

Protecting Our Water Environment

Metropolitan Water Reclamation District of Greater Chicago100 East Erie StreetChicago, Illinois 60611-3154312.751.5190

Kathleen Therese Meany President Barbara J McGowan Vice President Mariyana T. Spyropoulos Chairman of Finance Michael A. Alvarez Frank Avila Cynthia M. Santos Debra Shore Kari K. Steele Patrick D. Thompson

BOARD OF COMMISSIONERS

THOMAS C. GRANATO, Ph.D. Director of Monitoring and Research

312.751.5190 f: 312.751.5194 thomas.granato@mwrd.org

July 25, 2013

Ms. Marcia Willhite Bureau Chief Bureau of Water Illinois Environmental Protection Agency P. O. Box 19276 Springfield, IL 62794-9276

Dear Ms. Willhite:

Subject: Tunnel and Reservoir Plan, Calumet Tunnel System, Annual Groundwater Monitoring Report for 2012

Attached are three copies of "Tunnel and Reservoir Plan, Calumet Tunnel System, Annual Groundwater Monitoring Report for 2012."

Very truly yours,

Thomas C. Granato, Ph.D. Director Monitoring and Research

TCG:HZ:AC:LH:PL:cm TCG:PL:cm Attachment cc w/att: Ms. Sally K. Swanson (USEPA Region 5 - WC15J) - (2) Dr. Zhang Dr. Cox Dr. Hundal Dr. Lindo cc w/o att: Mr. St. Pierre Ms. Sharma Mr. Cohen *Metropolitan Water Reclamation District of Greater Chicago* 100 East Erie Street Chicago, Illinois 60611-2803 (312) 751-5600

TUNNEL AND RESERVOIR PLAN CALUMET TUNNEL SYSTEM ANNUAL GROUNDWATER MONITORING REPORT FOR 2012

Monitoring and Research Department Thomas C. Granato, Director

July 2013

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
LIST OF FIGURES	iii
ANNUAL DATA FOR MONITORING AND OBSERVATION WELLS	1
Introduction	1
Summary of Data	1
Monitoring Wells	1
Observation Wells	1

LIST OF TABLES

Table No.		Page
1	Analysis of Water From Monitoring Wells QC-2 Through QC-36 in the Calumet Tunnel System of the Tunnel and Reservoir Plan Sampled During 2012	4
2	Descriptive Statistics for Groundwater Data of Monitoring Wells QC-2 Through QC-36 in the Calumet Tunnel System of the Tunnel and Reservoir Plan During 2012	10
3	Groundwater Elevations for Observation Wells OC-1 Through OC-11 in the Calumet Tunnel System of the Tunnel and Reservoir Plan Measured During 2012	18

.

LIST OF FIGURES

Figure No.		Page
1	Map of Monitoring Wells in the Calumet Tunnel System	2
2	Map of Observation Wells in the Calumet Tunnel System	3
3	Minimum, Mean, and Maximum Water Elevations for Obser- vation Wells OC-1 Through OC-11 in the Calumet Tunnel System of the Tunnel and Reservoir Plan Measured During 2012	20

ANNUAL DATA FOR MONITORING AND OBSERVATION WELLS

Introduction

All monitoring and observation wells are located along the length of the Calumet Tunnel System. Four monitoring wells (QC-1, -2, -2-1, and -2-2) and 11 observation wells (OC-1 through OC-11) are located along the tunnel between Crawford Avenue and the Calumet Water Reclamation Plant. Seventeen monitoring wells (QC-3 through QC-19) are located between 140th Street and Indiana Avenue. Nine monitoring wells (QC-20 through QC-28) are positioned along Torrence Avenue, with the last nine monitoring wells (QC-29 through QC-37) along the Little Calumet River (Figures 1 and 2). Monitoring well QC-3, located along the tunnel between 140th Street and Indiana Avenue, is no longer sampled due to construction in its vicinity managed by the Village of South Holland. An Illinois Environmental Protection Agency (IEPA) memorandum dated April 22, 2008 (Appendix I) granted permission to the Metropolitan Water Reclamation District of Greater Chicago to abandon this well. Monitoring wells OC-1, -2, and QC-29 through QC-37 are sampled six times per year (IEPA memorandum dated July 9, 2004). Monitoring wells QC-2-1, -2-2, QC-4 through QC-7, and QC-9 through QC-28 are sampled three times per year (IEPA memoranda July 9, 2004 and February 23, 2006). However, several wells were sampled more frequently than required. Groundwater elevations in the monitoring wells were measured during each sampling event, while elevations in the observation wells were measured bi-weekly. Monitoring well QC-8-1 is dry and is no longer sampled. However, groundwater elevations for this well were measured bi-weekly.

