

Metropolitan Water Reclamation District of Greater Chicago

## MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 14-20

CONCENTRATIONS OF PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT, EFFLUENT, AND WASTE-ACTIVATED SLUDGE AND BIOSOLIDS IN THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS

July 2014

Metropolitan Water Reclamation District of Greater Chicago 100 East Erie Street Chicago, Illinois 60611-2803 312-751-5600

### CONCENTRATIONS OF PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT, EFFLUENT, AND WASTE-ACTIVATED SLUDGE AND BIOSOLIDS IN THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS

By

Dominic Brose Associate Environmental Soil Scientist

> Anna Liao Instrumentation Chemist IV

Lakhwinder Hundal Supervising Environmental Soil Scientist

Albert Cox Environmental Monitoring and Research Manager

Monitoring and Research Department Thomas C. Granato, Director

July 2014

## TABLE OF CONTENTS

|                        | Page |
|------------------------|------|
| LIST OF TABLES         | ii   |
| SUMMARY                | 1    |
| INTRODUCTION           | 2    |
| METHODS AND MATERIALS  | 4    |
| RESULTS AND DISCUSSION | 5    |
| REFERENCES             | 14   |
| APPENDICES             |      |
| APPENDIX A             | А    |
| APPENDIX B             | В    |

#### LIST OF TABLES

# Table Page No. 1 1 Eleven Targeted Pharmaceutical and Personal Care Products 3

- Eleven Targeted Pharmaceutical and Personal Care Products Monitored in the Metropolitan Water Reclamation District of Greater Chicago's Seven Water Reclamation Plants' Influent, Effluent, Sludge, and Biosolids Collected From January 2010 Through February 2014, Their Use in Consumer Products, and Range in Concentrations in Biosolids From Two Published Studies
- 2 Mean Concentrations (µg L<sup>-1</sup>) of Eleven Targeted Pharmaceutical and Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the Metropolitan Water Reclamation District of Greater Chicago's Seven Water Reclamation Plants Collected From January 2010 Through January 2014

6

9

- 3 Mean Concentrations of Eleven Targeted Pharmaceutical and Personal Care Products in Biosolids and Waste-Activated Sludge Samples in the Metropolitan Water Reclamation District of Greater Chicago's Seven Water Reclamation Plants Collected From January 2010 Through February 2014 and Comparison to Concentrations From Two Published Studies
- 4 Range in Concentrations for Pharmaceuticals and Personal Care 12 Products in Effluent Samples From the Metropolitan Water Reclamation District of Greater Chicago's Seven Water Reclamation Plants Collected From January 2010 Through February 2014 and Their Comparison to Published Effluent Concentrations
- A-1 Concentrations (μg L<sup>-1</sup>) of Eleven Targeted Pharmaceutical and A-1 Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the Stickney Water Reclamation Plant Collected From January 2010 Through January 2014
- A-2 Concentrations (μg L<sup>-1</sup>) of Eleven Targeted Pharmaceutical and A-4 Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the Calumet Water Reclamation Plant Collected From January 2010 Through January 2014

ii

## LIST OF TABLES (Continued)

| TableNo. |                                                                                                                                                                                                                                                                         | Page |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A-3      | Concentrations ( $\mu$ g L <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the Hanover Park Water Reclamation Plant Collected From January 2010 Through January 2014        | A-7  |
| A-4      | Concentrations ( $\mu$ g L <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the Lemont Water Reclamation Plant Collected From January 2010 Through January 2014              | A-10 |
| A-5      | Concentrations ( $\mu$ g L <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the John E. Egan Water Reclamation Plant Collected From January 2010 Through February 2014       | A-13 |
| A-6      | Concentrations ( $\mu$ g L <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the James C. Kirie Water Reclamation Plant Collected From January 2010 Through February 2014     | A-16 |
| A-7      | Concentrations ( $\mu$ g L <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Personal Care Products in Influent and Effluent Samples and Removal Efficiency (%) in the Terrence J. O'Brien Water Reclamation Plant Collected From January 2010 Through January 2014 | A-19 |
| B-1      | Concentrations (µg kg <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Per-<br>sonal Care Products in Biosolids Samples in the Stickney Water Rec-<br>lamation Plant Collected From January 2010 Through January 2014                                              | B-1  |
| B-2      | Concentrations ( $\mu$ g kg <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Personal Care Products In Biosolids Samples in the Calumet Water Reclamation Plant Collected From January 2010 Through January 2014                                                   | B-4  |
| В-3      | Concentrations (µg kg <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and Personal Care Products in Biosolids Samples in the Hanover Park Water Reclamation Plant Collected From January 2010 Through January 2014                                                    | B-7  |

## LIST OF TABLES (Continued)

|                                                                                                                                                                                                                                                           | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Concentrations (µg kg <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and<br>Personal Care Products in Waste-Activated Sludge Samples in the<br>Lemont Water Reclamation Plant Collected From January 2010<br>Through January 2014                      | B-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Concentrations (µg kg <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and<br>Personal Care Products in Biosolids Samples in the Egan Water<br>Reclamation Plant Collected From January 2010 Through February<br>2014                                    | B-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Concentrations ( $\mu$ g kg <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and<br>Personal Care Products in Waste-Activated Sludge Samples in the<br>Kirie Water Reclamation Plant Collected From January 2010<br>Through February 2014                | B-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Concentrations ( $\mu$ g kg <sup>-1</sup> ) of Eleven Targeted Pharmaceutical and<br>Personal Care Products in Waste-Activated Sludge Samples in the<br>Terrence J. O'Brien Water Reclamation Plant Collected From Janu-<br>ary 2010 Through January 2014 | B-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                           | <ul> <li>Personal Care Products in Waste-Activated Sludge Samples in the<br/>Lemont Water Reclamation Plant Collected From January 2010<br/>Through January 2014</li> <li>Concentrations (μg kg<sup>-1</sup>) of Eleven Targeted Pharmaceutical and<br/>Personal Care Products in Biosolids Samples in the Egan Water<br/>Reclamation Plant Collected From January 2010 Through February<br/>2014</li> <li>Concentrations (μg kg<sup>-1</sup>) of Eleven Targeted Pharmaceutical and<br/>Personal Care Products in Waste-Activated Sludge Samples in the<br/>Kirie Water Reclamation Plant Collected From January 2010<br/>Through February 2014</li> <li>Concentrations (μg kg<sup>-1</sup>) of Eleven Targeted Pharmaceutical and<br/>Personal Care Products in Waste-Activated Sludge Samples in the<br/>Kirie Water Reclamation Plant Collected From January 2010<br/>Through February 2014</li> <li>Concentrations (μg kg<sup>-1</sup>) of Eleven Targeted Pharmaceutical and<br/>Personal Care Products in Waste-Activated Sludge Samples in the<br/>Terrence J. O'Brien Water Reclamation Plant Collected From Janu-</li> </ul> |

#### SUMMARY

Pharmaceuticals and personal care products (PPCPs) comprise a large and diverse group of chemical substances, including prescription and over-the-counter drugs, veterinary drugs, fragrances, cosmetics, and cleaning agents. Although PPCPs in wastewater effluent and biosolids are not currently regulated, continued media attention to trace concentrations of PPCPs in wastewater effluent lead the Metropolitan Water Reclamation District of Greater Chicago (District) to monitor for 11 targeted PPCPs in the District's seven water reclamation plants' (WRPs') influent, effluent, sludge, and biosolids. Semi-annual or annual monitoring was conducted from January 2010 through February 2014. Sample extractions were conducted using a Solid Phase Extractor, and analyses were performed using the High Performance Liquid Chromatograph with a Triple Quad Mass Spectrometer, using modified EPA Method 1694.

The Hanover Park Water Reclamation Plant (WRP) had the highest influent concentrations for 6 of the 11 target PPCPs, and the Lemont WRP had the other five highest influent concentrations. These two WRPs receive almost exclusively domestic wastewater, indicating the dominance of households as the source of these PPCPs in the District's wastewater treatment systems. There is no trend in influent, effluent, or biosolids concentrations over the five-year sampling period for any of the 11 PPCPs. Concentrations for all 11 PPCPs reported in the District's biosolids or waste-activated sludge samples were lower than concentrations reported in the United States Environmental Protection Agency's (USEPA's) Targeted National Sewage Sludge Survey (TNSSS) (2009). Removal efficiencies from wastewater influent were greatest for ibuprofen, naproxen, and triclosan, which were greater than 89 percent for all seven WRPs. Triclocarban and Gemfibrozil also had high removal efficiencies of greater than 80 percent and 50 percent, respectively. The lowest removal efficiencies were for codeine, diphenhydramine, and fluoxetine, which were less than 50 percent for most WRPs.

When removed from the wastewater stream, PPCPs volatilize, biodegrade, or adsorb to the solid particulates in sludge and move with sludge for the duration of the treatment process. The Hanover Park WRP had the highest concentrations for 9 of the 11 PPCPs in biosolids. Although these 11 targeted PPCPs were detected in biosolids samples, there is still much uncertainty regarding their migration from biosolids to the environment. Research suggests that the majority of the PPCPs detected in biosolids likely exert no acute effects on aquatic organisms when applied as required by the USEPA's Part 503 biosolids regulation.

Concentrations for 9 of the 11 PPCPs in the District's effluent were compared to concentrations from other wastewater treatment plants published in scientific papers. The highest concentrations of carbamazepine, ciprofloxacin, codeine, fluoxetine, gemfibrozil, ibuprofen, naproxen, and triclosan in the District's effluent were lower than the values reported in effluent concentrations from other wastewater treatment plants reported in published scientific papers. Although PPCPs have been detected in wastewater effluent, there is currently no known risk to human health, and understanding the potential risks to aquatic organisms continues to be an active area of research. Further research is warranted to monitor concentrations of PPCPs in influent, effluent, and biosolids to asses their fate and transport in surface waters and biosolids-amended soils.

#### **INTRODUCTION**

Pharmaceuticals and personal-care products generally refer to any product used by individuals for health or cosmetic reasons or used by agribusiness to enhance the growth or health of livestock. These compounds comprise a large and diverse group of chemical substances, including prescription and over-the-counter drugs, veterinary drugs, fragrances, cosmetics, and cleaning agents. Although evidence suggests that certain endocrine-disrupting drugs may have adverse effects on aquatic organisms, there is no evidence of adverse human health effects from PPCPs in the environment. There has been increasing attention given to PPCPs concerning the fate and transport of these compounds in the environment from wastewater effluent and biosolids application to land (Boxall et al., 2012; Kinney et al., 2006); however, these chemicals have been present in wastewater effluent and surface waters for as long as they have been produced and used by consumers. Recent advances in analytical technology now allow for improved quantification of these chemicals in trace concentrations. Pharmaceutical and personal-care products are continuously released into wastewater streams and ultimately reach wastewater treatment plants (WWTPs) where they partition to sludge solids, are biodegraded, volatilize, or remain soluble in the WWTP's effluent. Although PPCPs are not currently regulated in wastewater effluent and biosolids, continued media attention to trace concentrations of PPCPs in wastewater effluent lead the District to monitor for PPCPs in the District's seven WRPs' influent, effluent, sludge, and biosolids.

The USEPA conducted four sewage sludge surveys since 1982, the most recent survey being the TNSSS in 2009. The 2009 TNSSS collected sewage sludge from 74 randomly selected, publicly owned treatment works in 35 states in 2006 and 2007 and provided results for 145 analytes, including 72 pharmaceuticals and 25steroids and hormones. Some PPCPs were found in all samples, while others were found in none or only a few of the sewage sludge samples (USEPA, 2009). Additionally, there have been a number of studies conducted investigating the presence of PPCPs in wastewater effluent (Andreozzi et al., 2003; Rosal et al., 2010; Barber et al., 2011; Deblonde et al., 2011; Waiser et al., 2011; Loos et al., 2013).

This report presents concentrations for 11 targeted PPCPs in the District's seven WRPs from semi-annual or annual monitoring conducted from January 2010 through February 2014. These 11 targeted PPCPs were monitored in influent, effluent, and waste-activated sludge or biosolids samples in all seven WRPs. The targeted PPCPs, their use in consumer products, select physical properties, and range in concentration in biosolids from two published studies are listed in <u>Table 1</u> (Kinney et al., 2006; USEPA, 2009). To better understand how PPCP concentrations found in the District's WRPs compare to other treatment plants, monitoring data are compared to other wastewater effluent data published in scientific papers.

