

Protecting Our Water Environment

Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, Illinois 60611-3154312.751.5190

BOARD OF COMMISSIONERS Kathleen Therese Meany President Barbara J McGowan Vice President Mariyana T. Spyropoulos Chairman of Finance Michael A. Alvarez Frank Avila Cynthia M. Santos Debra Shore Kari K. Steele Patrick D. Thompson

THOMAS C. GRANATO, Ph.D. Director of Monitoring and Research

312.751.5190 f: 312.751.5194 thomas.granato@mwrd.org

September 26, 2014

Ms. Marcia Willhite Bureau Chief Bureau of Water Illinois Environmental Protection Agency P. O. Box 19276 Springfield, IL 62794-9276

Dear Ms. Willhite:

Subject: Tunnel and Reservoir Plan, Calumet Tunnel System, Annual Groundwater Monitoring Report for 2013

Attached are three copies of "Tunnel and Reservoir Plan, Calumet Tunnel System, Annual Groundwater Monitoring Report for 2013."

Very truly yours,

Thomas C. Granato, Ph.D. Director Monitoring and Research

TCG:PL:cm Attachment cc w/att: Ms. Sally K. Swanson (USEPA Region 5 - WC15J) - (2) Dr. Zhang Dr. Cox Dr. Hundal Dr. Lindo cc w/o att: Mr. St. Pierre Ms. Sharma Mr. Cohen

TUNNEL AND RESERVOIR PLAN CALUMET TUNNEL SYSTEM ANNUAL GROUNDWATER MONITORING REPORT FOR 2013

Monitoring and Research Department Thomas C. Granato, Director

September 2014

TABLE OF CONTENTS

*

	Page
LIST OF TABLES	ii
LIST OF FIGURES	iii
ANNUAL DATA FOR MONITORING AND OBSERVATION WELLS	1
Introduction	1
Summary of Data	1
Monitoring Wells	1
Observation Wells	1

LIST OF TABLES

4

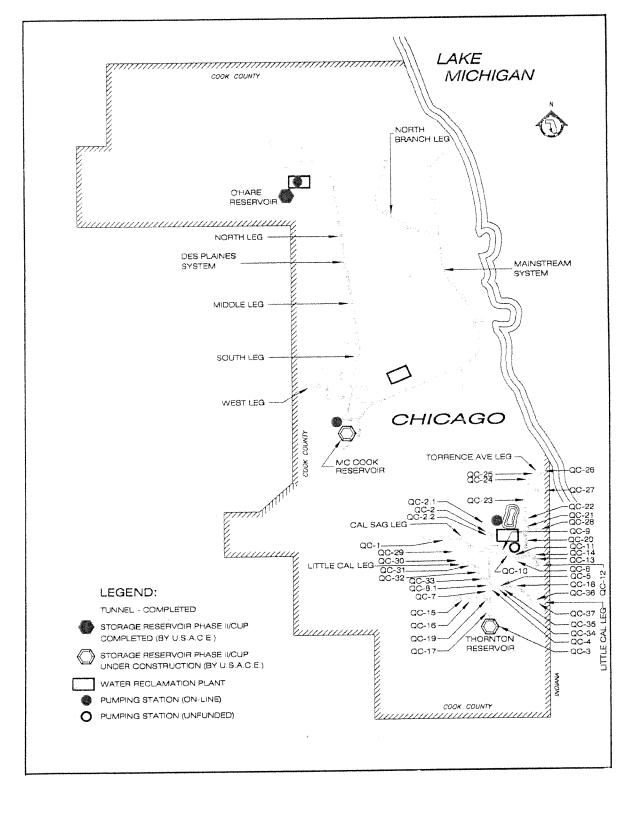
Table No.		Page
1	Analysis of Groundwater From Monitoring Wells QC-2 Through QC-31 in the Calumet Tunnel System of the Tunnel and Reservoir Plan Sampled During 2013	4
2	Descriptive Statistics for Groundwater Data of Monitoring Wells QC-2 Through QC-31 in the Calumet Tunnel System of the Tunnel and Reservoir Plan During 2013	10
3	Groundwater Elevations for Observation Wells OC-1 Through OC-11 in the Calumet Tunnel System of the Tunnel and Reservoir Plan Measured During 2013	19

LIST OF FIGURES

Figure No.		Page
1	Map of Monitoring Wells in the Calumet Tunnel System	2
2	Map of Observation Wells in the Calumet Tunnel System	3
3	Minimum, Mean, and Maximum Water Elevations for Obser- vation Wells OC-1 Through OC-11 in the Calumet Tunnel System of the Tunnel and Reservoir Plan Measured During 2013	21

ANNUAL DATA FOR MONITORING AND OBSERVATION WELLS

Introduction


All monitoring and observation wells are located along the length of the Calumet Tunnel System. Four monitoring wells (QC-1, -2, -2-1, and -2-2) and 11 observation wells (OC-1 through OC-11) are located along the tunnel between Crawford Avenue and the Calumet Water Reclamation Plant. Seventeen monitoring wells (QC-3 through QC-19) are located between 140th Street and Indiana Avenue. Nine monitoring wells (QC-20 through QC-28) are positioned along Torrence Avenue, with the last nine monitoring wells (QC-29 through QC-37) along the Little Calumet River (Figures 1 and 2). Monitoring well QC-3, located along the tunnel between 140th Street and Indiana Avenue, is no longer sampled due to construction in its vicinity managed by the Village of South Holland. An Illinois Environmental Protection Agency (IEPA) memorandum dated April 22, 2008 (Appendix I) granted permission to the Metropolitan Water Reclamation District of Greater Chicago to abandon this well. Monitoring wells QC-1, -2, and OC-29 through OC-37 are sampled six times per vear (IEPA memorandum dated July 9, 2004). Monitoring wells QC-2-1, -2-2, QC-4 through QC-7, and QC-9 through QC-28 are sampled three times per year (IEPA memoranda July 9, 2004 and February 23, 2006). During 2013, all wells were sampled as required. Groundwater elevations in the monitoring wells were measured during each sampling event, while elevations in the observation wells were measured bi-weekly. The groundwater level in monitoring well OC-8-1 is no longer adequate for sampling. However, this well was converted to an observation well several years ago, and groundwater elevations are still measured bi-weekly.