All monitoring wells in the Calumet Tunnel System were visited for the required number of samples. However, samples from a few wells could not be retrieved for various reasons. Wells QC-1, -32, -33, -34, and -37 could not be sampled due to inoperable pumps. Work orders have been issued for repairing these pumps.

Summary of Data

Monitoring Wells. The analytical data for groundwater sampled during 2012 from monitoring wells QC-2 through QC-36 are presented in <u>Table 1</u>. Physical characteristics, such as elevation, groundwater temperature, and estimated time of recharge for each well between initial drawdown and sampling, are also included in this table. Fecal coliform counts for all wells were non-detectable except for QC-2 (maximum of 66 MPN/100 mL). <u>Table 2</u> lists the descriptive statistics for groundwater data of monitoring wells QC-2 through QC-36 for the year 2012.

Observation Wells. Groundwater elevations for observation wells OC-1 through -11 were measured at the time of sampling. Final elevations were calculated relative to the Chicago city datum (579.48 ft. above mean sea level) at the intersection of Madison and State Streets (Table 3). The minimum, mean, and maximum groundwater elevations for each well were calculated and plotted to determine fluctuations in groundwater elevations during the year (Figure 3). Generally, these fluctuations appeared to be minimal throughout the year.

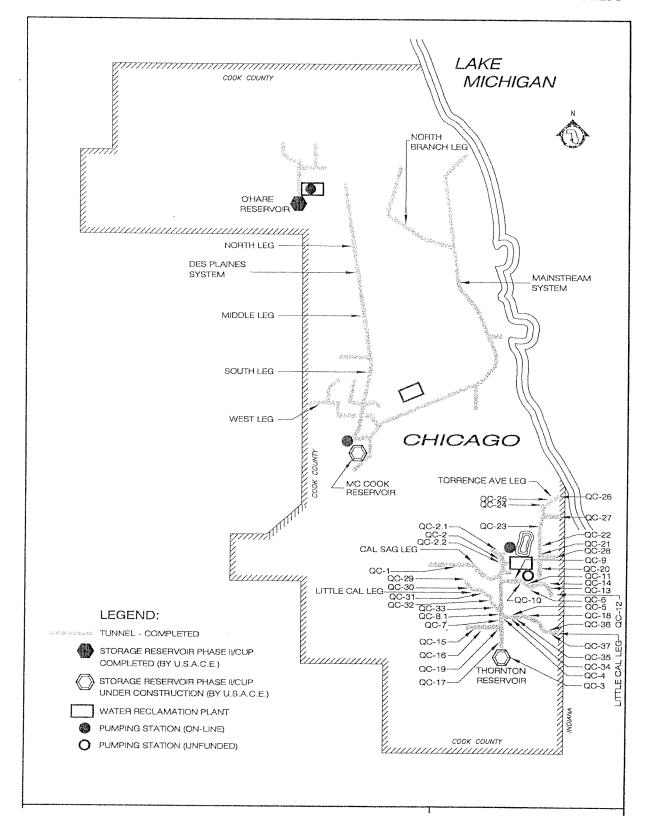


FIGURE 1: MAP OF MONITORING WELLS IN THE CALUMET TUNNEL SYSTEM