### TABLE 1: ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS MONITORED IN THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS' INFLUENT, EFFLUENT, SLUDGE, AND BIOSOLIDS COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014, THEIR USE IN CONSUMER PRODUCTS, AND RANGE IN CONCENTRATIONS IN BIOSOLIDS FROM TWO PUBLISHED STUDIES<sup>1,2</sup>

| РРСР            | Use in Consumer<br>Product | Octanol-Water<br>Partitioning<br>Coefficient <sup>3</sup> | Solubility in Water at 25°C (mg/L) <sup>3</sup> | Molecular Weight <sup>3</sup> | Range in Concentration<br>(µg kg <sup>-1</sup> ) |
|-----------------|----------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------|--------------------------------------------------|
| Carbamazepine   | Anticonvulsant             | 2.45                                                      | 17.7                                            | 236.2                         | ND - 6,030 <sup>1,2</sup>                        |
| Ciprofloxacin   | Antibiotic                 | 0.28                                                      | 30,000 (20°C)                                   | 331.3                         | 75 - 40,800 <sup>1,2</sup>                       |
| Codeine         | Analgesic                  | 1.19                                                      | 9,000 (20°C)                                    | 299.4                         | ND - 328 <sup>1,2</sup>                          |
| Diphenhydramine | Antihistamine              | 3.27                                                      | 3,060 (37°C)                                    | 255.4                         | 12 - 7,018 <sup>1,2</sup>                        |
| Fluoxetine      | Antidepressant             | 4.05                                                      | 60.3                                            | 309.3                         | ND - $3,140^{1,2}$                               |
| Gemfibrozil     | Antihyperlipidemic         | 4.77                                                      | 19                                              | 250.3                         | ND - 2,650 <sup>1,2</sup>                        |
| Ibuprofen       | Analgesic                  | 3.97                                                      | 21                                              | 206.2                         | ND - 11,900 <sup>1</sup>                         |
| Naproxen        | Analgesic                  | 3.18                                                      | 15.9                                            | 230.3                         | ND - $1,020^2$                                   |
| Thiabendazole   | Anthelminitic              | 2.47                                                      | 50                                              | 201.3                         | $1 - 5,000^{1,2}$                                |
| Triclocarban    | Antimicrobial              | 4.9                                                       | 11 (20°C)                                       | 315.6                         | $187 - 441,000^{1}$                              |
| Triclosan       | Antimicrobial              | 4.76                                                      | 10 (20°C)                                       | 289.5                         | ND - 133,000 <sup>1,2</sup>                      |

<sup>1</sup>USEPA, 2009.

 $^{2}$ Kinney et al., 2006.

<sup>3</sup>USNLM, 2014.

#### **METHODS AND MATERIALS**

Samples were collected from the influent, effluent, and sludge or biosolids (i.e. digester draw biosolids for Egan, Hanover Park, Stickney, and Calumet WRPs; waste-activated sludge for O'Brien and Lemont WRPs; return sludge for Kirie WRP) biannually from all seven WRPs for 2010 - 2011. Only one sampling event per year was conducted for 2012 - 2014.

Samples were collected in glass bottles (i.e., a gallon for influent and effluent, a quart for sludge) at 4:00 a.m. and continually every four hours for a total of six collections. Sample vials were placed on ice in coolers for transport to the laboratory.

Sample extractions were conducted by the Organic Compounds Analytical Laboratory located at the John E. Egan WRP using the Oasis Disk (47 mm HLB) on the Automated Solid Phase Extractor (Horizon SPE-DEX 4790), and analyses were performed using the High Performance Liquid Chromatograph with a Triple Quad Mass Spectrometer (Agilent 1200 HPLC and 6410B Triple Quad MS), using modified EPA Method 1694 (USEPA, 2007).

#### **RESULTS AND DISCUSSION**

The mean concentrations of 11 PPCPs in influent and effluent samples and their removal efficiencies for the District's seven WRPs from January 2010 to February 2014 are summarized in <u>Table 2</u>. Concentrations for individual sampling dates for influent, effluent, and removal efficiency for each WRP for the duration of the sampling period are available in <u>Appendix A</u>. Mean concentrations for analytes in biosolids and waste-activated sludge samples are summarized in <u>Table 3</u>. Concentrations in biosolids and waste-activated sludge samples for individual sampling dates for each WRP for the duration of the sampling period are available in <u>Appendix B</u>.

The Hanover Park WRP had the highest influent concentrations for 6 of the 11 target PPCPs, and the Lemont WRP had the other 5 highest influent concentrations (Table 2). These two WRPs receive almost exclusively domestic wastewater, indicating the dominance of households as the source of these PPCPs in the District's wastewater treatment systems. These compounds exhibit low solubility due to their structural properties and are expected to be removed from wastewater by partitioning to solids. The ring-structure and molecular weight of these compounds contribute to their low solubility in water as indicated by their relatively high octanol-water partitioning coefficients, except for ciprofloxacin, which is the most soluble of all the compounds (Table 1). Removal efficiency, defined here as the difference between influent and effluent concentrations (Table 2), was greatest for ibuprofen, naproxen, and triclosan and ranged from 89 to 100 percent for all seven WRPs. Triclocarban and gemfibrozil also had high removal efficiencies, which were greater than 80 percent and 50 percent, respectively, for all seven WRPs. Although ciprofloxacin is the most water soluble of the compounds, its removal efficiency was as high as 80 percent in the Kirie WRP. The lowest removal efficiencies were for codeine, diphenhydramine, and fluoxetine, which were less than 50 percent for most WRPs. Removal efficiency results for carbamazepine and thiabendazole are inconclusive due to the high variability in data and concentrations being near the level of quantification.

When removed from the wastewater stream, PPCPs will volatilize, biodegrade, or adsorb to solid particulates in sludge and move with sludge for the duration of the treatment process. The Hanover Park WRP had the highest concentrations for 9 of the 11 PPCPs in biosolids (Table\_3). Carbamazepine, ciprofloxacin, diphenhydramine, fluoxetine, gemfibrozil, ibuprofen, thiabendazole, triclocarban, and triclosan were all greatest at Hanover Park; however, the concentrations of these compounds were all less than the values reported in the two published studies (Table 1). Triclocarban and triclosan were present in District biosolids at  $35.3\pm7.2$  and 30.5±5.5 mg kg<sup>-1</sup>, respectively. The 2009 TNSSS reported values for triclocarban and triclosan up to 441 and 133 mg kg<sup>-1</sup>, respectively. Although these 11 targeted PPCPs were detected in biosolids samples, the USEPA has previously evaluated organic pollutants of similar chemical structure and properties in the initial 40 CFR Part 503 Standards for the Use or Disposal of Sewage Sludge (Part 503). The USEPA conducted comprehensive risk assessments on 12 organic pollutants, including known carcinogens such as DDT, benzo(a)pyrene, hexachlorobenzene, and polychlorinated biphenyls (PCBs). The risk assessment used 14 exposure pathways, including direct ingestion of biosolids by a child, and concluded that the risk to human health from exposure to these 12 organic pollutants in biosolids-amended soil was negligible.

## TABLE 2: MEAN<sup>1</sup> CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| WRP <sup>2</sup>      | <u>Carbamazepine<sup>3</sup></u><br>Influent Effluent |           | <u>Ciprofloxacin</u><br>Influent Effluent Removal |           |       | Influent  | <u>Codeine</u><br>Effluent | Removal              | Diphenhydramine<br>Influent Effluent Removal |           |        |  |
|-----------------------|-------------------------------------------------------|-----------|---------------------------------------------------|-----------|-------|-----------|----------------------------|----------------------|----------------------------------------------|-----------|--------|--|
|                       | ······································                |           |                                                   |           |       |           |                            |                      |                                              |           |        |  |
| Stickney <sup>4</sup> | 0.14±0.03                                             | 0.14±0.04 | 1.9±1.5                                           | 0.33±0.1  | 77±13 | 0.10±0.02 | 0.07±0.04                  | 26±46                | 0.39±0.14                                    | 0.27±0.07 | 27±19  |  |
| Calumet               | 0.17±0.05                                             | 0.17±0.05 | 1.6±0.99                                          | 0.67±0.32 | 47±26 | 0.17±0.06 | 0.13±0.07                  | 23±31                | 0.50±0.26                                    | 0.29±0.13 | 37±18  |  |
| Hanover<br>Park       | 0.27±0.05                                             | 0.28±0.05 | 4.1±3.1                                           | 0.76±0.64 | 77±16 | 0.14±0.05 | 0.09±0.07                  | 36±50                | 0.99±0.32                                    | 0.25±0.14 | 75±16  |  |
| Lemont                | 0.33±0.08                                             | 0.36±0.14 | 4.3±3.6                                           | 1.5±0.93  | 54±27 | 0.28±0.21 | 0.20±0.18                  | 30±32                | 1.1±0.60                                     | 0.50±0.27 | 44±29  |  |
| Egan                  | 0.19±0.03                                             | 0.21±0.04 | 3.5±1.8                                           | 0.73±0.63 | 79±14 | 0.14±0.04 | 0.15±0.10                  | 13±64                | 0.72±0.33                                    | 0.18±0.12 | 74±17  |  |
| Kirie                 | 0.23±0.04                                             | 0.25±0.07 | 2.5±1.3                                           | 0.58±0.44 | 80±11 | 0.10±0.03 | 0.05±0.03                  | 48±25                | 0.65±0.30                                    | 0.35±0.11 | 41±20  |  |
| O'Brien               | 0.32±0.39                                             | 0.18±0.06 | 2.1±0.89                                          | 0.78±0.43 | 63±10 | 0.09±0.04 | 0.08±0.04                  | -3.8±59 <sup>5</sup> | 0.43±0.19                                    | 0.36±0.09 | 8.8±23 |  |

6

## TABLE 2 (Continued): MEAN<sup>1</sup> CONCENTRATIONS (µg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PER-SONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE MET-ROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| WRP <sup>2</sup>      |           | Fluoxet   | ine     |           | Gemfibr   | ozil    |          | Ibupro    | fen      | Naproxen |           |          |
|-----------------------|-----------|-----------|---------|-----------|-----------|---------|----------|-----------|----------|----------|-----------|----------|
| WKr                   | Influent  | Effluent  | Removal | Influent  | Effluent  | Removal | Influent | Effluent  | Removal  | Influent | Effluent  | Removal  |
| Stickney <sup>4</sup> | 0.03±0.01 | 0.01±0.0  | 61±12   | 0.58±0.17 | 0.28±0.18 | 54±24   | 6.1±2.3  | 0.33±0.18 | 94±3.4   | 5.6±2.3  | 0.23±0.19 | 96±2.8   |
| Calumet               | 0.02±0.02 | 0.01±0.01 | 31±42   | 0.84±0.15 | 0.34±0.27 | 60±31   | 6.9±3.0  | 0.70±1.6  | 91±21    | 7.8±3.0  | 0.95±2.0  | 89±22    |
| Hanover<br>Park       | 0.07±0.03 | 0.04±0.01 | 44±17   | 1.8±0.45  | 0.44±0.43 | 76±23   | 11.4±3.5 | 0.06±0.04 | 100±0.44 | 13.0±5.1 | 0.17±0.18 | 99±1.2   |
| Lemont                | 0.06±0.03 | 0.03±0.01 | 37±22   | 1.0±0.39  | 0.41±0.35 | 60±29   | 14.5±8.0 | 0.83±1.3  | 95±5.8   | 12.3±6.4 | 0.50±0.63 | 96±3.6   |
| Egan                  | 0.06±0.02 | 0.04±0.01 | 36±10   | 1.2±0.45  | 0.22±0.18 | 83±14   | 9.9±3.6  | 0.01±0.0  | 100±0.09 | 9.8±4.4  | 0.04±0.04 | 100±0.40 |
| Kirie                 | 0.04±0.01 | 0.03±0.01 | 26±13   | 1.4±0.48  | 0.26±0.16 | 80±16   | 10.1±4.2 | 0.02±0.01 | 100±0.20 | 9.8±4.9  | 0.06±0.04 | 99±1.0   |
| O'Brien               | 0.03±0.02 | 0.02±0.01 | 27±20   | 1.1±0.31  | 0.42±0.31 | 61±29   | 8.5±2.5  | 0.05±0.07 | 99±0.83  | 7.4±2.9  | 0.16±0.20 | 97±3.7   |