All monitoring wells in the Calumet Tunnel System were sampled at the required frequencies. However, samples could not be retrieved from Wells QC-1 and -32 through -37 because there was no groundwater in them. These wells are considered dry. Their pumps were tested and classified as functional.

Summary of Data

Monitoring Wells. The analytical data for groundwater sampled during 2013 from monitoring wells QC-2 through QC-31 are presented in <u>Table 1</u>. Physical characteristics, such as elevation, groundwater temperature, and estimated time of recharge for each well between initial drawdown and sampling, are also included. Fecal coliform counts for all wells except QC-2 (maximum of 260 MPN/100 mL) were undetectable. <u>Table 2</u> lists the descriptive statistics for groundwater data of monitoring wells QC-2 through QC-31 for the year 2013.

Observation Wells. Groundwater elevations for observation wells OC-1 through -11 were measured at the required frequencies. Adjusted elevations were calculated relative to the Chicago city datum (579.48 ft. above mean sea level) at the intersection of Madison and State Streets (<u>Table 3</u>). The minimum, mean, and maximum values for each well were calculated and plotted to determine fluctuations in groundwater elevations during the year (<u>Figure 3</u>). Generally, these fluctuations appeared to be minimal throughout the year.

FIGURE 1: MAP OF MONITORING WELLS IN THE CALUMET TUNNEL SYSTEM

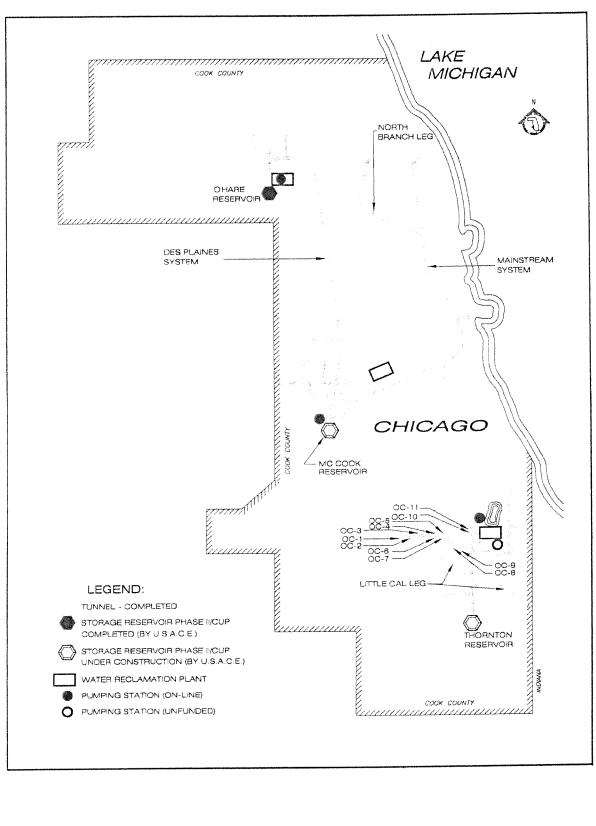


FIGURE 2: MAP OF OBSERVATION WELLS IN THE CALUMET TUNNEL SYSTEM

Well ¹	Sample Date	pН	EC ²	TDS ²	TOC ²	Cl	SO ₄ ²⁻	NH ₃ -N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge Time
			mS/m			n	ng/L			MPN/100 mL	°C	ft.	hr.
QC-2	01/10/13	8.0	35	344	2	29	75	0.70	88	<1	12.2	-275	<48
QC-2	04/25/13	7.3	32	370	2	34	23	0.76	95	260	12.4	-272	<48
QC-2	07/18/13	7.6	62	446	1	33	24	0.15	98	21	15.6	-278	<48
QC-2	09/05/13	8.2	47	494	2	33	20	0.80	89	<1	14.0	-280	<48
QC-2	10/03/13	8.2	45	344	2	33	26	0.44	83	<1	14.4	-283	<48
QC-2	11/20/13	7.7	21	348	2	32	27	0.35	83	20	12.5	-275	<48
QC-2-1	01/10/13	7.7	44	502	1	33	<5	0.62	67	<1	10.1	-286	<48
QC-2-1	04/25/13	7.1	41	516	1	33	<5	0.64	66	<1	12.9	-281	<48
QC-2-1	07/18/13	8.2	43	660	1	31	<5	0.66	67	<1	14.6	-282	<48
QC-2-2	01/10/13	8.2	58	330	1	14	26	0.46	46	<1	11.1	-282	<48
QC-2-2	04/25/13	8.5	53	336	2	15	22	0.55	44	<1	11.9	-279	<48
QC-2-2	07/18/13	8.0	47	428	1	13	22	0.59	45	<1	15.9	-285	<48
QC-4	03/14/13	7.9	43	442	<1	<10	10	0.13	10	<1	11.3	-224	<48
QC-4	08/15/13	8.9	52	432	<1	NA^4	14	0.18	10	<1	13.1	-233	<48
QC-4	10/03/13	8.9	53	418	<1	<10	13	0.13	10	<1	13.4	-227	<48
QC-5	02/27/13	8.4	63	534	1	33	9	0.16	9	<1	11.1	-209	<48
QC-5	08/15/13	8.8	69	538	1	NA	11	0.14	8	<1	15.0	-211	<48
QC-5	10/03/13	8.7	64	532	1	38	12	0.13	8	<1	13.0	-208	<48
QC-6	02/27/13	8.2	51	448	1	14	6	0.33	19	<1	11.4	-202	<48