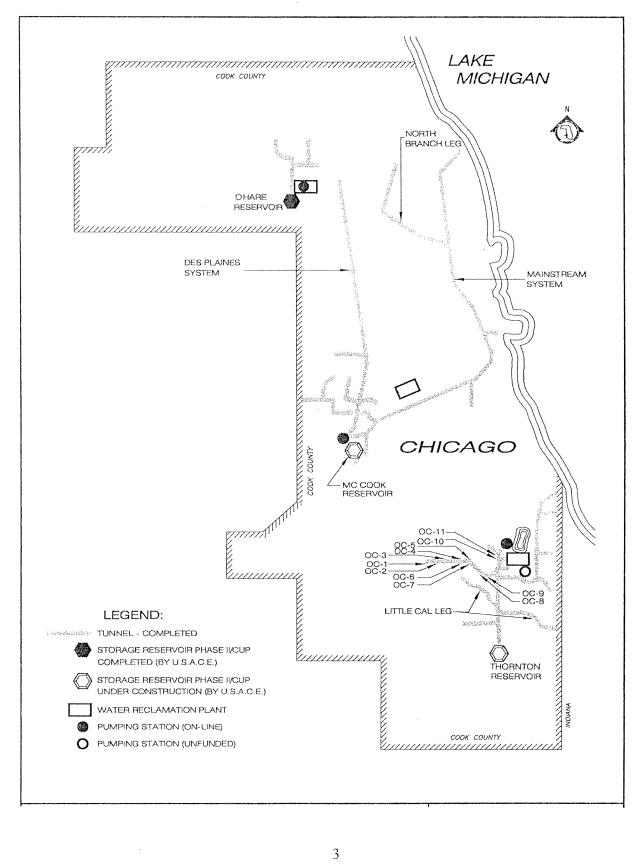


FIGURE 2: MAP OF OBSERVATION WELLS IN THE CALUMET TUNNEL SYSTEM

Well ¹	Sample Date	pН	EC ²	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge
			mS/m				mg/L -			MPN/100 mL	°C	ft	hr
QC-2	01/05/12	8.1	37	352	2	33	27	0.25	87	66	12.1	-280	<48
QC-2	03/22/12	8.0	43	336	1	31	26	0.14	79	<1	14.6	-293	<48
QC-2	05/03/12	7.2	52	394	1	31	28	0.16	85	<1	15.5	-274	<48
QC-2	07/19/12	7.8	30	400	5	32	26	0.49	86	3	14.5	-288	<48
QC-2	08/29/12	7.8	33	366	1	31	25	0.22	82	46	14.1	-271	<48
QC-2	10/18/12	7.0	25	432	1	31	27	0.16	84	3	15.3	-273	<48
QC-2-1	01/05/12	7.9	42	526	1	34	<5	0.70	62	<1	11.5	-282	<48
QC-2-1	03/22/12	7.8	50	516	1	32	<5	0.66	63	<1	14.8	-280	<48
QC-2-1	05/03/12	7.7	87	576	<1	34	<5	0.65	64	<1	15.2	-282	<48
QC-2-1	08/29/12	8.1	53	564	1	32	8	0.54	58	<1	14.4	-285	<48
QC-2-2	01/05/12	8.4	36	360	1	15	29	0.24	48	<1	11.3	-282	<48
QC-2-2	05/03/12	7.3	84	370	1	13	29	0.42	47	<]	14.1	-279	<48
QC-2-2	08/29/12	8.0	62	366	1	12	27	0.35	44	<1	14.2	-279	<48
QC-4	01/05/12	8.0	43	428	<1	10	12	0.16	11	<1	11.3	-235	<48
QC-4	03/22/12	8.1	49	412	<1	<10	15	0.15	11	<1	13.7	-235	<48
QC-4	05/03/12	8.6	56	454	<1	<10	13	0.15	12	<1	12.8	-232	<48
QC-5	02/01/12	8.2	63	568	2	33	10	0.15	10	<1	9.7	-197	<48
QC-5	04/05/12	8.2	64	470	1	16	6	0.33	16	<1	12.1	-202	<48
QC-5	10/18/12	8.2	39	544	1	36	10	0.12	8	<1	12.6	-207	<48
QC-6	02/01/12	7.9	53	460	1	14	<5	0.34	16	< 1	10.4	-189	<48
QC-6	04/05/12	8.1	51	552	1	35	10	0.13	8	<1	12.5	-195	<48
QC-6	10/18/12	8.4	37	454	2	13	5	0.50	16	<1	12.4	-203	<48