## TABLE 2 (Continued): MEAN<sup>1</sup> CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

|                       | Thiaben         | dazole <sup>3</sup> |          | Triclocarba | n       |                 | Triclosan       |         |  |  |
|-----------------------|-----------------|---------------------|----------|-------------|---------|-----------------|-----------------|---------|--|--|
| WRP <sup>2</sup>      | Influent        | Effluent            | Influent | Effluent    | Removal | Influent        | Effluent        | Removal |  |  |
| Stickney <sup>4</sup> | 0.02±0.01       | 0.01±0.01           | 2.1±1.4  | 0.09±0.03   | 95±1.9  | 3.2±1.2         | 0.08±0.03       | 97±1.6  |  |  |
| Calumet               | 0.01±0.01       | 0.01±0.01           | 2.4±1.5  | 0.21±0.06   | 83±21   | 6.8±5.9         | 0.23±0.24       | 89±22   |  |  |
| Hanover Park          | 0.19±0.20       | 0.25±0.28           | 4.9±4.6  | 0.25±0.05   | 92±5.2  | <b>8.8</b> ±5.1 | $0.09 \pm 0.07$ | 98±1.5  |  |  |
| Lemont                | 0.02±0.01       | 0.03±0.01           | 3.1±1.8  | 0.23±0.11   | 87±12   | 6.9±2.5         | 0.13±0.07       | 98±1.5  |  |  |
| Egan                  | 0.04±0.02       | 0.03±0.01           | 3.5±1.4  | 0.12±0.05   | 96±1.8  | 7.5±2.0         | 0.07±0.06       | 99±0.82 |  |  |
| Kirie                 | 0.04±0.01       | 0.03±0.01           | 2.4±1.1  | 0.10±0.04   | 95±1.5  | 7.6±3.5         | 0.07±0.03       | 99±0.64 |  |  |
| O'Brien               | $0.02 \pm 0.01$ | $0.03 {\pm} 0.01$   | 2.0±0.54 | 0.20±0.09   | 90±4.0  | 4.6±1.2         | 0.17±0.09       | 96±2.9  |  |  |

<sup>1</sup>Mean of six samples for carbamazepine, ciprofloxacin, codeine, diphenhydramine, fluoxetine, and thiabendazole. Mean of seven samples for gemfibrozil, ibuprofen, naproxen, triclocarban, and triclosan.

<sup>2</sup>Water Reclamation Plant.

<sup>3</sup>Removal efficiencies for carbamazepine and thiabendazole are inconclusive due to the high variability in data and concentrations being near the level of quantification.

<sup>4</sup>Mean of ten influent samples for carbamazepine, ciprofloxacin, diphenhydramine, and fluoxetine. Mean of 12 influent samples for codeine, gemfibrozil, ibuprofen, and naproxen. Separate samples were taken from the west side and southwest wastewater streams at the Stickney Water Reclamation Plant.

<sup>5</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value.

### TABLE 3: MEAN<sup>1</sup> CONCENTRATIONS OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS AND WASTE-ACTIVATED SLUDGE SAMPLES<sup>2</sup> IN THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014 AND COMPARISON TO CONCENTRATIONS FROM TWO PUBLISHED STUDIES

| WRP <sup>3</sup>      | Carbamazepine | Ciprofloxacin | Codeine                    | Diphenhydramine | Fluoxetine | Gemfibrozil |
|-----------------------|---------------|---------------|----------------------------|-----------------|------------|-------------|
|                       |               |               | ug kg <sup>-1</sup> dry-we | ight basis      |            |             |
| Published<br>Studies⁴ | ND - 6,030    | 75-40,800     | ND - 328                   | 12 - 7,018      | ND - 3,140 | ND – 2,650  |
| Stickney              | 31.2±16.9     | 7,684±4,663   | 15.4±17.9                  | 665±401         | 72.7±39.1  | 68.8±46.7   |
| Calumet               | 53.5±24.2     | 10,362±6,373  | 27.0±15.2                  | 713±378         | 79.4±33.0  | 186±119     |
| Hanover Park          | 127±16.9      | 28,160±12,561 | 20.7 ±15.9                 | 1042±351        | 256±130    | 447±138     |
| Lemont                | 96.6±46.1     | 14,057±6,471  | 117±82.7                   | 484±193         | 146±28.6   | 200±84.3    |
| Egan                  | 69.8±32.0     | 16,829±8,884  | 23.7±16.5                  | 790±368         | 189±67.2   | 160±64.8    |
| Kirie                 | 48.2±19.1     | 10,423±5,536  | 92.5±62.8                  | 403±169         | 115±24.7   | 95.2±98.0   |
| O'Brien               | 68.3±59.1     | 11,001±5,933  | 46.2±47.7                  | 346±101         | 77.3±15.0  | 148±68.7    |

## TABLE 3 (Continued): MEAN<sup>1</sup> CONCENTRATIONS OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS AND WASTE-ACTIVATED SLUDGE SAMPLES<sup>2</sup> IN THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014 AND COMPARISON TO CONCENTRATIONS FROM TWO PUBLISHED STUDIES

| WRP <sup>3</sup>                  | Ibuprofen   | Naproxen   | Thiabendazole                    | Triclocarban  | Triclosan    |
|-----------------------------------|-------------|------------|----------------------------------|---------------|--------------|
|                                   |             | μg kg      | <sup>-1</sup> dry-weight basis - |               |              |
| Published <sup>4</sup><br>Studies | ND – 11,900 | ND – 1,020 | 1 – 5,000                        | 187 - 441,000 | ND – 133,000 |
| Stickney                          | 854±851     | 44.3±37.3  | 21.9±8.7                         | 7,488±3,343   | 4,094±2,042  |
| Calumet                           | 995±510     | 109±201    | 16.5±4.5                         | 17,292±5,017  | 6,682±3,454  |
| Hanover Park                      | 1,719±831   | 27.3±10.8  | 408±319                          | 35,277±7,238  | 30,506±5,539 |
| Lemont                            | 429±261     | 243±229    | 55.7±43.1                        | 9,605±3,874   | 2,668±941    |
| Egan                              | 1,340 ±653  | 34.7±25.5  | 39.0±16.7                        | 14,902±7,517  | 12,096±5,613 |
| Kirie                             | 272±176     | 69.1±54.8  | 34.3±21.6                        | 8,478±3,167   | 2,487±818    |
| O'Brien                           | 540±208     | 331±250    | 28.0±19.5                        | 7,638±4,255   | 6,603±3,625  |

Mean of six samples for carbamazepine, ciprofloxacin, codeine, diphenhydramine, fluoxetine, and thiabendazole. Mean of seven samples for gemfibrozil, ibuprofen, naproxen, triclocarban, and triclosan. <sup>2</sup>Samples from Lemont, Kirie, and O'Brien are waste-activated sludge.

<sup>3</sup>Water Reclamation Plant.

<sup>4</sup>Range in concentration from two published studies (Kinney et al., 2006; USEPA, 2009).

McClellan and Halden (2010) analyzed for 72 PPCPs in 110 biosolids samples collected by the USEPA in the 2001 National Sewage Sludge Survey. Of the 72 PPCPs analyzed for, 38 were detected. The two most abundant PPCPs were triclocarban (48 percent of total detected PPCP mass) and triclosan (17 percent). Their mean concentrations were  $36.0\pm8.0$  and  $12.6\pm3.8$ mg kg<sup>-1</sup> on a dry-weight basis, respectively. In a similar study, Higgens et al. (2011) measured concentrations of triclocarban and triclosan in municipal biosolids at  $9.2\pm1.6$  and  $6.4\pm0.3$  mg kg<sup>-1</sup> on a dry-weight basis, respectively. The second most abundant class of PPCPs found by McClellan and Halden (2010) was antibiotics; ciprofloxacin was found in the highest concentration at  $6.8\pm2.3$  mg kg<sup>-1</sup> on a dry-weight basis.

McClellan and Halden (2010) also estimated porewater concentrations for PPCPs and concluded that the leaching of dissolved PPCPs into surface waters is not an important pathway for exposure of aquatic organisms for the majority of analytes detected. Concentrations calculated for soil porewater were several orders of magnitude below the lowest effect concentration<sup>1</sup> reported for aquatic organisms tested. There were several notable exceptions, including ciprofloxacin, triclosan, and triclocarban. They concluded that the majority of the PPCPs detected in biosolids likely exert no acute effects on aquatic organisms, assuming that biosolids are applied as required by the USEPA's Part 503 biosolids regulation (McClellan and Halden, 2010). Similarly, Topp et al. (2008) targeted PPCPs, including carbamazepine, gemfibrozil, naproxen, ibuprofen, and triclosan, in agricultural runoff from the application of biosolids and found that in injected plots, concentrations of PPCPs were generally below the level of detection. Although broadcast application of biosolids to agricultural fields resulted in detectable concentrations in runoff, overall the study demonstrated that the injection of biosolids below the soil surface could effectively eliminate surface runoff of PPCPs. Biodegradation data on PPCPs as a class of compounds is sparse, but data on triclocarban and triclosan suggest that although PPCPs may not be mobile in biosolids-amended soils, they may biodegrade slowly and persist for years, depending on soil depth and type of biosolids applied (Al-Rajab et al., 2009; Snyder et al., 2010; Xia et al., 2010).

Concentrations for nine PPCPs in the District's effluent and corresponding values reported in published scientific papers for other wastewater treatment plants are presented in <u>Table 4</u>. Overall, the highest concentrations of carbamazepine, ciprofloxacin, codeine, fluoxetine, gemfibrozil, ibuprofen, naproxen, and triclosan in the District's effluent were lower than values reported in effluent concentrations from other wastewater treatment plants. Waiser et al. (2011) found that concentrations of PPCPs were highest within the first 10 km of a treatment plant with a flow of 1.6 million gallons per day (MGD); however, codeine and carbamazepine were detected 105 km and 60 km, respectively, downstream from the same treatment plant. Based on observations that concentrations of PPCPs were higher in spring sampling periods than in summer periods, Waiser et al. (2011) also concluded that temperature plays an important role in the degradation of PPCPs in surface water.

Although PPCPs have been detected in wastewater effluent, there is currently no known risk to human health, and understanding the potential risks to aquatic organisms continues to be

<sup>&</sup>lt;sup>1</sup>The lowest level of a chemical stressor evaluated in a toxicity test that shows harmful effects on a plant or animal.