TABLE 1: ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QC-2 THROUGH QC-31 IN THE CALUMETTUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QC-2 THROUGH QC-31 IN THECALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

Well ¹	Sample Date	рН	EC ²	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge Time
			mS/m			I	ng/L			MPN/100 mL	⁰ C	ft.	hr.
001	0.0 (1.5 / 1.0	0.6	- -		2	274	0	0.04	15	.1	12.0	205	- 10
QC-6 QC-6	08/15/13 10/03/13	8.6 8.7	56 55	520 454	2	NA 18	8 6	0.34 0.33	17 16	<1 <1	13.0 12.7	-205 -202	$<\!$
Ì													
QC-7	02/27/13	8.1	43	388	2	10	<5	0.28	13	<1	11.5	-169	<48
QC-7	08/15/13	8.6	50	432	1	NA	<5	0.37	12	<1	13.1	-172	<48
QC-7	10/03/13	8.4	50	392	2	11	<5	0.24	12	<1	12.9	-168	<48
QC-9	03/14/13	7.7	30	336	1	12	33	0.13	64	<1	11.4	-237	<48
QC-9	08/15/13	8.2	40	338	1	NA	33	0.21	66	<1	13.2	-246	<48
QC-9	10/03/13	8.3	40	308	1	10	35	< 0.10	65	<1	14.0	-247	<48
QC-10	04/23/13	8.6	42	378	<1	30	<5	0.13	13	<1	12.6	-222	<4
QC-10	07/30/13	8.2	50	410	<1	29	<5	0.12	12	<1	13.0	-220	<4
QC-10	11/26/13	8.9	48	372	<1	31	<5	0.36	10	<1	12.4	-177	<4
QC-11	04/23/13	8.6	40	274	<1	21	7	0.13	19	<1	13.2	-218	<4
QC-11	07/30/13	8.1	37	304	<1	20	<5	0.13	21	<1	13.8	-218	<4
QC-11	11/26/13	8.8	36	270	<1	21	<5	0.15	19	<1	12.6	-201	<4
QC-12	04/23/13	7.8	78	938	<1	38	321	0.35	191	<1	13.0	-235	<4
QC-12	07/30/13	7.9	107	934	<1	34	313	0.34	176	<1	13.3	-233	<4
QC-12	11/26/13	8.0	106	848	<1	35	279	0.56	138	<1	12.6	-222	<4
QC-13	04/23/13	7.9	80	424	<1	59	27	0.19	39	<1	13.3	-231	<48
QC-13	07/30/13	7.9	57	462	<1	57	31	0.18	38	<1	14.1	-228	<48

Well ¹	Sample Date	pН	EC^2	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge Time
	-									MDN1/100			
			mS/m	****		ř	ng/L			MPN/100 mL	⁰ C	ft.	hr.
QC-13	11/26/13	8.2	53	412	1.1	58	29	0.19	35	<1	12.3	-237	<48
QC-14	03/14/13	6.8	45	690	3	119	<5	0.29	120	<1	12.8	-199	<48
QC-14	09/26/13	7.7	100	750	4	312	<5	0.32	146	<1	13.4	-209	<48
QC-14	10/31/13	7.6	104	786	4	166	<5	0.24	164	<1	13.5	-199	<48
QC-15	03/14/13	8.0	36	464	<1	54	<5	0.24	12	<1	12.8	-217	<48
QC-15	09/26/13	8.8	44	302	1	13	<5	0.28	14	<1	13.3	-218	<48
QC-15	10/31/13	8.0	38	308	1	12	<5	0.24	14	<1	13.9	-215	<48
QC-16	03/21/13	7.7	46	500	1	21	67	<0.10	110	<1	11.2	-249	<48
QC-16	09/26/13	8.1	62	490	<1	21	63	< 0.10	78	<1	13.5	-256	<48
QC-17	03/21/13	7.6	44	528	<1	<10	189	0.30	17	<1	10.7	-173	<48
QC-17	09/26/13	8.4	47	508	<1	<10	174	0.28	165	<1	13.1	-198	<48
QC-17	10/31/13	8.3	57	512	<1	<10	180	0.28	166	<1	12.6	-193	<48
QC-18	03/21/13	8.9	38	370	<1	<10	35	0.11	23	<1	6.0	-190	<48
QC-18	09/26/13	9.1	45	360	<1	<10	27	0.10	7	<1	12.9	-202	<48
QC-18	10/31/13	9.1	44	364	<1	<10	25	< 0.10	8	<1	12.3	-201	<48
QC-19	03/21/13	8.4	43	466	<1	<10	154	0.56	6	<1	7.5	-150	<48
QC-19	09/26/13	9.1	47	446	<1	<10	141	0.28	110	<1	12.7	-129	<48
QC-19	10/31/13	8.9	50	452	<1	<10	149	0.29	118	<1	12.6	-98	<48

TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QC-2 THROUGH QC-31 IN THE
CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