Well ¹	Sample Date	pН	EC ²	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge
			mS/m				mg/L -	*****		MPN/100 mL	°C	ft	hr
QC-7	02/01/12	8.3	46	480	1	19	<5	0.21	13	<1	12.1	-168	<48
QC-7	04/05/12	8.0	45	408	2	11	<5	0.26	11	<1	12.3	-167	<48
QC-7	10/25/12	8.0	56	394	1	10	<5	0.28	11	<1	13.8	-168	<48
QC-9	02/01/12	7.9	38	304	1	<10	35	0.68	62	<1	12.0	-248	<48
QC-9	04/05/12	8.1	37	328	1	10	39	0.48	63	<1	12.5	-255	<48
QC-9	07/19/12	8.3	32	380	5	<10	35	0.71	61	<1	14.0	-216	<48
QC-9	10/25/12	8.0	41	308	1	<10	34	0.11	61	<1	14.6	-220	<48
QC-10	02/15/12	8.3	43	406	<1	29	<5	0.12	12	<1	11.3	-222	<4
QC-10	04/26/12	8.0	45	450	<1	31	<5	0.12	13	<1	12.1	-224	<4
QC-10	07/12/12	8.4	38	506	<1	30	<5	< 0.10	11	<1	14.7	-231	<4
QC-10	12/05/12	8.4	40	392	<1	25	<5	0.14	9	<1	12.4	-236	<4
QC-11	02/15/12	8.1	35	286	<1	20	<5	0.15	20	~ <1	11.8	-224	<4
QC-11	04/26/12	8.0	37	314	<1	22	<5	0.14	20	<1	12.6	-225	<4
QC-11	07/12/12	8.3	34	366	2	21	<5	0.10	20	<1	14.8	-222	<4
QC-11	12/05/12	7.9	37	302	<1	14	<5	0.10	21	<1	12.1	-223	<4
QC-12	02/15/12	7.5	82	928	<1	37	310	0.33	187	<1	12.0	-238	<4
QC-12	04/26/12	7.8	84	1,000	<1	38	357	0.34	215	<1	12.2	-248	<4
QC-12	07/12/12	7.5	78	992	1	36	337	0.29	200	<1	13.5	-248	<4
QC-12	12/05/12	8.0	70	994	<1	30	393	0.36	232	<1	12.0	-248	<4

S

Well ¹	Sample Date	рН	EC ²	TDS ²	TOC ²	CI	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge
			mS/m	****			mg/L			MPN/100 mL	°C	ft	hr
QC-13	02/15/12	7.8	89	424	<1	51	31	0.18	37	<1	12.6	-237	<48
QC-13	04/25/12	7.8	38	420	<1	57	31	0.21	39	<1	13.2	-233	<48
QC-13	07/12/12	7.4	46	490	2	63	34	0.19	39	<1	14.3	-237	<48
QC-13	12/05/12	7.4	41	422	<1	48	26	0.19	41	<1	13.5	-239	<48
QC-14	02/01/12	7.5	77	700	3	132	<5	0.24	131	<1	11.9	-208	<48
QC-14	04/05/12	7.3	68	726	3	128	<5	0.27	161	<1	13.1	-213	<48
QC-14	07/19/12	7.6	67	810	4	135	<5	0.32	146	<1	14.9	-200	<48
QC-14	10/25/12	7.4	60	756	3	142	<5	0.29	148	<1	14.7	-216	<48
QC-15	03/22/12	8.3	36	304	<1	12	<5	0.22	16	<1	13.4	-215	<48
QC-15	05/03/12	8.4	45	332	<1	13	<5	0.18	12	<1	13.8	-217	<48
QC-15	07/19/12	8.5	31	360	6	12	<5	0.25	13	<1	15.6	-215	<48
QC-15	12/06/12	7.9	33	310	1	<10	<5	0.21	14	<1	11.6	-218	<48
Ì													<48
QC-16	03/22/12	7.8	56	488	1	21	68	< 0.10	84	<1	15.8	-256	<48
QC-16	07/19/12	8.0	49	588	4	22	65	< 0.10	84	<1	16.0	-257	<48
QC-16	09/12/12	7.7	40	506	<1	22	138	0.27	84	<1	17.8	-260	<48
QC-17	03/22/12	8.3	46	506	<1	<10	183	0.28	164	<1	14.0	-193	<48
QC-17	05/03/12	7.7	71	528	<1	<10	185	0.27	159	<1	14.2	-193	<48
QC-17	07/26/12	8.2	70	512	8	<10	181	0.27	166	6	13.5	-186	<48
QC-17	10/25/12	7.4	45	520	<1	<10	180	0.28	156	<1	23.0	-207	<48
QC-18	03/22/12	8.9	43	358	<1	<10	31	< 0.10	7	<1	13.7	-202	<48
QC-18	05/03/12	8.8	54	400	<1	<10	30	< 0.10	7	<1	12.8	-201	<48
QC-18	07/26/12	9.0	55	428	7	<10	28	< 0.10	7	<1	13.9	-194	<48
QC-18	10/25/12	8.9	44	370	<1	<10	27	0.10	7	<1	21.5	-204	<48