### TABLE 4: RANGE IN CONCENTRATIONS FOR PHARMACEUTICALS AND PERSONAL CARE PRODUCTS IN EFFLUENT SAMPLES FROM THE METROPOLITAN WATER RECLAMATIONDISTRICT OF GREATER CHICA-GO'S SEVEN WATER RECLAMATION PLANTS COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014 AND THEIR COMPARISON TO PUBLISHED EFFLUENT CONCENTRATIONS

| РРСР                 | Present<br>Study | Waiser<br>et al., 2011 | Andreozzi<br>et al., 2003 | Barber<br>et al., 2011 <sup>1</sup> | Deblonde et<br>al., 2011 | Rosal<br>et al., 2010 | Loos<br>et al., 2013 |
|----------------------|------------------|------------------------|---------------------------|-------------------------------------|--------------------------|-----------------------|----------------------|
|                      |                  |                        |                           | μg L <sup>-1</sup>                  |                          |                       |                      |
| Carbamazepine        | 0.14 - 0.36      | 0.35                   | 0.30 - 1.2                | . 3.2                               | 0.04 - 2.1               | 0.07 - 0.17           | 4.6                  |
| Ciprofloxacin        | 0.33 - 1.5       | 0.03                   | $NA^2$                    | 0.13 <sup>3</sup>                   | 0.01 - 2.4               | $ND^{4} - 5.7$        | 0.26                 |
| Codeine              | 0.05 - 0.20      | NA                     | NA                        | NA                                  | 1.9                      | ND - 0.16             | 0.26                 |
| Diphenhydra-<br>mine | 0.18 - 0.50      | NA                     | NA                        | 0.02                                |                          |                       | 0.14                 |
| Fluoxetine           | 0.01 - 0.04      | NA                     | NA                        | 0.02 <sup>3</sup>                   | 0.11                     | 0.03 - 0.22           | 0.02                 |
| Gemfibrozil          | 0.22 - 0.44      | 4.2                    | 0.06 - 2.1                | 0.64 <sup>3</sup>                   | 0.01 - 2.9               | ND - 0.85             | 3.6                  |
| Ibuprofen            | 0.01 - 0.83      | 1.6                    | 0.02 - 7.1                | $1.4^{3}$                           | 0.03 - 12.6              | ND - 0.14             | 2.1                  |
| Naproxen             | 0.04 - 0.95      | 2.7                    | 0.29 - 5.2                | NA                                  | 0.02 - 2.6               | 0.36 - 0.92           | 0.96                 |
| Triclosan            | 0.07 - 0.23      | 0.11                   | NA                        | 0.46                                | 0.01 - 0.22              | ND - 0.22             | 4.3                  |

<sup>1</sup>Values are composite sample (mean of 3-10 sampling events) except where noted. Samples taken from the District's North Shore Channel.

 $^{2}$ NA = no data available.

<sup>3</sup>Value is composite sample (mean of 21-48 sampling events) calculated from supplemental data.

 $^{4}$ ND = non-detect.

an active area of research. Further research is warranted to monitor concentrations of PPCPs in influent, effluent, and biosolids to asses their fate and transport in surface waters and biosolids-amended soils.

#### REFERENCES

Al-Rajab, A. J., L. Sabourin, A. Scott, D. R. Lapen, and E. Topp. "Impact of Biosolids on the Persistence and Dissipation Pathways of Triclosan and Triclocarban in an Agricultural Soil." *Sci. Total Environ.* 407(23): 5978-5985, 2009.

Andreozzi, R., M. Raffaele, and P. Nicklas. "Pharmaceuticals in STP Effluents and Their Solar Photodegradation in Aquatic Environment." *Chemosphere*. 50(10): 1319-1330, 2003.

Barber, L. B., G. K. Brown, T. G. Nettesheim, E. W. Murphy, S. E. Bartell, and H. L. Schoenfuss. "Effects of Biologically-Active Chemical Mixtures on Fish in a Wastewater-Impacted Urban Stream." *Sci. Total Environ.* 409(22): 4720-4728, 2011.

Boxall, A. B., M. A. Rudd, B. W. Brooks, D. J. Caldwell, K. Choi, S. Hickmann, and G. Van Der Kraak. "Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?" *Environ. Hlth. Persp.* 120(9): 1221, 2012, 2011.

Deblonde, T., C. Cossu-Leguille, and P. Hartemann. "Emerging Pollutants in Wastewater: A Review of the Literature." *Int. J. Hyg. Envir. Heal.* 214: 442-448, 2011.

Higgins, C. P., Z. J. Paesani, T. E. Abbott Chalew, R. U. Halden, and L. S. Hundal. "Persistence of Triclocarban and Triclosan in Soils After Land Application of Biosolids and Bioaccumulation in Eisenia Foetida." *Environ. Toxicol. Chem.* 30(3): 556-563, 2011.

Kinney, C. A., E. T. Furlong, S. D. Zaugg, M. R. Burkhardt, S. L. Werner, J. D. Cahill, and G. R. Jorgensen. "Survey of Organic Wastewater Contaminants in Biosolids Destined for Land Application." *Environ. Sci. and Technol.* 40(23): 7207-7215, 2006.

Loos, R., R. Carvalho, D.C. Antonio, S. Comero, G. Locoro, S. Tavazzi, B. Paracchini, M. Ghiani, T. Lettieri. L. Blaha, B. Jarosova, S. Voorspoels, K. Servaes, P. Haglund, J. Fick, R. H. Lindberg, D. Schwesig, and B. M. Gawlik. "EU-wide Monitoring Survey on Emerging Polar Organic Contaminants in Wastewater Treatment Plant Effluents." *Water Res.* 47: 5475-6487, 2013.

McClellan, K., and R. U. Halden. "Pharmaceuticals and Personal Care Products in Archived US Biosolids From the 2001 EPA National Sewage Sludge Survey." *Water Res.* 44(2): 658-668, 2010.

Rosal, R., A. Rodriguez, J. A. Perdigon-Melon, A. Petre, E. Garcia-Calvo, M. J. Gomez, A. Aguera, and A. R. Fernandez-Alba. "Occurrence of Emerging Pollutants in Urban Wastewater and Their Removal Through Biological Treatment Followed by Ozonation." *Water Res.* 44: 578-588, 2010.

Snyder, E. H., O'Connor, G. A., and D. C. McAvoy. "Fate of 14C–Triclocarban in Biosolids-amended Soils." *Sci. Total Environ.* 408: 2726-2732, 2010.

#### **REFERENCES** (Continued)

Topp, E., S. C. Monteiro, A. Beck, B. B Coelho, A. Boxall, P. W. Duenk, and C. D. Metcalfe. "Runoff of Pharmaceuticals and Personal Care Products Following Application of Biosolids to an Agricultural Field." *Sci. Total Environ.* 396(1): 52-59, 2008.

USEPA. "Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids," by HPLC/MS/MS. EPA-821-R-08-008. USEPA, Office of Water (4303T), Washington, DC, 2007.

USEPA. "Targeted National Sewage Sludge Survey. EPA-822-R-08-018." USEPA, Office of Water (4301T), Washington, DC, 2009.

U.S. National Library of Medicine. "ChemIDplus." Bethesda, MD. National Institutes of Health, Department of Health and Human Services. Accessed May 2014. [Available online: http://chem.sis.nlm.nih.gov/chemidplus/].

Waiser, M. J., D. Humphries, V. Tumber, and J. Holm. "Effluent-Dominated Streams. Part 2: Presence and Possible Effects of Pharmaceuticals and Personal Care Products in Wascana Creek, Saskatchewan, Canada." *Environ. Toxicol. Chem.* 30(2): 508-519, 2011.

Xia, K, L. S. Hundal, K. Kumar, K. Armbrust, A. E. Cox, and T. C. Granato. "Triclocarban, Triclosan, Polybrominated Diphenyl Ethers, and 4-Nonylphenol in Biosolids and in Soil Receiving 33-Year Biosolids Application." *Environ. Toxicol. Chem.* 29(3): 597-605, 2010.

#### APPENDIX A

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CONCENTRATIONS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCIES: INDIVIDUAL SAMPLING DATES FROM THE METROPOLITAN RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS

## TABLE A-1: CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE STICKNEY WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling<br>Date | Carbamazepine<br>Influent <sup>1</sup> Effluent Removal |      |                  | Ciprofloxacin<br>Influent Effluent Removal |      |    | Codeine<br>Influent Effluent Removal |      |     | Diphenhydramine<br>Influent Effluent Removal |      |     |
|------------------|---------------------------------------------------------|------|------------------|--------------------------------------------|------|----|--------------------------------------|------|-----|----------------------------------------------|------|-----|
| 7/22/2010        | 0.13                                                    | 0.16 | -16 <sup>2</sup> | 0.40                                       | 0.16 | 59 | 0.13                                 | 0.02 | 81  | 0.25                                         | 0.22 | 10  |
| 1/27/2011        | 0.15                                                    | 0.15 | -1.9             | 1.5                                        | 0.34 | 78 | 0.08                                 | 0.13 | -48 | 0.39                                         | 0.38 | 1.6 |
| 7/21/2011        | 0.17                                                    | 0.17 | -2.0             | 4.7                                        | 0.42 | 91 | 0.10                                 | 0.03 | 69  | 0.62                                         | 0.29 | 53  |
| 1/26/2012        | 0.10                                                    | 0.09 | 15               | 1.8                                        | 0.64 | 65 | 0.06                                 | 0.05 | 23  | 0.26                                         | 0.20 | 23  |
| 1/15/2013        | 0.18                                                    | 0.17 | 1.3              | 1.9                                        | 0.23 | 88 | 0.12                                 | 0.10 | 18  | 0.47                                         | 0.33 | 29  |
| 1/14/2014        | 0.14                                                    | 0.10 | 31               | 1.1                                        | 0.20 | 82 | 0.10                                 | 0.09 | 13  | 0.35                                         | 0.20 | 42  |

## TABLE A-1 (continued): CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE STICKNEY WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

|                 | Fluoxetine      |          |         | (        | Gemfibrozil |         |          | Ibuprofe | n       |          | Naproxen |         |  |
|-----------------|-----------------|----------|---------|----------|-------------|---------|----------|----------|---------|----------|----------|---------|--|
| Sampling Date - | Influent        | Effluent | Removal | Influent | Effluent    | Removal | Influent | Effluent | Removal | Influent | Effluent | Removal |  |
| 1/28/2010       | NA <sup>3</sup> | NA       | NA      | 0.58     | 0.30        | 47      | 3.6      | 0.36     | 90      | 3.2      | 0.17     | 95      |  |
| 7/22/2010       | 0.02            | 0.01     | 75      | 0.38     | 0.06        | 85      | 3.0      | 0.09     | 97      | 2.3      | 0.09     | 96      |  |
| 1/27/2011       | 0.03            | 0.02     | 45      | 0.91     | 0.58        | 36      | 9.5      | 0.37     | 96      | 9.1      | 0.25     | 97      |  |
| 7/21/2011       | 0.04            | 0.01     | 75      | 0.62     | 0.08        | 88      | 6.1      | 0.16     | 97      | 5.6      | 0.18     | 97      |  |
| 1/26/2012       | 0.02            | 0.01     | 52      | 0.51     | 0.35        | 31      | 5.9      | 0.59     | 90      | 5.3      | 0.25     | 95      |  |
| 1/15/2013       | 0.03            | 0.01     | 63      | 0.60     | 0.23        | 62      | 7.9      | 0.26     | 97      | 7.0      | 0.05     | 99      |  |
| 1/14/2014       | 0.02            | 0.01     | 56      | 0.49     | 0.33        | 32      | 6.7      | 0.48     | 93      | 6.5      | 0.64     | 90      |  |

## TABLE A-1 (continued): CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT ANDEFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE STICKNEY WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | Т               | hiabendazo | ole     | -        | Friclocarba | ın      | Triclosan |          |         |  |  |
|-----------|-----------------|------------|---------|----------|-------------|---------|-----------|----------|---------|--|--|
| Date –    | Influent        | Effluent   | Removal | Influent | Effluent    | Removal | Influent  | Effluent | Removal |  |  |
| 1/28/2010 | NA <sup>3</sup> | NA         | NA      | 2.2      | 0.11        | 95      | 4.0       | 0.14     | 97      |  |  |
| 7/22/2010 | 0.00            | 0.00       | 0.0     | 0.86     | 0.07        | 92      | 4.7       | 0.08     | 98      |  |  |
| 1/27/2011 | 0.02            | 0.02       | 10      | 3.1      | 0.14        | 96      | 4.3       | 0.09     | 98      |  |  |
| 7/21/2011 | 0.02            | 0.02       | 6.7     | 4.6      | 0.11        | 98      | 3.3       | 0.04     | 99      |  |  |
| 1/26/2012 | 0.01            | 0.01       | 18      | 1.5      | 0.08        | 94      | 2.1       | 0.04     | 98      |  |  |
| 1/15/2013 | 0.03            | 0.02       | 21      | 1.7      | 0.05        | 97      | 2.4       | 0.07     | 97      |  |  |
| 1/14/2014 | 0.02            | 0.02       | 18      | 0.86     | 0.04        | 95      | 1.6       | 0.09     | 94      |  |  |

<sup>1</sup>All influent values are the mean of two samples collected from the west side and southwest wastewater streams. <sup>2</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value.

<sup>2</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value. <sup>3</sup>No established method.

