) | 3.1         | 29              | 3                | 0                | 12 | 14                | <0.10              | 4        | NA              |
| QM-82 | Minimum            | 8.3         | 25              | 276              | 1                | 28 | 7                 | <0.10              | 14       | <1              |
|       | Mean               | 8.5         | 35              | 297              | 1                | 29 | 141               | 0.10               | 16       | <1              |

| Well | Statistic          | pH  | $EC^1$ | TDS <sup>1</sup> | TOC <sup>1</sup> | Cľ | SO4 <sup>2-</sup> | NH <sub>3</sub> -N | Hardness | Fecal Coliform <sup>2</sup> |
|------|--------------------|-----|--------|------------------|------------------|----|-------------------|--------------------|----------|-----------------------------|
|      | Maximum            | 8.8 | 50     | 342              | 1                | 30 | 800               | 0.10               | 18       | <1                          |
|      | Std. Dev.          | 0.2 | 9      | 27               | 0.1              | 1  | 323               | 0.00               | 1        | NA                          |
|      | Median             | 8.6 | 35     | 285              | 1                | 29 | 9                 | 0.10               | 15       | <1                          |
|      | Coeff. of Var. (%) | 2.1 | 24     | 9                | 11               | 3  | 229               | 0.00               | 9        | NA                          |

<sup>1</sup>EC = electrical conductivity; TDS = total dissolved solids; TOC = total dissolved organic carbon.

<sup>2</sup>Geometric mean calculated.

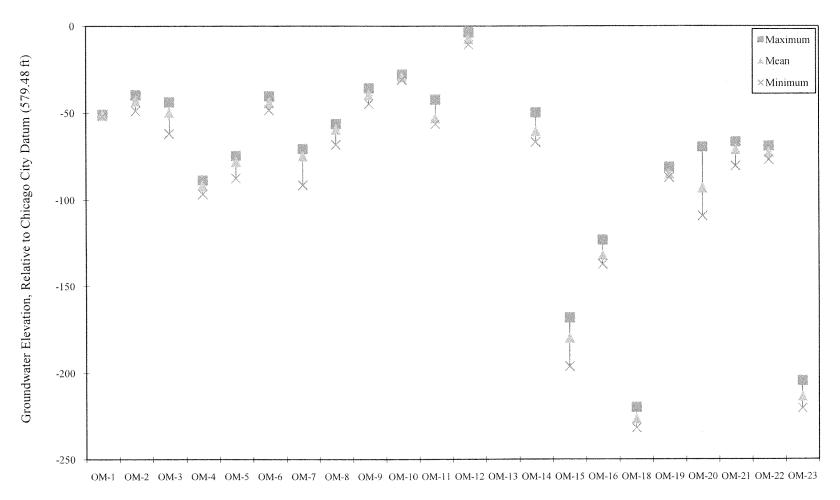
<sup>3</sup>Not applicable.