Well ¹	Sample Date	pH .	EC^2	TDS ²	TOC ²	Cl ⁻	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge
			mS/m				mg/L			MPN/100 mL	°C	ft	hr
QC-19	03/29/12	8.1	46	418	<1	<10	152	0.30	120	<1	12.0	-129	<48
QC-19	07/26/12	8.5	43	470	13	<10	141	0.28	106	<1	14.1	-131	<48
QC-19	09/12/12	8.4	35	428	<1	<10	65	< 0.10	89	<1	13.4	-122	<48
QC-20	03/29/12	7.3	31	266	3	18	<5	0.14	20	<1	12.6	-267	<48
QC-20	05/10/12	8.0	42	258	<1	18	<5	0.15	20	<1	12.7	-265	<48
QC-20	07/26/12	8.4	42	286	7	19	<5	0.10	19	<1	18.9	-263	<48
QC-20	12/06/12	7.7	27	266	<1	11	<5	0.15	20	<1	10.8	-267	<48
QC-21	03/29/12	7.3	40	376	7	20	8	0.14	44	<1	12.5	-241	<48
QC-21	05/10/12	7.8	51	398	8	20	<5	< 0.10	46	<1	13.1	-280	<48
QC-21	07/26/12	7.7	53	440	18	18	5	< 0.10	50	<1	13.4	-255	<48
QC-21	10/25/12	7.9	51	394	7	19	<5	< 0.10	64	<1	19.1	-280	<48
QC-22	03/29/12	8.1	38	254	2	13	5	0.22	36	<1	11.9	-228	<48
QC-22	05/10/12	8.0	39	266	2	13	6	0.21	35	<1	13.0	-263	<48
QC-22	07/26/12	7.9	25	290	9	13	<5	0.22	36	<1	13.1	-243	<48
QC-23	03/29/12	8.2	38	316	<1	20	<5	0.10	6	<1	11.1	-228	<48
QC-23	05/10/12	9.0	50	354	<1	19	< 5	< 0.10	6	<1	12.6	-238	<48
QC-23	07/26/12	7.7	32	386	7	19	<5	< 0.10	6	<1	13.0	-228	<48
QC-24	03/29/12	8.5	36	234	<1	27	<5	0.14	14	<1	12.2	-236	<48
QC-24	05/10/12	8.4	29	198	<1	28	<5	0.14	14	<1	12.4	-223	<48
QC-24	07/26/12	7.8	24	264	10	28	<5	0.14	14	<1	13.1	-229	<48