## TABLE A-2: CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE CALUMET WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | Carbamazepine<br>Influent Effluent Removal |          |                   | Ciprofloxacin<br>Influent Effluent Removal |          |         |          | Codein   |         | Diphenhydramine<br>Influent Effluent Removal |          |         |
|-----------|--------------------------------------------|----------|-------------------|--------------------------------------------|----------|---------|----------|----------|---------|----------------------------------------------|----------|---------|
| Date      | Influent                                   | Effluent | Removal           | Influent                                   | Effluent | Removal | Influent | Effluent | Removal | Influent                                     | Effluent | Removal |
| 7/22/2010 | 0.16                                       | 0.17     | -7.6 <sup>1</sup> | 0.25                                       | 0.21     | 18      | 0.19     | 0.07     | 63      | 0.23                                         | 0.16     | 30      |
| 1/27/2011 | 0.15                                       | 0.16     | -6.0              | 1.4                                        | 0.49     | 64      | 0.13     | 0.14     | -10     | 0.48                                         | 0.29     | 39      |
| 7/21/2011 | 0.19                                       | 0.20     | -3.3              | 2.8                                        | 1.1      | 60      | 0.14     | 0.07     | 53      | 0.55                                         | 0.26     | 53      |
| 1/26/2012 | 0.09                                       | 0.08     | 3.3               | 2.5                                        | 0.98     | 60      | 0.08     | 0.07     | 12      | 0.21                                         | 0.16     | 23      |
| 1/8/2013  | 0.23                                       | 0.23     | -2.2              | 2.0                                        | 0.61     | 69      | 0.25     | 0.18     | 29      | 0.93                                         | 0.35     | 63      |
| 1/7/2014  | 1.9                                        | 1.8      | 14                | 0.70                                       | 0.64     | 9.2     | 0.21     | 0.23     | -8.0    | 0.58                                         | 0.49     | 15      |

## TABLE A-2 (continued): CONCENTRATIONS (µg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE CALUMET WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | Fluoxetine      |          |         |          | Gemfibro | zil     |      | Ibuprofen | l       | Naproxen |      |         |
|-----------|-----------------|----------|---------|----------|----------|---------|------|-----------|---------|----------|------|---------|
| Date      | Influent        | Effluent | Removal | Influent | Effluent | Removal |      |           | Removal | Influent |      | Removal |
| 1/28/2010 | NA <sup>2</sup> | NA       | NA      | 0.80     | 0.37     | 54      | 3.7  | 0.0       | 100     | 5.4      | 0.21 | 96      |
| 7/22/2010 | 0.02            | 0.01     | 75      | 0.58     | 0.02     | 97      | 3.5  | 0.06      | 98      | 3.9      | 0.03 | 99      |
| 1/27/2011 | 0.02            | 0.01     | 29      | 1.0      | 0.55     | 45      | 9.4  | 0.19      | 98      | 10.4     | 0.22 | 98      |
| 7/21/2011 | 0.02            | 0.01     | 34      | 1.0      | 0.06     | 94      | 8.0  | 0.03      | 100     | 8.9      | 0.14 | 98      |
| 1/26/2012 | 0.01            | 0.01     | 33      | 0.76     | 0.46     | 39      | 5.1  | 0.19      | 96      | 5.4      | 0.39 | 93      |
| 1/8/2013  | 0.05            | 0.02     | 63      | 0.91     | 0.20     | 78      | 11.3 | 0.17      | 98      | 12.1     | 0.26 | 98      |
| 1/7/2014  | 0.01            | 0.02     | -47     | 0.84     | 0.75     | 11      | 7.5  | 4.2       | 44      | 8.6      | 5.4  | 38      |

## TABLE A-2 (continued): CONCENTRATIONS (µg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE CALUMET WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | ]               | Thiabendazo | le      |          | Triclocart | oan     | Triclosan |          |         |  |
|-----------|-----------------|-------------|---------|----------|------------|---------|-----------|----------|---------|--|
| Date      | Influent        | Effluent    | Removal | Influent | Effluent   | Removal | Influent  | Effluent | Removal |  |
| 1/28/2010 | NA <sup>2</sup> | NA          | NA      | 2.5      | 0.24       | 90      | 6.3       | 0.31     | 95      |  |
| 7/22/2010 | 0.0             | 0.0         | 0.0     | 0.58     | 0.11       | 82      | 11.0      | 0.12     | 99      |  |
| 1/27/2011 | 0.02            | 0.01        | 13      | 3.2      | 0.20       | 94      | 18.1      | 0.15     | 99      |  |
| 7/21/2011 | 0.02            | 0.01        | 33      | 4.8      | 0.22       | 95      | 4.9       | 0.07     | 99      |  |
| 1/26/2012 | 0.01            | 0.01        | 13      | 2.3      | 0.30       | 87      | 2.1       | 0.12     | 95      |  |
| 1/8/2013  | 0.02            | 0.02        | 18      | 2.8      | 0.17       | 94      | 4.1       | 0.11     | 97      |  |
| 1/7/2014  | 0.02            | 0.01        | 13      | 0.42     | 0.27       | 37      | 1.2       | 0.75     | 38      |  |

<sup>1</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value. <sup>2</sup>No established method.

## TABLE A-3: CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE HANOVER PARK WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

|                    | С        | Carbamazepine |         |          | Ciprofloxa | ncin    |          | Codein   | e       | Dij      | ohenhydrai | mine    |
|--------------------|----------|---------------|---------|----------|------------|---------|----------|----------|---------|----------|------------|---------|
| Sampling -<br>Date | Influent | Effluent      | Removal | Influent | Effluent   | Removal | Influent | Effluent | Removal | Influent | Effluent   | Removal |
| 7/15/2010          | 0.31     | 0.28          | 8.1     | 1.5      | 0.11       | 92      | 0.20     | 0.02     | 90      | 0.56     | 0.04       | 93      |
| 1/20/2011          | 0.20     | 0.24          | -211    | 2.3      | 0.48       | 79      | 0.17     | 0.09     | 51      | 0.99     | 0.18       | 82      |
| 7/14/2011          | 0.33     | 0.35          | -6.3    | 10.2     | 0.30       | 97      | 0.10     | 0.01     | 90      | 1.5      | 0.21       | 86      |
| 1/19/2012          | 0.25     | 0.22          | 11      | 5.2      | 1.8        | 65      | 0.08     | 0.08     | 5.4     | 1.0      | 0.25       | 76      |
| 1/29/2013          | 0.30     | 0.33          | -8.1    | 4.0      | 1.2        | 71      | 0.13     | 0.17     | -35     | 0.78     | 0.39       | 50      |
| 1/28/2014          | 0.23     | 0.24          | -6.5    | 1.5      | 0.65       | 57      | 0.18     | 0.15     | 15      | 1.0      | 0.41       | 61      |

# TABLE A-3 (continued): CONCENTRATIONS ( $\mu$ g L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE HANOVER PARK WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling _ |                 | Fluoxetine | e       |          | Gemfibroz | il      |          | Ibuprofer         | ł       |          | Naproxer | L       |
|------------|-----------------|------------|---------|----------|-----------|---------|----------|-------------------|---------|----------|----------|---------|
| Date       | Influent        | Effluent   | Removal | Influent | Effluent  | Removal | Influent | Effluent          | Removal | Influent | Effluent | Removal |
| 1/21/2010  | NA <sup>2</sup> | NA         | NA      | 1.8      | 0.87      | 52      | 8.2      | 0.11              | 99      | 9.2      | 0.25     | 97      |
| 7/15/2010  | 0.04            | 0.03       | 35      | 1.1      | 0.01      | 99      | 5.9      | 0.02              | 100     | 5.2      | 0.01     | 100     |
| 1/20/2011  | 0.06            | 0.03       | 48      | 2.3      | 0.22      | 90      | 16.5     | 0.02 <sup>3</sup> | 100     | 19.2     | 0.07     | 100     |
| 7/14/2011  | 0.12            | 0.03       | 76      | 2.2      | 0.01      | 100     | 12.5     | 0.01              | 100     | 16.1     | 0.03     | 100     |
| 1/19/2012  | 0.05            | 0.03       | 40      | 1.3      | 0.23      | 83      | 13.5     | 0.02 <sup>3</sup> | 100     | 11.4     | 0.06     | 99      |
| 1/29/2013  | 0.08            | 0.06       | 31      | 1.6      | 0.67      | 59      | 10.6     | 0.07              | 99      | 12.0     | 0.25     | 98      |
| 1/28/2014  | 0.07            | 0.04       | 34      | 2.0      | 1.1       | 47      | 12.5     | 0.07              | 99      | 18.1     | 0.51     | 97      |

## TABLE A-3 (continued): CONCENTRATIONS ( $\mu$ g L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE HANOVER PARK WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | -               | Thiabendaz | ole     | ~        | Friclocarba | m       | Triclosan |          |         |  |  |
|-----------|-----------------|------------|---------|----------|-------------|---------|-----------|----------|---------|--|--|
| Date      | Influent        | Effluent   | Removal | Influent | Effluent    | Removal | Influent  | Effluent | Removal |  |  |
| 1/21/2010 | NA <sup>2</sup> | NA         | NA      | 4.8      | 0.30        | 94      | 10.3      | 0.18     | 98      |  |  |
| 7/15/2010 | 0.07            | 0.12       | -68     | 2.5      | 0.31        | 87      | 8.7       | 0.00     | 100     |  |  |
| 1/20/2011 | 0.46            | 0.74       | -61     | 5.1      | 0.25        | 95      | 8.8       | 0.07     | 99      |  |  |
| 7/14/2011 | 0.44            | 0.44       | 0.04    | 14.8     | 0.23        | 98      | 19.0      | 0.01     | 100     |  |  |
| 1/19/2012 | 0.04            | 0.04       | 3.4     | 3.5      | 0.27        | 92      | 6.5       | 0.09     | 99      |  |  |
| 1/29/2013 | 0.08            | 0.12       | -51     | 2.9      | 0.25        | 92      | 4.8       | 0.14     | 97      |  |  |
| 1/28/2014 | 0.04            | 0.04       | 18      | 0.98     | 0.17        | 83      | 3.6       | 0.14     | 96      |  |  |

<sup>1</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value. <sup>2</sup>No established method.

<sup>3</sup>Sample was non-detect but reported using 1/2 level of quantification.

## TABLE A-4: CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE LEMONT WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | Carbamazepine |          |                   | (        | Ciprofloxad | in      |          | Codeine  |         | Diphenhydramine |          |         |
|-----------|---------------|----------|-------------------|----------|-------------|---------|----------|----------|---------|-----------------|----------|---------|
| Date      | Influent      | Effluent | Removal           | Influent | Effluent    | Removal | Influent | Effluent | Removal | Influent        | Effluent | Removal |
| 7/22/2010 | 0.29          | 0.29     | 1.5               | 0.85     | 0.81        | 4.8     | 0.13     | 0.05     | 63      | 0.49            | 0.48     | 2.2     |
| 1/26/2011 | 0.24          | 0.25     | -2.7 <sup>1</sup> | 2.7      | 0.66        | 76      | 0.20     | 0.16     | 24      | 1.0             | 0.35     | 66      |
| 7/21/2011 | 0.39          | 0.52     | -33               | 7.6      | 3.1         | 59      | 0.25     | 0.07     | 72      | 1.4             | 0.31     | 79      |
| 1/26/2012 | 0.25          | 0.16     | 35                | 3.0      | 1.4         | 51      | 0.08     | 0.08     | -6.1    | 0.32            | 0.27     | 15      |
| 1/8/2013  | 0.41          | 0.50     | -20               | 9.9      | 1.9         | 80      | 0.64     | 0.47     | 26      | 1.9             | 0.97     | 49      |
| 1/7/2014  | 0.39          | 0.42     | -8.8              | 1.9      | 0.86        | 56      | 0.40     | 0.39     | 1.0     | 1.3             | 0.64     | 50      |