Well ¹	Sample Date	pН	EC^{2}	TDS^2	TOC^2	СГ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge Time		
							anna a sua a s			MPN/100	400-0				
			mS/m			n	ng/L			mL	⁰ C	ft.	hr.		
QC-20	05/09/13	7.5	42	412	<1	17	85	0.15	99	<1	15.9	-263	<48		
QC-20	08/08/13	8.4	35	308	1	18	17	0.17	33	<1	13.5	-265	<48		
QC-20	11/06/13	8.5	33	274	<1	19	<5	0.15	21	<1	12.4	-263	<48		
QC-21	05/09/13	7.9	30	390	2	17	12	<0.10	60	1	20.2	-235	<48		
QC-21	08/08/13	7.9	50	398	4	20	22	< 0.10	88	<1	13.5	-280	<48		
QC-21	11/06/13	8.1	45	370	4	19	9	<0.10	48	<1	12.8	-237	<48		
QC-22	05/09/13	7.7	30	285	2	16	<5	0.19	36	<1	14.1	-221	<48		
QC-22	08/08/13	7.9	39	310	2	15	<5	0.19	57	<1	14.4	-264	<48		
QC-22	11/06/13	8.0	34	266	2	14	<5	0.26	49	<1	12.5	-233	<48		
QC-23	05/09/13	8.2	49	320	<1	19	<5	< 0.10	6	<1	16.3	-223	<48		
QC-23	08/08/13	9.2	45	318	<1	18	<5	0.12	6	<1	13.7	-240	<48		
QC-23	11/06/13	9.3	41	334	<1	20	<5	0.13	6	<1	12.2	-232	<48		
QC-24	03/21/13	8.4	30	216	<1	27	<5	0.14	26	<1	11.6	-223	<48		
QC-24	08/08/13	8.0	33	260	1	24	<5	0.18	15	<1	14.1	-236	<48		
QC-24	12/19/13	8.7	29	256	<1	25	<5	0.16	13	<1	12.4	-223	<48		
QC-25	03/21/13	7.8	27	220	<1	13	<5	0.17	16	<1	11.3	-240	<48		
QC-25	08/08/13	7.8	29	242	<1	13	10	0.18	35	<1	14.9	-236	<48		
QC-25	12/19/13	8.7	26	236	<1	13	6	0.19	23	<1	12.7	-243	<48		
QC-26	03/21/13	8.5	30	244	<1	11	17	0.11	68	<1	11.1	-222	<48		

TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QC-2 THROUGH QC-31 IN THE
CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QC-2 THROUGH QC-31	IN THE
CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013	

.

Well ¹	Sample Date	pН	EC^2	TDS ²	TOC ²	СГ	$\mathrm{SO_4}^{2}$	NH ₃ -N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge Time
			0 (/1			MPN/100	°C	ft.	hr.
			mS/m			n	1g/L	ng ngang pang dala dari dari dari dari dari dari dari dar	****	mL	C	11.	II r .
QC-26	08/08/13	8.9	35	284	<1	11	<5	< 0.10	9	<1	13.4	-229	<48
QC-26	12/19/13	9.3	32	278	<1	11	<5	0.11	6	<1	12.9	-228	<48
QC-27	03/21/13	8.3	31	246	<1	29	<5	0.17	10	<1	10.9	-210	<48
QC-27	08/08/13	7.9	34	250	<1	29	<5	0.19	28	<1	14.3	-206	<48
QC-27	12/19/13	8.2	30	232	<1	30	<5	0.18	24	<1	12.5	-205	<48
QC-28	03/21/13	8.2	33	258	1	12	<5	<0.10	10	<1	12.0	-240	<48
QC-28	08/08/13	8.3	35	314	1	16	<5	0.12	20	<1	16.2	-246	<48
QC-28	12/19/13	8.8	32	268	1	12	<5	<0.10	17	<1	12.9	-245	<48
QC-29	03/14/13	7.7	81	904	1	174	180	0.80	351	<]	11.1	-58	<48
QC-29	07/18/13	8.2	39	466	1	<10	76	0.43	63	<1	14.8	-53	<48
QC-29	08/15/13	7.2	110	976	2	NA^4	190	0.80	457	<1	14.2	-57	<48
QC-29	09/05/13	7.2	106	1,090	1	181	169	0.75	409	<1	13.1	-57	<48
QC-29	10/03/13	7.1	125	870	1	174	179	0.72	372	<1	12.4	-59	<48
QC-29	11/20/13	7.3	114	978	1	198	197	0.78	424	<]	11.7	-55	<48
QC-30	03/14/13	7.9	45	582	2	<10	77	0.41	57	<1	11.1	-138	<48
QC-30	07/18/13	8.3	40	892	1	161	154	0.66	352	<1	14.7	-138	<48
QC-30	08/15/13	8.1	50	446	<1	NA	77	0.45	65	<1	12.1	-132	<48
QC-30	09/05/13	8.3	49	544	<1	<10	81	0.43	66	<1	12.8	-133	<48
QC-30	10/03/13	8.1	49	398	1	10	87	0.42	64	<1	12.5	-138	<48
QC-30	11/20/13	8.1	22	418	<1	<10	85	0.40	69	<1	11.3	-132	<48

TABLE 1 (Continued): ANALYSIS OF GROUNDWATER FROM MONITORING WELLS QC-2 THROUGH QC-31 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2013

Well ¹	Sample Date	рН	EC ²	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge Time
			mS/m			n	ng/L			MPN/100 mL	⁰ C	ft.	hr.
QC-31	03/14/13	7.6	56	490	<1	15	170	0.85	182	<1	12.1	-64	<48
QC-31	07/18/13	8.0	28	626	1	13	189	1.1	264	<1	14.9	-67	<48
QC-31	08/15/13	7.6	70	582	1	NA	177	1.1	254	<1	12.8	-59	<48
QC-31	09/05/13	7.8	67	604	1	15	183	1.0	240	<1	13.4	-65	<48
QC-31	10/03/13	7.7	68	552	1	16	190	1.0	241	<1	12.9	-68	<48
QC-31	11/20/13	8.1	63	548	1	16	182	1.0	220	<1	12.3	-62	<48

9

¹No samples obtained from Wells QC-1 and -32 through -37; considered intermittently or permanently dry; only two samples retrieved from QC-16.