Well ¹	Sample Date	pH	EC ²	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge
			mS/m				mg/L -			MPN/100 mL	°C	ft	hr
QC-25	03/29/12	8.5	33	242	<1	12	19	0.13	24	<1	12.7	-235	<48
QC-25	05/10/12	8.2	27	228	<1	12	9	0.14	26	<1	12.8	-231	<48
QC-25	08/02/12	7.8	30	244	8	12	7	0.16	22	<1	13.7	-238	<48
QC-26	03/29/12	9.1	40	272	<1	12	<5	< 0.10	6	<1	12.7	-228	<48
QC-26	05/10/12	8.5	31	274	<1	11	<5	< 0.10	7	<1	12.7	-222	<48
QC-26	08/02/12	7.8	32	266	11	10	<5	0.11	6	<1	13.4	-226	<48
QC-27	03/29/12	8.4	37	244	<1	31	6	0.16	24	<1	12.9	-204	<48
QC-27	05/10/12	8.2	29	258	<1	32	<5	0.15	25	<1	12.3	-206	<48
QC-27	08/02/12	7.9	27	262	4	28	<5	0.18	25	<1	12.9	-212	<48
QC-28	03/29/12	8.1	39	264	2	13	<5	<0.10	16	<1	13.4	-243	<48
QC-28	05/10/12	8.1	27	304	1	12	<5	< 0.10	16	<1	13.1	-244	<48
QC-28	08/02/12	8.0	30	290	5	12	<5	< 0.10	17	<1	12.7	-244	<48
QC-29	02/02/12	7.4	51	716	1	168	129	0.54	257	<1	11.2	-60	<48
QC-29	06/14/12	7.4	86	1,096	2	204	184	0.79	426	<1	13.5	-58	<48
QC-29	08/02/12	7.6	50	950	7	189	180	0.73	404	<1	15.3	-58	<48
QC-29	10/18/12	7.0	41	890	1	182	168	0.71	368	<1	12.3	-62	<48
QC-29	11/15/12	6.7	83	954	2	70	188	0.76	408	<1	11.5	-56	<48
QC-30	02/02/12	7.6	70	380	<1	<10	70	0.15	55	<1	11.3	-139	<48
QC-30	05/17/12	7.8	42	402	1	<10	85	0.40	65	<1	13.1	-137	<48
QC-30	06/14/12	8.3	43	500	4	<10	65	0.14	54	<1	24.1	-134	<48
QC-30	08/02/12	8.1	33	434	10	<10	65	0.13	55	<1	12.9	-133	<48
QC-30	10/18/12	7.7	39	406	<1	<10	76	0.40	57	<1	12.5	-131	<48

 ∞

TABLE 1 (Continued): ANALYSIS OF WATER FROM MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET
TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN SAMPLED DURING 2012

Well ¹	Sample Date	pН	EC ²	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH ₃₋ N	Hardness	Fecal Coliform	Temp	Water Elevation ³	Recharge
			mS/m				mg/L -			MPN/100 mL	°C	ft	hr
QC-30	11/21/12	8.1	40	384	1	<10	73	0.23	58		11.2	-129	<48
QC-30	12/06/12	7.6	42	408	<1	<10	79	0.30	61	<1	10.1	-136	<48
QC-31	02/02/12	7.1	53	564	1	15	184	1.1	245	<1	11.6	-72	<48
QC-31	05/17/12	7.6	51	574	1	15	182	1.1	242	<1	14.2	-58	<48
QC-31	06/14/12	7.7	51	584	2	15	184	1.0	235	<1	13.6	-62	<48
QC-31	08/02/12	7.6	43	588	7	14	185	1.0	246	<1	13.5	-61	<48
QC-31	10/18/12	7.6	48	574	1	15	183	1.1	234	<1	13.1	-60	<48
QC-31	11/21/12	7.9	55	552	1	14	190	1.0	238		13.1	-59	<48
QC-31	12/06/12	7.6	50	574	1	. <10	200	1.1	237	<1	12.0	-65	<48
QC-35	10/24/12	8.3	102	942	1	32	88	< 0.10	24	<1	23.3	-152	<48
QC-36	10/24/12	8.6	90	856	<1	32	28	<0.10	14	<1	21.2	-130	<48

¹Wells QC-1 and QC-32 through QC-37 either could not be sampled, or only a single sample was retrieved; non-functional pumps. ²EC = electrical conductivity; TDS = total dissolved solids; TOC = total dissolved organic carbon. ³Relative to Chicago city datum (579.48 ft above mean sea level) at intersection of Madison and State Streets.