## TABLE A-4 (continued): CONCENTRATIONS (µg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND THEIR REMOVAL EFFICIENCY (%) IN THE LEMONT WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | Fluoxetine      |          |         | Gemfibrozil |          |         |          | Ibuprofer | 1       | Naproxen |          |         |
|-----------|-----------------|----------|---------|-------------|----------|---------|----------|-----------|---------|----------|----------|---------|
| Date      | Influent        | Effluent | Removal | Influent    | Effluent | Removal | Influent | Effluent  | Removal | Influent | Effluent | Removal |
| 1/27/2010 | NA <sup>2</sup> | NA       | NA      | 0.69        | 0.33     | 52      | 5.3      | 0.26      | 95      | 4.3      | 0.12     | 97      |
| 7/22/2010 | 0.02            | 0.02     | 0.0     | 0.82        | 0.17     | 79      | 6.5      | 0.07      | 99      | 5.3      | 0.17     | 97      |
| 1/26/2011 | 0.06            | 0.03     | 50      | 1.3         | 0.56     | 57      | 19.5     | 0.24      | 99      | 17.8     | 0.09     | 99      |
| 7/21/2011 | 0.09            | 0.03     | 63      | 1.3         | 0.02     | 99      | 15.3     | 0.01      | 100     | 15.2     | 0.19     | 99      |
| 1/26/2012 | 0.04            | 0.03     | 30      | 0.56        | 0.38     | 32      | 7.8      | 0.74      | 91      | 7.4      | 0.59     | 92      |
| 1/8/2013  | 0.08            | 0.04     | 45      | 1.5         | 1.0      | 33      | 22.6     | 0.89      | 96      | 16.2     | 0.50     | 97      |
| 1/7/2014  | 0.07            | 0.05     | 34      | 0.12        | 0.78     | -552    | 24.4     | 3.6       | 85      | 19.9     | 1.9      | 91      |

## TABLE A-4 (continued): CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE LEMONT WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | Т               | hiabendaz | ole     |          | Friclocarba | an      | Triclosan |          |         |  |  |
|-----------|-----------------|-----------|---------|----------|-------------|---------|-----------|----------|---------|--|--|
| Date      | Influent        | Effluent  | Removal | Influent | Effluent    | Removal | Influent  | Effluent | Removal |  |  |
| 1/27/2010 | NA <sup>2</sup> | NA        | NA      | 4.6      | 0.15        | 97      | 8.3       | 0.18     | 98      |  |  |
| 7/22/2010 | 0.00            | 0.02      | 0.0     | 1.2      | 0.38        | 67      | 9.2       | 0.14     | 98      |  |  |
| 1/26/2011 | 0.02            | 0.03      | -24     | 5.0      | 0.14        | 97      | 7.8       | 0.09     | 99      |  |  |
| 7/21/2011 | 0.03            | 0.04      | -62     | 4.9      | 0.24        | 95      | 9.5       | 0.06     | 99      |  |  |
| 1/26/2012 | 0.02            | 0.01      | 22      | 1.5      | 0.09        | 94      | 3.7       | 0.07     | 98      |  |  |
| 1/8/2013  | 0.04            | 0.05      | -28     | 3.4      | 0.36        | 90      | 6.3       | 0.26     | 96      |  |  |
| 1/7/2014  | 0.04            | 0.03      | 20      | 1.1      | 0.23        | 79      | 3.3       | 0.14     | 96      |  |  |

 $^{1}$ Variability in monitoring data can result in false values, such as a negative removal efficiency value.  $^{2}$ No established method.

## TABLE A-5: CONCENTRATIONS (µg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE JOHN E. EGAN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling  | Carbamazepine |          |                  | (        | Ciprofloxad | ein     |          | Codeine           |         | Diphenhydramine |          |         |
|-----------|---------------|----------|------------------|----------|-------------|---------|----------|-------------------|---------|-----------------|----------|---------|
| Date      | Influent      | Effluent | Removal          | Influent | Effluent    | Removal | Influent | Effluent          | Removal | Influent        | Effluent | Removal |
| 7/15/2010 | 0.19          | 0.24     | -26 <sup>1</sup> | 1.8      | 0.05        | 97      | 0.09     | 0.01 <sup>2</sup> | 89      | 0.31            | 0.03     | 91      |
| 1/20/2011 | 0.20          | 0.21     | -5.3             | 2.3      | 0.56        | 76      | 0.15     | 0.20              | -32     | 1.0             | 0.21     | 79      |
| 7/14/2011 | 0.23          | 0.26     | -15              | 6.3      | 0.32        | 95      | 0.12     | 0.01              | 96      | 1.2             | 0.08     | 93      |
| 1/19/2012 | 0.16          | 0.17     | -4.8             | 5.2      | 1.8         | 64      | 0.10     | 0.14              | -46     | 0.59            | 0.27     | 55      |
| 2/26/2013 | 0.20          | 0.22     | -7.4             | 3.3      | 0.98        | 70      | 0.20     | 0.27              | -32     | 0.80            | 0.35     | 57      |
| 2/25/2014 | 0.14          | 0.15     | -4.3             | 2.1      | 0.62        | 71      | 0.15     | 0.15              | 1.5     | 0.47            | 0.16     | 66      |

## TABLE A-5 (continued): CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE JOHN E. EGAN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling  | Fluoxetine      |          |         | Gemfibrozil |          |         |          | Ibuprofen         |                                                                                                                | Naproxen |          |         |  |
|-----------|-----------------|----------|---------|-------------|----------|---------|----------|-------------------|----------------------------------------------------------------------------------------------------------------|----------|----------|---------|--|
| Date -    | Influent        | Effluent | Removal | Influent    | Effluent | Removal | Influent | Effluent          | The second s | Influent | Effluent | Removal |  |
| 1/21/2010 | NA <sup>3</sup> | NA       | NA      | 0.99        | 0.14     | 85      | 6.9      | 0.02 <sup>2</sup> | 100                                                                                                            | 5.5      | 0.03     | 99      |  |
| 7/15/2010 | 0.04            | 0.03     | 27      | 0.49        | 0.01     | 98      | 3.7      | 0.01              | 100                                                                                                            | 2.5      | 0.0      | 100     |  |
| 1/20/2011 | 0.08            | 0.04     | 54      | 1.8         | 0.24     | 87      | 14.0     | 0.02 <sup>2</sup> | 100                                                                                                            | 14.8     | 0.03     | 100     |  |
| 7/14/2011 | 0.08            | 0.05     | 35      | 1.7         | 0.01     | 100     | 12.5     | 0.01              | 100                                                                                                            | 13.1     | 0.00     | 100     |  |
| 1/19/2012 | 0.05            | 0.03     | 34      | 1.2         | 0.25     | 79      | 9.6      | 0.02 <sup>2</sup> | 100                                                                                                            | 9.9      | 0.12     | 99      |  |
| 2/26/2013 | 0.06            | 0.04     | 38      | 1.4         | 0.48     | 66      | 12.5     | 0.02 <sup>2</sup> | 100                                                                                                            | 11.6     | 0.04     | 100     |  |
| 2/25/2014 | 0.05            | 0.04     | 28      | 1.0         | 0.38     | 63      | 9.9      | 0.01              | 100                                                                                                            | 11.2     | 0.05     | 100     |  |

# TABLE A-5 (continued): CONCENTRATIONS (µg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE JOHN E. EGAN WATER **RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH** FEBRUARY 2014

| Sampling  | Т               | `hiabendaz | ole     | •        | Triclocarba | an      |          | Triclosan |         |
|-----------|-----------------|------------|---------|----------|-------------|---------|----------|-----------|---------|
| Date –    | Influent        | Effluent   | Removal | Influent | Effluent    | Removal | Influent | Effluent  | Removal |
| 1/21/2010 | NA <sup>3</sup> | NA         | NA      | 4.4      | 0.07        | 98      | 8.5      | 0.08      | 99      |
| 7/15/2010 | 0.0             | 0.02       | 0.0     | 3.9      | 0.08        | 98      | 9.1      | 0.0       | 100     |
| 1/20/2011 | 0.04            | 0.03       | 22      | 3.8      | 0.15        | 96      | 9.2      | 0.06      | 99      |
| 7/14/2011 | 0.04            | 0.03       | 19      | 5.5      | 0.16        | 97      | 8.7      | 0.02      | 100     |
| 1/19/2012 | 0.03            | 0.03       | 8.0     | 3.4      | 0.19        | 95      | 7.3      | 0.18      | 98      |
| 2/26/2013 | 0.05            | 0.04       | 10      | 1.7      | 0.10        | 94      | 4.7      | 0.07      | 99      |
| 2/25/2014 | 0.05            | 0.03       | 41      | 1.7      | 0.09        | 94      | 4.7      | 0.06      | 99      |

<sup>1</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value. <sup>2</sup>Sample was non-detect and reported value is 1/2 level of quantification limit.

<sup>3</sup>No established method.

## TABLE A-6: CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE JAMES C. KIRIE WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling  | С        | arbamazep | ine              | (        | Ciprofloxad       | cin     |          | Codeine  |         | Dij      | ohenhydrai | nine    |
|-----------|----------|-----------|------------------|----------|-------------------|---------|----------|----------|---------|----------|------------|---------|
| Date      | Influent | Effluent  | Removal          | Influent | Effluent          | Removal | Influent | Effluent | Removal | Influent | Effluent   | Removal |
| 7/15/2010 | 0.24     | 0.20      | -23 <sup>1</sup> | 0.93     | 0.15 <sup>2</sup> | 84      | 0.13     | 0.03     | 81      | 0.40     | 0.30       | 24      |
| 1/20/2011 | 0.27     | 0.26      | -4.0             | 2.0      | 0.32              | 84      | 0.13     | 0.06     | 51      | 1.0      | 0.32       | 69      |
| 7/14/2011 | 0.36     | 0.29      | -24              | 4.3      | 0.42              | 90      | 0.10     | 0.03     | 72      | 0.98     | 0.44       | 55      |
| 1/19/2012 | 0.21     | 0.19      | -12              | 3.3      | 1.3               | 59      | 0.05     | 0.04     | 22      | 0.41     | 0.33       | 18      |
| 2/26/2013 | 0.25     | 0.25      | 0.91             | 2.9      | 0.55              | 81      | 0.13     | 0.09     | 27      | 0.69     | 0.50       | 28      |
| 2/25/2014 | 0.21     | 0.14      | 34               | 1.3      | 0.26              | 81      | 0.07     | 0.05     | 32      | 0.37     | 0.19       | 48      |

## TABLE A-6 (continued): CONCENTRATIONS (µg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE JAMES C. KIRIE WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling  |                   | Fluoxetin | e       |          | Gemfibroz | zil     |          | Ibuprofer         | 1   |          | Naproxer | l       |
|-----------|-------------------|-----------|---------|----------|-----------|---------|----------|-------------------|-----|----------|----------|---------|
| Date -    | Influent          | Effluent  | Removal | Influent | Effluent  | Removal | Influent | Effluent          |     | Influent | Effluent | Removal |
| 1/21/2010 | NA <sup>3</sup>   | NA        | NA      | 1.5      | 0.28      | 81      | 6.6      | 0.02 <sup>2</sup> | 100 | 5.4      | 0.04     | 99      |
| 7/15/2010 | 0.02 <sup>2</sup> | 0.02      | 0.0     | 0.84     | 0.07      | 92      | 4.7      | 0.03              | 99  | 3.3      | 0.10     | 97      |
| 1/20/2011 | 0.05              | 0.03      | 32      | 2.2      | 0.16      | 93      | 16.2     | 0.02 <sup>2</sup> | 100 | 17.7     | 0.05     | 100     |
| 7/14/2011 | 0.04              | 0.03      | 33      | 1.8      | 0.14      | 92      | 12.2     | 0.03              | 100 | 12.4     | 0.13     | 99      |
| 1/19/2012 | 0.03              | 0.02      | 24      | 1.1      | 0.21      | 80      | 7.1      | 0.02 <sup>2</sup> | 100 | 7.4      | 0.07     | 99      |
| 2/26/2013 | 0.05              | 0.04      | 27      | 1.5      | 0.50      | 65      | 13.8     | 0.02 <sup>2</sup> | 100 | 12.6     | 0.04     | 100     |
| 2/25/2014 | 0.04              | 0.02      | 38      | 1.0      | 0.45      | 56      | 10.2     | 0.02 <sup>2</sup> | 100 | 10.1     | 0.04     | 100     |

## TABLE A-6 (continued): CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE JAMES C. KIRIE WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling  | Thiabendazole   |          |         | ,        | Triclocarba | m       | Triclosan |          |         |  |
|-----------|-----------------|----------|---------|----------|-------------|---------|-----------|----------|---------|--|
| Date      | Influent        | Effluent | Removal | Influent | Effluent    | Removal | Influent  | Effluent | Removal |  |
| 1/21/2010 | NA <sup>3</sup> | NA       | NA      | 3.8      | 0.09        | 98      | 10.0      | 0.12     | 99      |  |
| 7/15/2010 | 0.00            | 0.02     | 0.0     | 2.2      | 0.07        | 97      | 13.1      | 0.05     | 100     |  |
| 1/20/2011 | 0.03            | 0.03     | 10      | 3.6      | 0.10        | 97      | 9.4       | 0.06     | 99      |  |
| 7/14/2011 | 0.03            | 0.02     | 13      | 2.9      | 0.18        | 94      | 7.5       | 0.03     | 100     |  |
| 1/19/2012 | 0.03            | 0.03     | 0.16    | 1.8      | 0.09        | 95      | 5.4       | 0.10     | 98      |  |
| 2/26/2013 | 0.04            | 0.03     | 28      | 1.5      | 0.09        | 94      | 4.0       | 0.06     | 98      |  |
| 2/25/2014 | 0.02            | 0.02     | 37      | 0.89     | 0.06        | 93      | 3.8       | 0.04     | 99      |  |

<sup>T</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value.