 ^{2}EC = electrical conductivity; TDS = total dissolved solids; TOC = total dissolved organic carbon. ³Relative to Chicago city datum (579.48 ft above mean sea level) at intersection of Madison and State Streets.

⁴No analysis; sample insufficient for re-run.

TABLE 2: DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH	
QC-31 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2013	

Well ¹	Statistic	рН	EC^{2}	TDS ²	TOC^2	Cľ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
			mS/m				mg/I			MPN/100 mL
			mo/m				ing/L/			ivit 14/100 mil
QC-2	Minimum	7.3	21	344	1	29	20	0.15	83	1
	Mean	7.8	40	391	2	32	33	0.53	89	7
	Maximum	8.2	62	494	2	34	75	0.80	98	260
	Std. Dev.	0.4	14	64	0.2	2	21	0.26	6	NA^4
	Median	7.9	40	359	2	33	25	0.57	89	11
	Coeff. of Var. (%)	4.8	35	16	13	5	65	49	7	NA
QC-2-1	Minimum	7.1	41	502	1	31	<5	0.62	66	<1
N	Mean	7.7	42	559	1	32	<5	0.64	67	<1
	Maximum	8.2	44	660	1	33	<5	0.66	67	<1
	Std. Dev.	0.6	2	87	0.1	1	0	0.02	1	NA
	Median	7.7	43	516	1	33	<5	0.64	67	<1
	Coeff. of Var. (%)	7.5	4	16	9	4	0	3.1	1	NA
QC-2-2	Minimum	8.0	47	330	1	13	22	0.46	44	<1
	Mean	8.2	53	365	1	14	23	0.53	45	<1
	Maximum	8.5	58	428	2	15	26	0.59	46	<1
	Std. Dev.	0.3	6	55	0.1	1	2	0.07	1	NA
	Median	8.2	53	336	1	14	22	0.55	45	<1
	Coeff. of Var. (%)	3.4	11	15	4	7	11	12	2	NA
QC-4	Minimum	7.9	43	418	<1	<10	10	0.13	10	<1
	Mean	8.6	49	431	<1	<10	12	0.15	10	<1
	Maximum	8.9	53	442	<1	<10	14	0.18	10	<1
	Std. Dev.	0.5	5	12	0	0	2	0.03	0	NA

Well ¹	Statistic	pН	EC ²	TDS ²	TOC^2	Cľ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mL
	Median	8.9	52	432	<1	<10	13	0.13	10	<1
	Coeff. of Var. (%)	6.3	11	3	0.0	0	18	20	0	NA
QC-5	Minimum	8.4	63	532	1	33	9	0.13	8	<1
	Mean	8.6	65	535	1	36	11	0.14	8	<1
	Maximum	8.8	69	538	1	38	12	0.16	9	<1
	Std. Dev.	0.2	3	3	0.1	4	2	0.02	1	NA
	Median	8.7	64	534	1	36	11	0.14	8	<1
	Coeff. of Var. (%)	2.1	5	1	8	10	18	11	7	NA
QC-6	Minimum	8.2	51	448	1	14	6	0.33	16	<1
-	Mean	8.5	54	474	1	16	94	0.33	17	<1
	Maximum	8.7	56	520	2	18	8	0.34	19	<1
	Std. Dev.	0.3	3	40	0.1	3	98	0.01	2	NA
	Median	8.6	55	454	1	16	35	0.33	17	<1
	Coeff. of Var. (%)	3.0	5	8	4	18	105	1.7	9	NA
QC-7	Minimum	8.1	43	388	1	10	<5	0.24	12	<1
	Mean	8.4	47	404	1	11	<5	0.30	12	<1
	Maximum	8.6]	432	2	11	<5	0.37	13	<1
	Std. Dev.	0.2	4	24	0.1	1	0	0.07	1	NA
	Median	8.4	50	392	2	11	<5	0.28	12	<1
	Coeff. of Var. (%)	2.8	9	6	4	7	0	22	5	NA

Well ¹	Statistic	рН	EC ²	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mI
QC-9	Minimum	7.7	30	308	1	10	33	0.13	64	<1
	Mean	8.1	36	327	1	11	34	0.17	65	<1
	Maximum	8.3	40	338	1	12	35	0.21	66	<1
	Std. Dev.	0.3	6	17	0	1	1	0.06	1	NA
	Median	8.2	40	336	1	11	33	0.17	65	<1
	Coeff. of Var. (%)	3.9	16	5	0	13	4	33	2	NA
QC-10	Minimum	8.2	42	372	<1	29	<5	0.12	10	<1
	Mean	8.6	47	387	<1	30	<5	0.20	12	<1
	Maximum	8.9	50	410	<1	31	<5	0.36	13	<1
	Std. Dev.	0.3	4	20	0	1	0	0.14	2	NA
	Median	8.6	48	378	<1	30	<5	0.13	12	<1
	Coeff. of Var. (%)	4.0	9	5	0	3	0	67	13	NA
QC-11	Minimum	8.1	36	270	<1	20	<5	0.13	19	<1
	Mean	8.5	38	283	<1	21	5	0.14	20	<1
	Std. Dev.	0.4	2	19	0	1	2	0.01	1	NA
	Median	8.6	37	274	<1	21	4	0.13	19	<1
	Coeff. of Var. (%)	4.2	6	7	0	3	40	8.4	6	NA
QC-12	Minimum	7.8	78	848	<1	34	279	0.34	138	<1
	Mean	7.9	97	907	<1	36	304	0.42	168	<1
	Maximum	8.0	107	938	<1	38	321	0.56	191	<1
	Std. Dev.	0.1	16	51	0	2	23	0.12	27	NA
	Median	7.9	106	934	<1	35	313	0.35	176	<1
	Coeff. of Var. (%)	1.7	17	6	0	6	7	30	16	NA