|                   |                             |       |       |       | Ob    | servation V | Vell No. |       |       |       |       |  |  |  |
|-------------------|-----------------------------|-------|-------|-------|-------|-------------|----------|-------|-------|-------|-------|--|--|--|
| Date <sup>1</sup> | OM-1                        | OM-2  | OM-3  | OM-4  | OM-5  | OM-6        | OM-7     | OM-8  | OM-9  | OM-10 | OM-11 |  |  |  |
|                   | Elevation (ft) <sup>2</sup> |       |       |       |       |             |          |       |       |       |       |  |  |  |
| 01/04/13          | NR <sup>3</sup>             | -44.7 | -47.7 | NR    | -78.5 | -45.4       | -76.6    | -65.2 | -41.8 | NR    | -52.4 |  |  |  |
| 01/18/13          | 11                          | -43.7 | -49.7 | **    | -80.5 | -44.4       | -70.6    | -64.2 | -41.8 | -29.0 | -48.4 |  |  |  |
| 02/15/13          | ¥I.                         | -48.7 | -61.7 |       | -87.5 | -45.4       | -76.6    | -68.2 | -44.8 | -29.0 | -42.4 |  |  |  |
| 02/22/13          | 11                          | -44.7 | -43.7 | 11    | -80.5 | -45.4       | -70.6    | -61.2 | -41.8 | -31.0 | NR    |  |  |  |
| 03/01/13          | -51.8                       | -43.7 | -48.7 | **    | -77.5 | -45.4       | -71.6    | -58.2 | -38.8 | -29.0 | NR    |  |  |  |
| 03/22/13          | NR                          | -43.7 | -46.7 | **    | -77.5 | -45.4       | -73.6    | -58.2 | -38.8 | -28.0 | -47.4 |  |  |  |
| 04/02/13          | 11                          | -39.7 | -54.7 | -94.6 | -74.5 | -45.4       | -91.6    | -59.2 | -44.8 | -31.0 | -55.4 |  |  |  |
| 04/26/13          | 11                          | -42.7 | -48.7 | -90.6 | -75.5 | -45.4       | -71.6    | -58.2 | -37.8 | -28.0 | -47.4 |  |  |  |
| 05/03/13          | "                           | -43.7 | -48.7 | -96.6 | -77.5 | -45.4       | -71.6    | -59.2 | -38.8 | -29.0 | -55.4 |  |  |  |
| 05/17/13          |                             | -43.7 | -49.7 | -90.6 | -77.5 | -40.4       | -71.6    | -56.2 | -38.8 | -31.0 | -55.4 |  |  |  |
| 06/14/13          | п                           | -41.7 | -51.7 | -92.6 | -75.5 | -43.4       | -84.6    | -60.2 | -38.8 | -30.0 | -51.4 |  |  |  |
| 07/19/13          | 11                          | -43.7 | -51.7 | -95.6 | -80.5 | -48.4       | -76.6    | -60.2 | -38.8 | -29.0 | -55.4 |  |  |  |
| 08/09/13          | **                          | -43.7 | -45.7 | -92.6 | -78.5 | -45.4       | -74.6    | -59.2 | -39.8 | -28.0 | -55.4 |  |  |  |
| 08/30/13          | 11                          | -43.7 | -50.7 | -91.6 | -78.5 | -43.4       | -71.6    | -57.2 | -38.8 | -31.0 | -56.4 |  |  |  |
| 09/13/13          | 19                          | -41.7 | -49.7 | -92.6 | -74.5 | -40.4       | -70.6    | -56.2 | -37.8 | NR    | -54.4 |  |  |  |
| 09/27/13          | 11                          | -40.7 | -47.7 | -90.6 | -75.5 | -40.4       | -73.6    | -57.2 | -36.8 | Ħ     | -53.4 |  |  |  |
| 10/11/13          | 11                          | -41.7 | -46.7 | -89.6 | -77.5 | -42.4       | -71.6    | -57.2 | -36.8 | n     | -53.4 |  |  |  |
| 10/25/13          | -50.8                       | -39.7 | -55.7 | -92.6 | -75.5 | -45.4       | -71.6    | -59.2 | NR    |       | -56.4 |  |  |  |
| 11/15/13          | NR                          | -42.7 | -47.7 | -88.6 | -79.5 | -43.4       | -73.6    | -58.2 | -37.8 | "     | -54.4 |  |  |  |
| 11/22/13          | **                          | -43.7 | -45.7 | -89.6 | -81.5 | -42.4       | -72.6    | -57.2 | -35.8 | **    | -53.4 |  |  |  |
| 12/06/13          | **                          | -41.7 | -48.7 | -89.6 | -76.5 | -44.4       | -90.6    | -60.2 | -42.8 | "     | -56.4 |  |  |  |
| 12/13/13          | **                          | -42.7 | -48.7 | -90.6 | -74.5 | -45.4       | -70.6    | -56.2 | -36.8 | **    | -55,4 |  |  |  |