<sup>2</sup>Sample was non-detect and reported value is 1/2 level of quantification limit.

<sup>3</sup>No established method.

## TABLE A-7: CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE TERRENCE J. O'BRIEN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | С        | arbamazep | ine              | (        | Ciprofloxac | cin     |          | Codeine  |         | Dij      | ohenhydrai | nine    |
|-----------|----------|-----------|------------------|----------|-------------|---------|----------|----------|---------|----------|------------|---------|
| Date      | Influent | Effluent  | Removal          | Influent | Effluent    | Removal | Influent | Effluent | Removal | Influent | Effluent   | Removal |
| 7/15/2010 | 0.14     | 0.16      | -13 <sup>1</sup> | 0.67     | 0.27        | 59      | 0.16     | 0.03     | 79      | 0.33     | 0.27       | 18      |
| 1/20/2011 | 0.15     | 0.15      | 4.3              | 1.9      | 0.52        | 73      | 0.09     | 0.13     | -47     | 0.60     | 0.44       | 26      |
| 7/14/2011 | 0.24     | 0.20      | 18               | 3.3      | 1.1         | 67      | 0.10     | 0.04     | 65      | 0.68     | 0.41       | 40      |
| 1/19/2012 | 0.15     | 0.12      | 18               | 2.7      | 1.4         | 47      | 0.05     | 0.07     | -55     | 0.24     | 0.29       | -22     |
| 1/29/2013 | 0.13     | 0.16      | -23              | 1.9      | 0.80        | 57      | 0.07     | 0.08     | -28     | 0.25     | 0.28       | -12     |
| 1/28/2014 | 1.1      | 0.30      | 73               | 2.1      | .54         | 74      | 0.09     | 0.12     | -36     | 0.48     | 0.47       | 2.9     |

## TABLE A-7 (continued): CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE TERRENCE J. O'BRIEN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  |                 | Fluoxetin | e       |          | Gemfibroz | zil     |          | Ibuprofer         | 1   |          | Naproxer | 1  |
|-----------|-----------------|-----------|---------|----------|-----------|---------|----------|-------------------|-----|----------|----------|----|
| Date      | Influent        | Effluent  | Removal | Influent | Effluent  | Removal | Influent | Effluent          |     | Influent | Effluent |    |
| 1/21/2010 | NA <sup>2</sup> | NA        | NA      | 1.1      | 0.43      | 61      | 8.1      | 0.02 <sup>3</sup> | 100 | 5.1      | 0.08     | 98 |
| 7/15/2010 | 0.0             | 0.02      | 0.0     | 0.71     | 0.02      | 98      | 5.1      | 0.02              | 100 | 3.4      | 0.04     | 99 |
| 1/20/2011 | 0.04            | 0.02      | 43      | 1.5      | 0.76      | 49      | 11.6     | 0.01              | 100 | 10.5     | 0.10     | 99 |
| 7/14/2011 | 0.03            | 0.02      | 27      | 1.4      | 0.07      | 95      | 9.4      | 0.02 <sup>3</sup> | 100 | 9.3      | 0.07     | 99 |
| 1/19/2012 | 0.04            | 0.02      | 42      | 0.88     | 0.35      | 60      | 7.0      | 0.02 <sup>3</sup> | 100 | 6.9      | 0.06     | 99 |
| 1/29/2013 | 0.04            | 0.03      | 6.0     | 0.79     | 0.54      | 32      | 6.5      | 0.15              | 98  | 5.8      | 0.59     | 90 |
| 1/28/2014 | 0.05            | 0.03      | 44      | 1.2      | 0.81      | 33      | 11.6     | 0.01              | 100 | 10.9     | 0.23     | 98 |

## TABLE A-7 (continued): CONCENTRATIONS (μg L<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN INFLUENT AND EFFLUENT SAMPLES AND REMOVAL EFFICIENCY (%) IN THE TERRENCE J. O'BRIEN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling  | Т               | hiabendaz | ole     | ,        | Triclocarba | m       |          | Triclosan |         |
|-----------|-----------------|-----------|---------|----------|-------------|---------|----------|-----------|---------|
| Date      | Influent        | Effluent  | Removal | Influent | Effluent    | Removal | Influent | Effluent  | Removal |
| 1/21/2010 | NA <sup>2</sup> | NA        | NA      | 2.7      | 0.20        | 92      | 6.2      | 0.25      | 96      |
| 7/15/2010 | 0.0             | 0.04      | 0.0     | 1.3      | 0.09        | 93      | 4.6      | 0.07      | 99      |
| 1/20/2011 | 0.03            | 0.02      | 21      | 2.4      | 0.36        | 85      | 5.5      | 0.31      | 94      |
| 7/14/2011 | 0.03            | 0.03      | 7.7     | 2.1      | 0.10        | 95      | 5.0      | 0.08      | 98      |
| 1/19/2012 | 0.02            | 0.02      | 5.5     | 1.9      | 0.24        | 87      | 4.1      | 0.13      | 97      |
| 1/29/2013 | 0.03            | 0.02      | 17      | 1.2      | 0.17        | 86      | 2.5      | 0.22      | 91      |
| 1/28/2014 | 0.03            | 0.02      | 10      | 2.2      | 0.22        | 90      | 4.6      | 0.11      | 98      |

<sup>1</sup>Variability in monitoring data can result in false values, such as a negative removal efficiency value.

<sup>2</sup>No established method.

<sup>3</sup>Sample was non-detect but reported using 1/2 level of quantification.

#### APPENDIX B

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CONCENTRATIONS IN BIOSOLIDS OR WASTE-ACTIVATED SLUDGE SAMPLES: INDIVIDUAL SAMPLING DATES FROM THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO'S SEVEN WATER RECLAMATION PLANTS

## TABLE B-1: CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE STICKNEY WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Carbamazepine     | Ciprofloxacin | Codeine           | Diphenhydramine |
|---------------|-------------------|---------------|-------------------|-----------------|
| 7/22/2010     | 15.4 <sup>1</sup> | 1,221         | 30.9 <sup>1</sup> | 90.6            |
| 1/27/2011     | 28.0              | 6,624         | 44.6 <sup>1</sup> | 819             |
| 7/21/2011     | 26.0              | 15,435        | 3.0               | 1,060           |
| 1/26/2012     | 16.9              | 6,889         | 5.0               | 251             |
| 1/15/2013     | 60.4              | 9,537         | 7.0               | 998             |
| 1/14/2014     | 40.4              | 6,396         | 2.0               | 773             |

#### TABLE B-1 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE STICKNEY WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Fluoxetine        | Gemfibrozil | Ibuprofen         | Naproxen |
|---------------|-------------------|-------------|-------------------|----------|
| 1/28/2010     | NA <sup>2</sup>   | 20.0        | 43.0 <sup>1</sup> | 30.0     |
| 7/22/2010     | 15.4 <sup>1</sup> | 17.3        | 214               | 3.0      |
| 1/27/2011     | 80.6              | 137         | 1,678             | 16.0     |
| 7/21/2011     | 93.9              | 52.7        | 849               | 20.0     |
| 1/26/2012     | 36.9              | 45.2        | 50.0              | 63.6     |
| 1/15/2013     | 121               | 105         | 2,251             | 108      |
| 1/14/2014     | 88.6              | 105         | 892               | 69.6     |

## TABLE B-1 (continued): CONCENTRATIONS (μg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE STICKNEY WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Thiabendazole     | Triclocarban | Triclosan |
|---------------|-------------------|--------------|-----------|
| 1/28/2010     | NA <sup>2</sup>   | 7,800        | 5,400     |
| 7/22/2010     | 15.4 <sup>1</sup> | 949          | 426       |
| 1/27/2011     | 21.0              | 11,847       | 4,794     |
| 7/21/2011     | 18.0              | 8,532        | 4,271     |
| 1/26/2012     | 12.0              | 6,312        | 2,568     |
| 1/15/2013     | 33.0              | 9,087        | 6,713     |
| 1/14/2014     | 32.0              | 7,891        | 4,484     |
|               |                   |              |           |

<sup>1</sup>Sample was non-detect and reported value is 1/2 level of quantification limit. <sup>2</sup>No established method.

## TABLE B-2: CONCENTRATIONS (μg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE CALUMET WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Carbamazepine     | Ciprofloxacin | Codeine           | Diphenhydramine |
|---------------|-------------------|---------------|-------------------|-----------------|
| 7/22/2010     | 16.2 <sup>1</sup> | 682           | 32.4 <sup>1</sup> | 124             |
| 1/27/2011     | 57.4              | 8,656         | 43.7 <sup>1</sup> | 891             |
| 7/21/2011     | 63.6              | 17,739        | 2.0               | 1,076           |
| 1/26/2012     | 84.1              | 15,922        | 33.8 <sup>1</sup> | 821             |
| 1/8/2013      | 64.9              | 12,745        | 16.0              | 990             |
| 1/7/2014      | 34.7              | 6,428         | 34.0              | 375             |

## TABLE B-2 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE CALUMET WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Fluoxetine        | Gemfibrozil | Ibuprofen         | Naproxen |
|---------------|-------------------|-------------|-------------------|----------|
| 1/28/2010     | NA <sup>2</sup>   | 40.0        | 56.2 <sup>1</sup> | 11.21    |
| 7/22/2010     | 16.2 <sup>1</sup> | 272         | 1,418             | 11.0     |
| 1/27/2011     | 89.9              | 272         | 1,418             | 11.0     |
| 7/21/2011     | 97.2              | 94.3        | 611               | 10.0     |
| 1/26/2012     | 80.2              | 221         | 1,158             | 12.0     |
| 1/8/2013      | 111               | 342         | 1,376             | 162      |
| 1/7/2014      | 82.1              | 63.0        | 926               | 547      |
|               |                   |             |                   |          |

### TABLE B-2 (continued): CONCENTRATIONS (μg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE CALUMET WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Thiabendazole   | Triclocarban | Triclosan |
|---------------|-----------------|--------------|-----------|
| 1/28/2010     | NA <sup>2</sup> | 15,200       | 13,300    |
| 7/22/2010     | 16.0            | 22,309       | 6,200     |
| 1/27/2011     | 12.0            | 22,309       | 6,200     |
| 7/21/2011     | 14.0            | 17,672       | 8,125     |
| 1/26/2012     | 25.0            | 15,772       | 1,984     |
| 1/8/2013      | $16.2^{1}$      | 19,837       | 5,867     |
| 1/7/2014      | 16.0            | 7,946        | 5,096     |
|               |                 |              |           |

<sup>1</sup>Sample was non-detect and reported value is 1/2 level of quantification limit. <sup>2</sup>No established method.