Well ¹	Statistic	рН	EC^2	TDS ²	TOC ²	Cľ	SO ₄ ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
			mS/m	~~~~~			mg/L			MPN/100 mL
QC-13	Minimum	7.9	53	412	<1	57	27	0.18	35	<1
	Mean	8.0	63	433	<1	58	29	0.19	37	<1
	Maximum	8.2	80	462	<1	59	31	0.19	39	<1
	Std. Dev.	0.2	15	26	0	1	2	0.01	2	NA
	Median	7.9	57	424	<1	58	29	0.19	38	<1
	Coeff. of Var. (%)	2.4	24	6	0	2	7	3.1	6	NA
QC-14	Minimum	6.8	45	690	3	119	<5	0.24	120	<1
	Mean	7.4	83	742	3	199	<5	0.28	143	<1
	Maximum	7.7	104	786	4	312	<5	0.32	164	<1
	Std. Dev.	0.5	33	48	1	101	0	0.04	22	NA
	Median	7.6	100	750	4	166	<5	0.29	146	<1
	Coeff. of Var. (%)	6.1	40	7	17	51	0	14	15	NA
QC-15	Minimum	8.0	36	302	1	12	<5	0.24	12	<1
	Mean	8.3	39	358	1	26	<5	0.25	13	<1
	Maximum	8.8	44	464	1	54	<5	0.28	14	<1
	Std. Dev.	0.4	4	92	0	24	0	0.02	1	NA
	Median	8.0	38	308	1	13	<5	0.24	14	<1
	Coeff. of Var. (%)	5.3	10	26	0	91	0	9.1	9	NA
QC-16	Minimum	7.7	46	490	<1	21	63	< 0.10	78	<1
	Mean	7.9	54	495	1	21	65	< 0.10	94	<1
	Maximum	8.1	62	500	1	21	67	< 0.10	110	<1

Well ¹	Statistic	рН	EC ²	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mL
	Std. Dev.	0.3	12	7	0.2	0	3	0.00	23	NA
	Median	7.9	54	495	1	21	65	< 0.10	94	<1
	Coeff. of Var. (%)	3.5	22	1	20	0	5	0.00	24	NA
QC-17	Minimum	7.6	44	508	<1	<10	174	0.28	17	<1
	Mean	8.1	49	516	<1	<10	181	0.29	116	<1
	Maximum	8.4	57	528	<1	<10	189	0.30	166	<1
	Std. Dev.	0.4	7	11	0	0	8	0.01	86	NA
	Median	8.3	47	512	<1	<10	180	0.28	165	<1
	Coeff. of Var. (%)	5.1	14	2	0	0	4	4.0	74	NA
QC-18	Minimum	8.9	38	360	<1	<10	25	< 0.10	7	<1
	Mean	9.0	42	365	<1	<10	29	0.10	13	<1
	Maximum	9.1	45	370	<1	<10	35	0.11	23	<1
	Std. Dev.	0.1	4	5	0	0	5	0.01	9	NA
	Median	9.1	44	364	<1	<10	27	0.10	8	<1
	Coeff. of Var. (%)	1.3	9	1	0	0	17	5.6	71	NA
QC-19	Minimum	8.4	43	446	<1	<10	141	0.28	6	<1
	Mean	8.8	47	455	<1	<10	148	0.38	78	<1
	Maximum	9.1	50	466	<1	<10	154	0.56	118	<1
	Std. Dev.	0.3	4	10	0	0	7	0.16	62	NA
	Median	8.9	47	452	<1	<10	149	0.29	110	<1
	Coeff. of Var. (%)	3.9	8	2	0	0	5	42	80	NA

Well ¹	Statistic	рН	EC^2	TDS^2	TOC^2	Cľ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mI
QC-20	Minimum	7.5	33	274	<1	17	<5	0.15	21	<]
	Mean	8.1	37	331	1	18	36	0.16	51	<1
	Maximum	8.5	42	412	1	19	85	0.17	99	<1
	Std. Dev.	0.6	5	72	0.1	1	43	0.01	42	NA
	Median	8.4	35	308	1	18	17	0.15	33	<1
	Coeff. of Var. (%)	6.9	13	22	6	6	121	7.4	82	NA
QC-21	Minimum	7.9	30	370	2	17	9	< 0.10	48	1
	Mean	7.9	42	386	3	19	14	< 0.10	65	<1
	Maximum	8.1	50	398	4	20	22	< 0.10	88	<1
	Std. Dev.	0.1	10	14	1	2	7	0.00	21	NA
	Median	7.9	45	390	4	19	12	< 0.10	60	<1
	Coeff. of Var. (%)	1.4	24	4	31	8	48	0.00	31	NA
QC-22	Minimum	7.7	30	266	2	14	<5	0.19	36	<1
	Mean	7.9	34	287	2	15	<5	0.21	47	<1
	Maximum	8.0	39	310	2	16	<5	0.26	57	<1
	Std. Dev.	0.2	4	22	0.2	1	0	0.04	11	NA
	Median	7.9	34	285	2	15	<5	0.19	49	<1
	Coeff. of Var. (%)	2.2	13	8	9	7	0	19	22	NA
QC-23	Minimum	8.2	41	318	<1	18	<5	0.10	6	<1
	Mean	8.9	45	324	<1	19	<5	0.12	6	<1
	Maximum	9.3	49	334	<1	20	<5	0.13	6	<1
	Std. Dev.	0.6	4	9	0	1	0	0.02	0	NA
	Median	9.2	45	320	<1	19	<5	0.12	6	<1
	Coeff. of Var. (%)	6.7	9	3	0	5	0	13	0	NA