### TABLE 3: GROUNDWATER ELEVATIONS FOR OBSERVATION WELLS OM-1 THROUGH OM-23 IN THE MAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2013

| Data <sup>1</sup> | Observation Well No.                       |                 |       |       |       |           |                   |       |       |       |       |  |  |  |
|-------------------|--------------------------------------------|-----------------|-------|-------|-------|-----------|-------------------|-------|-------|-------|-------|--|--|--|
| Date <sup>1</sup> | OM-12                                      | OM-13           | OM-14 | OM-15 | OM-16 | OM-18     | OM-19             | OM-20 | OM-21 | OM-22 | OM-23 |  |  |  |
|                   | 40 197 197 197 197 197 197 197 197 197 197 |                 |       |       |       | Elevation | (ft) <sup>2</sup> |       |       |       |       |  |  |  |
| 01/11/13          | -5.7                                       | NR <sup>3</sup> | -58.8 | -179  | -135  | -230      | -84.5             | -102  | -66.9 | -72.3 | -214  |  |  |  |
| 01/25/13          | -9.7                                       | **              | -59.8 | -175  | -133  | -229      | -84.5             | -83.9 | -68.9 | -73.3 | -221  |  |  |  |
| 02/01/13          | -6.7                                       | *1              | -58.8 | -178  | -131  | -223      | -86.5             | -107  | -72.9 | -72.3 | -209  |  |  |  |
| 02/15/13          | -4.7                                       | **              | -60.8 | -181  | -133  | -225      | -87.5             | -104  | -69.9 | -71.3 | -211  |  |  |  |
| 03/15/13          | -10.7                                      | 18              | -60.8 | -182  | -138  | -232      | -86.5             | -86.9 | -72.9 | -76.3 | -221  |  |  |  |
| 03/29/13          | -7.7                                       | 11              | -60.8 | -181  | -129  | -220      | -87.5             | -110  | -69.9 | -71.3 | -210  |  |  |  |
| 04/05/13          | -5.7                                       | 11              | -59.8 | -181  | -134  | -229      | -85.5             | -103  | -71.9 | -71.3 | -214  |  |  |  |
| 04/18/13          | -5.7                                       | 11              | -59.8 | -183  | -135  | -231      | -86.5             | -104  | -73.9 | -71.3 | -216  |  |  |  |
| 05/10/13          | -8.7                                       | 11              | -58.8 | -177  | -134  | -226      | -84.5             | -83.9 | -68.9 | -71.3 | -217  |  |  |  |
| 05/24/13          | -6.7                                       | н               | -59.8 | -180  | -133  | -224      | -81.5             | -81.9 | -69.9 | -69.3 | -215  |  |  |  |
| 06/07/13          | -9.7                                       | <del>1</del> 1  | -63.8 | -186  | -135  | -224      | -86.5             | -104  | -71.9 | -74.3 | -218  |  |  |  |
| 06/21/13          | -5.7                                       | **              | -62.8 | -181  | -132  | -226      | -85.5             | -107  | -72.9 | -75.3 | -220  |  |  |  |
| 07/19/13          | NR                                         | 11              | NR    | -186  | -127  | -225      | -86,5             | -100  | -70.9 | -74.3 | -207  |  |  |  |
| 08/09/13          | 11                                         | 11              | -62.8 | -196  | -124  | -221      | -84.5             | -102  | -69.9 | -73.3 | -205  |  |  |  |
| 08/30/13          | -6.7                                       | **              | -58.8 | -184  | -137  | -225      | -87.5             | -94.9 | -72.9 | -72.3 | -212  |  |  |  |
| 09/13/13          | -9.7                                       | н               | -58.8 | -178  | -138  | -230      | -84.5             | -81.9 | -68.9 | -73.3 | -218  |  |  |  |
| 09/27/13          | -8.7                                       | 11              | -62.8 | -177  | -138  | -230      | -83.5             | -81.9 | -69.9 | -74.3 | -219  |  |  |  |
| 10/18/13          | NR                                         | 11              | -65.8 | -169  | -128  | -228      | -86.5             | -80.9 | -72.9 | -76.3 | -207  |  |  |  |
| 10/25/13          | 11                                         | 11              | -66.8 | -168  | -126  | -226      | -87.5             | -78.9 | -71.9 | -74.3 | -206  |  |  |  |
| 11/08/13          | -3.7                                       | 11              | -61.8 | -180  | -135  | -226      | -85.5             | -100  | -74.9 | -72.3 | -211  |  |  |  |