## TABLE B-3: CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE HANOVER PARK WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Carbamazepine | Ciprofloxacin | Codeine           | Diphenhydramine |
|---------------|---------------|---------------|-------------------|-----------------|
| 7/15/2010     | 129           | 9,147         | 46.3 <sup>1</sup> | 431             |
| 1/20/2011     | 96.9          | 20,062        | 17.0              | 1,005           |
| 7/14/2011     | 145           | 34,062        | 6.0               | 1,211           |
| 1/19/2012     | 123           | 38,527        | 7.0               | 909             |
| 1/29/2013     | 131           | 42,547        | 33.0              | 1,419           |
| 1/28/2014     | 140           | 24,613        | 15.0              | 1,273           |

#### TABLE B-3 (continued): CONCENTRATIONS (μg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE HANOVER PARK WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Fluoxetine      | Gemfibrozil | Ibuprofen | Naproxen          |
|---------------|-----------------|-------------|-----------|-------------------|
| 1/21/2010     | NA <sup>2</sup> | 420         | 780       | 27.6 <sup>1</sup> |
| 7/15/2010     | 46.0            | 202         | 580       | 13.3              |
| 1/20/2011     | 240             | 585         | 2,199     | 31.4              |
| 7/14/2011     | 252             | 406         | 1,735     | 16.0              |
| 1/19/2012     | 224             | 424         | 1,529     | 46.2              |
| 1/29/2013     | 434             | 626         | 2,854     | 28.9              |
| 1/28/2014     | 339             | 467         | 2,360     | 28.0              |

#### TABLE B-3 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE HANOVER PARK WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Thiabendazole   | Triclocarban | Triclosan |
|---------------|-----------------|--------------|-----------|
| 1/21/2010     | NA <sup>2</sup> | 32,600       | 36,300    |
| 7/15/2010     | 666             | 44,470       | 39,766    |
| 1/20/2011     | 818             | 45,752       | 28,393    |
| 7/14/2011     | 132             | 36,530       | 25,400    |
| 1/19/2012     | 158             | 29,108       | 29,839    |
| 1/29/2013     | 586             | 29,651       | 24,913    |
| 1/28/2014     | 86.3            | 28,825       | 28,930    |

<sup>1</sup>Sample was non-detect and reported value is 1/2 level of quantification limit. <sup>2</sup>No established method.

## TABLE B-4: CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE LEMONT WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Carbamazepine    | Ciprofloxacin | Codeine          | Diphenhydramine |
|---------------|------------------|---------------|------------------|-----------------|
| 7/22/2010     | 128 <sup>1</sup> | 5,491         | 256 <sup>1</sup> | 369             |
| 1/26/2011     | 29.0             | 11,476        | 110              | 488             |
| 7/21/2011     | 142              | 19,272        | 26.0             | 246             |
| 1/26/2012     | 54.0             | 22,344        | 40.0             | 482             |
| 1/8/2013      | 131              | 16,795        | 128              | 824             |
| 1/7/2014      | 95.3             | 8,963         | 139              | 495             |

## TABLE B-4 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE LEMONT WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Fluoxetine       | Gemfibrozil      | Ibuprofen        | Naproxen          |
|---------------|------------------|------------------|------------------|-------------------|
| 1/27/2011     | NA <sup>2</sup>  | 200              | 431 <sup>1</sup> | 86.2 <sup>1</sup> |
| 7/22/2010     | 128 <sup>1</sup> | 69.7             | 65.6             | 53.3              |
| 1/26/2011     | 175              | 170              | 179 <sup>1</sup> | 37.0              |
| 7/21/2011     | 97.0             | 238 <sup>1</sup> | 405              | 79.0              |
| 1/26/2012     | 162              | 132              | 455 <sup>1</sup> | 411               |
| 1/8/2013      | 158              | 285              | 851              | 566               |
| 1/7/2014      | 157              | 307              | 613              | 469               |

#### TABLE B-4 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE LEMONT WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Thiabendazole    | Triclocarban | Triclosan |
|---------------|------------------|--------------|-----------|
| 1/27/2011     | NA <sup>2</sup>  | 5,600        | 3,600     |
| 7/22/2010     | 128 <sup>1</sup> | 6,786        | 3,053     |
| 1/26/2011     | 34.0             | 12,344       | 2,345     |
| 7/21/2011     | 33.0             | 8,043        | 1,411     |
| 1/26/2012     | 21.0             | 7,020        | 1,864     |
| 1/8/2013      | 89.0             | 16,509       | 4,038     |
| 1/7/2014      | 29.0             | 10,931       | 2,362     |
|               |                  |              |           |

<sup>1</sup>Sample was non-detect and reported value is 1/2 level of quantification limit. <sup>2</sup>No established method.

## TABLE B-5: CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE EGAN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling Date | Carbamazepine     | Ciprofloxacin | Codeine           | Diphenhydramine |
|---------------|-------------------|---------------|-------------------|-----------------|
| 7/15/2010     | 12.8 <sup>1</sup> | 4,086         | 25.6 <sup>1</sup> | 182             |
| 1/20/2011     | 51.0              | 9,329         | 44.4 <sup>1</sup> | 673             |
| 7/14/2011     | 87.8              | 23,125        | 12.0              | 1,216           |
| 1/19/2012     | 83.4              | 28,218        | 3.0               | 809             |
| 2/26/2013     | 88.9              | 19,413        | 41.0              | 1,122           |
| 2/25/2014     | 95.2              | 16,807        | $16.0^{1}$        | 741             |

## TABLE B-5 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE EGAN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling Date | Fluoxetine      | Gemfibrozil | Ibuprofen | Naproxen          |
|---------------|-----------------|-------------|-----------|-------------------|
| 1/21/2010     | NA <sup>2</sup> | 120         | 750       | 22.0 <sup>1</sup> |
| 7/15/2010     | 71.0            | 44.8        | 170       | 80.4              |
| 1/20/2011     | 148             | 248         | 1,915     | 24.0              |
| 7/14/2011     | 213             | 173         | 1,476     | 59.3              |
| 1/19/2012     | 228             | 152         | 1,495     | 21.0              |
| 2/26/2013     | 244             | 206         | 1,972     | 8.3               |
| 2/25/2014     | 232             | 176         | 1,600     | $28.0^{1}$        |

## TABLE B-5 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN BIOSOLIDS SAMPLES IN THE EGAN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling Date | Thiabendazole     | Triclocarban | Triclosan |
|---------------|-------------------|--------------|-----------|
| 1/21/2010     | NA <sup>2</sup>   | 13,800       | 18,600    |
| 7/15/2010     | 12.8 <sup>1</sup> | 731          | 1,586     |
| 1/20/2011     | 32.0              | 15,175       | 10,757    |
| 7/14/2011     | 36.0              | 26,027       | 17,786    |
| 1/19/2012     | 40.0              | 15,892       | 10,912    |
| 2/26/2013     | 61.0              | 18,353       | 12,965    |
| 2/25/2014     | 52.0              | 14,340       | 12,064    |

<sup>1</sup>Sample was non-detect and reported value is 1/2 level of quantification limit. <sup>2</sup>No established method.

## TABLE B-6: CONCENTRATIONS (μg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE KIRIE WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling Date | Carbamazepine | Ciprofloxacin | Codeine          | Diphenhydramine |
|---------------|---------------|---------------|------------------|-----------------|
|               |               | 2 007         | 154]             | 265             |
| 7/15/2010     | $76.9^{1}$    | 2,997         | 154 <sup>1</sup> | 265             |
| 1/20/2011     | 24.0          | 6,778         | 120 <sup>1</sup> | 411             |
| 7/14/2011     | 64.0          | 15,212        | 143 <sup>1</sup> | 730             |
| 1/19/2012     | 39.0          | 18,070        | 12.0             | 366             |
| 2/26/2013     | 45.0          | 10,848        | 110              | 355             |
| 2/25/2014     | 40.0          | 8,633         | 16.0             | 291             |

## TABLE B-6 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE KIRIE WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling Date | Fluoxetine      | Gemfibrozil | Ibuprofen        | Naproxen          |
|---------------|-----------------|-------------|------------------|-------------------|
| 1/21/2010     | NA <sup>2</sup> | 280         | 641 <sup>1</sup> | $22.0^{1}$        |
| 7/15/2010     | $76.9^{1}$      | 29.5        | 126              | 102               |
| 1/20/2011     | 127             | 62.3        | 120 <sup>1</sup> | 35.0              |
| 7/14/2011     | 125             | 33.9        | 237              | 104               |
| 1/19/2012     | 108             | 26.0        | $282^{1}$        | 28.2 <sup>1</sup> |
| 2/26/2013     | 102             | 183         | 220              | 164               |
| 2/25/2014     | 149             | 51.5        | 278 <sup>1</sup> | 28.0              |

## TABLE B-6 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE KIRIE WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH FEBRUARY 2014

| Sampling Date | Thiabendazole   | Triclocarban | Triclosan |
|---------------|-----------------|--------------|-----------|
| 1/21/2010     | NA <sup>2</sup> | 9,100        | 3,900     |
| 7/15/2010     | $76.9^{1}$      | 1,932        | 2,014     |
| 1/20/2011     | 28.0            | 9,705        | 2,743     |
| 7/14/2011     | 19.0            | 12,263       | 1,280     |
| 1/19/2012     | 26.0            | 8,298        | 2,857     |
| 2/26/2013     | 35.0            | 9,511        | 2,127     |
| 2/25/2014     | 21.0            | 8,535        | 2,490     |
|               |                 |              |           |

<sup>1</sup>Sample was non-detect and reported value is 1/2 level of quantification limit. <sup>2</sup>No established method.

## TABLE B-7: CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE TERRENCE J. O'BRIEN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Carbamazepine     | Ciprofloxacin | Codeine           | Diphenhydramine |
|---------------|-------------------|---------------|-------------------|-----------------|
| 7/15/2010     | 61.0 <sup>1</sup> | 2,960         | 122 <sup>1</sup>  | 262             |
| 1/20/2011     | 9.0               | 16,382        | 86.2 <sup>1</sup> | 236             |
| 7/14/2011     | 83.0              | 13,729        | 6.0               | 472             |
| 1/19/2012     | 33.0              | 15,871        | 14.0              | 310             |
| 1/29/2013     | 46.0              | 12,950        | 39.0              | 467             |
| 1/28/2014     | 178               | 4,114         | 10.0              | 326             |

### TABLE B-7 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE TERRENCE J. O'BRIEN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Fluoxetine        | Gemfibrozil | Ibuprofen | Naproxen |
|---------------|-------------------|-------------|-----------|----------|
| 1/21/2010     | NA <sup>2</sup>   | 240         | 460       | 320      |
| 7/15/2010     | 61.0 <sup>1</sup> | 112         | 698       | 457      |
| 1/20/2011     | 64.0              | 62.3        | 558       | 35.0     |
| 7/14/2011     | 98.0              | 145         | 927       | 790      |
| 1/19/2012     | 78.0              | 129         | 395       | 148      |
| 1/29/2013     | 92.0              | 244         | 401       | 174      |
| 1/28/2014     | 70.9              | 107         | 344       | 391      |

## TABLE B-7 (continued): CONCENTRATIONS (µg kg<sup>-1</sup>) OF ELEVEN TARGETED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN WASTE-ACTIVATED SLUDGE SAMPLES IN THE TERRENCE J. O'BRIEN WATER RECLAMATION PLANT COLLECTED FROM JANUARY 2010 THROUGH JANUARY 2014

| Sampling Date | Thiabendazole     | Triclocarban | Triclosan |
|---------------|-------------------|--------------|-----------|
| 1/21/2010     | NA <sup>2</sup>   | 13,100       | 13,100    |
| 7/15/2010     | 61.0 <sup>1</sup> | 621          | 8,430     |
| 1/20/2011     | 17.0              | 9,705        | 2,743     |
| 7/14/2011     | 16.0              | 8,415        | 7,713     |
| 1/19/2012     | 17.0              | 11,137       | 6,806     |
| 1/29/2013     | 43.0              | 5,948        | 3,247     |
| 1/28/2014     | 14.0              | 4,542        | 4,184     |
|               |                   |              |           |

<sup>1</sup>Sample was non-detect and reported value is 1/2 level of quantification limit. <sup>2</sup>No established method.