Well ¹	Statistic	рН	EC^2	TDS ²	TOC ²	Cl	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform3
			mS/m				mg/L			MPN/100 mL
QC-24	Minimum	8.0	29	216	1	24	<5	0.14	13	<1
	Mean	8.4	31	244	1	25	<5	0.16	18	<1
	Maximum	8.7	33	260	1	27	<5	0.18	26	<1
	Std. Dev.	0.3	2	24	0	2	0	0.02	7	NA
	Median	8.4	30	256	1	25	<5	0.16	15	<1
	Coeff. of Var. (%)	4.1	6	10	0	6	0	13	39	NA
QC-25	Minimum	7.8	26	220	<1	13	5	0.17	16	<1
	Mean	8.1	27	233	<1	13	7	0.18	25	<1
	Maximum	8.7	29	242	<]	13	10	0.19	35	<1
	Std. Dev.	0.5	1	11	0	0	2	0.01	10	NA
	Median	7.8	27	236	<1	13	6	0.18	23	<1
	Coeff. of Var. (%)	6.7	5	5	0	0	36	5.6	39	NA
QC-26	Minimum	8.5	30	244	<1	11	5	0.10	6	<1
	Mean	8.9	32	269	<1	11	9	0.11	28	<1
	Maximum	9.3	35	284	<1	11	17	0.11	68	<1
	Std. Dev.	0.4	2	22	0	0	7	0.01	35	NA
	Median	8.9	32	278	<1	11	5	0.11	9	<1
	Coeff. of Var. (%)	4.6	6	8	0	0	78	5.4	126	NA
QC-27	Minimum	7.9	30	232	<1	29	<5	0.17	10	<1
	Mean	8.1	32	243	<1	29	<5	0.18	21	<1

Well ¹	Statistic	рН	EC ²	TDS ²	TOC^2	Cŀ	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mL
	Maximum	8.3	34	250	<1	30	<5	0.19	28	<1
	Std. Dev.	0.2	2	9	0	1	0	0.01	9	NA
	Median	8.2	31	246	<1	29	<5	0.18	24	<1
	Coeff. of Var. (%)	2.4	6	4	· 0	2	0	5.6	46	NA
QC-28	Minimum	8.2	32	258	1	12	<5	0.10	10	<1
	Mean	8.4	33	280	1	13	<5	0.11	16	<1
	Maximum	8.8	35	314	1	16	<5	0.12	20	<1
	Std. Dev.	0.3	2	30	0.1	2	0	0.01	5	NA
	Median	8.3	33	268	1	12	<5	0.10	17	<1
	Coeff. of Var. (%)	3.9	5	11	8	17	0	11	33	NA
QC-29	Minimum	7.1	39	466	1	10	76	0.43	63	<1
	Mean	7.4	96	881	1	147	165	0.71	346	<1
	Maximum	8.2	125	1,090	2	198	197	0.80	457	<1
	Std. Dev.	0.4	31	217	0.1	77	45	0.14	144	NA
	Median	7.3	108	940	1	174	180	0.77	391-	<]
	Coeff. of Var. (%)	5.7	33	25	10	53	27	20	42	NA
QC-30	Minimum	7.9	22	398	1	10	77	0.40	57	<1
-	Mean	8.1	43	547	1	40	94	0.46	112	<1
	Maximum	8.3	50	892	2	161	154	0.66	352	<1
	Std. Dev.	0.2	11	184	0.3	68	30	0.10	118	NA
	Median	8.1	47	495	1	10	83	0.43	66	<1
	Coeff. of Var. (%)	2.0	25	34	23	168	32	21	105	NA

Well ¹	Statistic	pH	EC^2	TDS ²	TOC ²	Cl	SO4 ²⁻	NH ₃ -N	Hardness	Fecal Coliform ³
<u></u>			mS/m				mg/L			MPN/100 mL
QC-31	Minimum	7.6	28	490	1	13	170	0.85	182	<1
	Mean	7.8	59	567	1	15	182	- 1.0	234	<1
	Maximum	8.1	70	626	1	16	190	1.1	264	<1
	Std. Dev.	0.2	16	48	0.1	1	7	0.08	29	NA
	Median	7.7	65	567	1	15	182	1.0	241	<1
	Coeff. of Var. (%)	2.8	27	8	9	8	4	8.1	13	NA

18

¹No samples obtained from Wells QC-1 and -32 through -37; considered intermittently or permanently dry; only two samples retrieved from QC-16. ²EC = electrical conductivity; TDS = total dissolved solids; TOC = total dissolved organic carbon.

³Geometric mean calculated.

⁴Not applicable.