#### TABLE 3 (Continued): GROUNDWATER ELEVATIONS FOR OBSERVATION WELLS OM-1 THROUGH OM-23 IN THE MAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2013


#### TABLE 3 (Continued): GROUNDWATER ELEVATIONS FOR OBSERVATION WELLS OM-1 THROUGH OM-23 IN THE MAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2013

| Date <sup>1</sup> | Observation Well No. |       |       |       |       |             |                   |       |       |       |      |  |  |
|-------------------|----------------------|-------|-------|-------|-------|-------------|-------------------|-------|-------|-------|------|--|--|
|                   | OM-12                | OM-13 | OM-14 | OM-15 | OM-16 | OM-18       | OM-19             | OM-20 | OM-21 | OM-22 | OM-2 |  |  |
|                   |                      |       |       |       |       | Elevation ( | (ft) <sup>2</sup> |       |       |       |      |  |  |
| 11/19/13          | -9.7                 | ŧ,    | -59.8 | -177  | -137  | -230        | -84.5             | -82.9 | -68.9 | -74.3 | -220 |  |  |
| 12/03/13          | -7.7                 | u     | -58.8 | -183  | -134  | -226        | -83.5             | -103  | -71.9 | -73.3 | -213 |  |  |
| 12/20/13          | -8.7                 | **    | -49.8 | -171  | -129  | -228        | -85.5             | -69.9 | -80.9 | -77.3 | -221 |  |  |

<sup>1</sup>Date measurements were taken.

<sup>2</sup>Relative to Chicago city datum (579.48' above mean sea level) at intersection of State and Madison Streets.
<sup>3</sup>No reading. Wells inaccessible due to closure of business, locked gates, snow accumulation, or heavy truck traffic; OM-13 broken.

#### FIGURE 3: MINIMUM, MEAN, AND MAXIMUM WATER ELEVATIONS FOR OBSERVATION WELLS OM-1 THROUGH OM-23 IN THE MAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2013



**Observation Well** 

19

#### APPENDIX A

DECEMBER 16, 2011, LETTER FROM THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY TO THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO AUTHORIZING ABANDONMENT OF OBSERVATION WELL OM-17 IN THE MAINSTREAM TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN

### ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

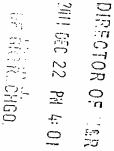


1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 • (217) 782-3397 PAT QUINN, GOVERNOR JOHN J. KIM, INTERIM DIRECTOR

217/785-4787

December 16, 2011

Dear Dr. Granato, Director Monitoring and Research Metropolitan Water Reclamation District of Greater Chicago 100 East Erie Street Chicago, IL 60611-3154


The purpose of this letter is to respond to the letter sent to Marcia Willhite, Chief of the Bureau of Water (BOW). Ms. Willhite requested on December 12, 2011 that the Groundwater Section review and respond to your request to abandon groundwater observation well OM 17.

Accordingly, the Groundwater Section, Division of Public Water Supplies, BOW has reviewed and approves of your request to properly abandon groundwater observation well OM 17.

I trust that this will meet you needs should you have any further questions or concerns please feel free to contact me or Bill Buscher, Manager, Hydrogeology and Compliance Unit, Groundwater Section at 217/785-4787.

Sincerely,

Richard P. Cobb, P.G. Deputy Division Manager Division of Public Water Supplies Bureau of Water



4302 N. Main St., Rackfard, IL 61103 (815)987-7760 595 S. State, Elgin, IL 60123 (847)608-3131 2125 S. First St., Champaign, IL 61820 (217)278-5800 2009 Mall St., Callinsville, IL 62234 (618)346-5120 A-1

9511 Harrison St., Des Plaines, IL 60016 (847)294-4000 5407 N. University St., Arbor 113, Peoria, IL 61614 (309)693-5462 2309 W. Main St., Suite 116, Marion, IL 62959 (618)993-7200 100 W. Rondolph, Suite 1L-300, Chicago, IL 60601 (312)814-6026

PLEASE PRINT ON RECYCLED PAPER