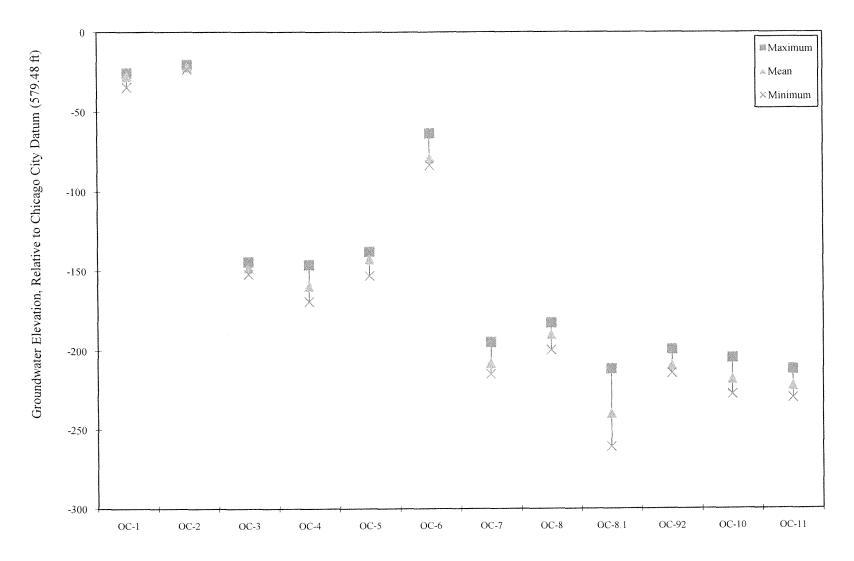

						Observa	ation Well N	No.				
Date ¹	OC-1	OC-2	OC-3	OC-4	OC-5	OC-6	OC-7	OC-8	OC-8.1	OC-9	OC-10	OC-1
]	Elevation (f	t) ²				
01/04/13	-27.8	-21.6	-151	-169	-143	-81.7	-212	-186	-261	-214	-220	-224
01/18/13	-27.8	-21.6	-147	-158	-142	-78.7	-210	-188	-243	-215	-216	-230
02/01/13	-25.8	-23.6	-149	-165	-141	-79.7	-214	-191	-249	-210	-215	-220
02/08/13	-26.8	-23.6	-151	-168	-41.3	-81.7	-211	-184	-261	-215	-222	-224
02/22/13	-28.8	-20.6	-148	-168	-141	-78.7	-210	-185	-260	-210	-222	-221
03/15/13	-26.8	-22.6	-146	-161	-140	-81.7	-211	-193	-245	-207	-213	-217
03/22/13	-27.8	-21.6	-147	-166	-140	-80.7	-212	-187	-252	-213	-217	-222
04/05/13	-26.8	-21.6	-149	-159	-144	-80.7	-213	-190	-245	-214	-227	-226
04/19/13	-26.8	-20.6	-147	-153	-141	-78.7	-209	-186	-238	-209	-223	-221
05/03/13	-25.8	-21.6	-144	-159	-138	-77.7	-208	-191	-237	-203	-210	-212
05/31/13	-25.8	-23.6	-148	-168	-140	-77.7	-213	-188	-254	-211	-216	-223
06/07/13	-31.8	-21.6	-150	-162	-140	-63.7	-200	-194	-229	-200	-209	-221
06/21/13	-26.8	-22.6	-148	-159	-144	-81.7	-212	-183	-244	3	-227	-219
07/12/13	-26.8	-22.6	-147	-158	-141	-83.7	-211	-188	-243	-215	-228	-225
07/26/13	-29.8	-23.6	-148	-160	-141	-73.7	-199	-196	-225	-202	-207	-218
08/02/13	-27.8	-22.6	-147	-159	-140	-77.7	-196	-198	-217	-207	-205	-216
08/16/13	-28.8	-22.6	-146	-157	-143	-78.7	-197	-197	-215	-205	-209	-220
09/06/13	-28.8	-22.6	-146	-146	-141	-78.7	-195	-200	-214	-205	-210	-221
09/20/13	-27.8	-22.6	-144	-147	-140	-79.7	-196	-199	-212	-207	-207	-218
10/04/13	-28.8	-22.6	-152	-157	-144	-81.7	-211	-189	-242	-214	-226	-228
10/11/13	-29.8	-22.6	-150	-154	-147	-80.7	-209	-191	-239	-213	-227	-226
11/08/13	-25.8	-21.6	-148	-158	-145	-80.7	-214	-188	-244	-212	-226	-225

TABLE 3: GROUNDWATER ELEVATIONS FOR OBSERVATION WELLS OC-1 THROUGH OC-11 IN THECALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2013

TABLE 3: GROUNDWATER ELEVATIONS FOR OBSERVATION WELLS OC-1 THROUGH OC-11 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2013

		Observation Well No.												
Date ¹	OC-1	OC-2	OC-3	OC-4	OC-5	OC-6	OC-7	OC-8	OC-8.1	OC-9	OC-10	OC-11		
						Eleva	tion $(ft)^2$							
						1.510 (44								
11/22/13	-25.8	-21.6	-149	-158	-145	-81.7	-213	-189	-246	-215	-226	-227		
12/6/13	-34.8	-23.6	-147	-158	-153	-80.7	-215	-188	-246	-214	-227	-225		
12/13/13	-27.8	-21.6	-150	-159	-145	-80.7	-213	-191	-246	-214	-226	-227		

¹Date measurements were taken. ²Relative to Chicago city datum (mean of 579.48' above sea level) at intersection of State and Madison Streets. ³Well inaccessible on 6/21/2013 due to flooding in the area.

FIGURE 3: MINIMUM, MEAN, AND MAXIMUM WATER ELEVATIONS FOR OBSERVATION WELLS OC-1 THROUGH OC-11 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2013

Observation Well

21