TABLE 2: DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH
QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

Well ¹	Statistic	pH	EC ²	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform ³
	******		mS/m				mg/L			MPN/100 mL
QC-2	Minimum	7.0	25	336	1	31	25	0.14	79	<1
X	Mean	7.6	37	380	2	32	27	0.24	84	13
	Maximum	8.1	52	432	5	33	28	0.49	87	66
	Std. Dev.	0.4	9	35	1	1	1	0.13	3	NA^4
	Median	7.8	35	380	1	31	27	0.19	85	25
	Coeff. of Var. (%)	5.4	26	9	65	3	4	55	3	NA
QC-2-1	Minimum	7.7	42	516	1	32	<5	0.54	58	<1
	Mean	7.9	58	546	1	33	6	0.64	62	<1
	Maximum	8.1	87	576	1	34	8	0.70	64	<1
	Std. Dev.	0.2	20	29	0.1	1	1	0.07	3	NA
	Median	7.8	52	545	1	33	5	0.66	63	<1
	Coeff. of Var. (%)	2.3	34	5	5	3	17	11	4	NA
QC-2-2	Minimum	7.3	36	360	1	12	27	0.24	44	<1
	Mean	7.9	57	365	1	13	28	0.34	46	<1
	Maximum	8.4	84	370	1	15	29	0.42	48	<1
	Std. Dev.	0.4	21	5	0.1	2	1	0.09	2	NA
	Median	8.0	54	366	1	13	29	0.35	47	<1
	Coeff. of Var. (%)	5.5	37	1	8	11	4	27	4	NA
QC-4	Minimum	8.0	43	412	<1	<10	12	0.15	11	<1
	Mean	8.2	49	448	<1	<10	22	0.16	11	<1
	Maximum	8.6	56	498	<1	10	48	0.19	12	<1
	Std. Dev.	0.3	6	38	0	0	17	0.02	. 1	NA
	Median	8.1	49	441	<1	10	14	0.16	11	<1
	Coeff. of Var. (%)	4.0	13	8	0	0	79	12	4	NA

TABLE 2 (Continued): DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

Well ¹	Statistic	pН	EC ²	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform ³
			mS/m	an a			mg/L			MPN/100 mL
QC-5	Minimum	8.2	39	470	1	16	6	0.12	8	<1
Z = =	Mean	8.2	55	539	1	30	9	0.19	11	<1
	Maximum	8.2	64	574	2	36	12	0.33	16	<1
	Std. Dev.	0.0	14	48	0.1	9	2	0.10	4	NA
	Median	8.2	63	556	1	34	10	0.15	10	<1
	Coeff. of Var. (%)	0.1	26	9	9	31	25	51	33	NA
QC-6	Minimum	7.9	37	454	1	13	5	0.13	8	<1
•	Mean	8.1	47	502	1	19	7	0.33	14	<1
	Maximum	8.4	53	552	2	35	10	0.50	16	<1
	Std. Dev.	0.3	9	52	0.1	11	2	0.15	4	NA
	Median	8.1	51	501	1	14	6	0.35	16	<1
	Coeff. of Var. (%)	3.2	18	10	9	56	34	46	29	NA
QC-7	Minimum	8.0	45	394	1	10	<5	0.21	11	<1
	Mean	8.1	49	424	1	13	<5	0.26	12	<1
	Maximum	8.3	56	480	2	19	<5	0.29	13	<1
	Std. Dev.	0.2	6	38	0.1	4	0	0.04	1	NA
	Median	8.0	46	411	1	11	<5	0.27	11	<1
	Coeff. of Var. (%)	2.1	13	9	9	35	0	14	9	NA
QC-9	Minimum	7.9	32	304	1	<10	34	0.11	61	<1
	Mean	8.1	37	330	2	<10	36	0.50	62	<1
	Maximum	8.3	41	380	5	10	39	0.71	63	<1
	Std. Dev.	0.2	4	35	2	1	3	0.28	1	NA
	Median	8.0	38	318	1	<10	35	0.58	62	<1
	Coeff. of Var. (%)	2.2	10	11	92	10	7	56	2	NA

TABLE 2 (Continued): DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

Well ¹	Statistic	pH	EC ²	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform ³
		γγα-ημομογιατικό το τηγοριατικό το τηγοριατικό το τηγοριατικό το τηγοριατικό το τηγοριατικό το τηγοριατικό το τ Το ποριο τηγοριατική το τηγοριατικό το τηγοριατικό το τηγοριατικό το τηγοριατικό το τηγοριατικό το τηγοριατικό τ	mS/m				mg/L			MPN/100 mL
QC-10	Minimum	8.0	38	392	<1	25	<5	0.12	9	<1
20.0	Mean	8.3	42	439	<1	29	<5	0.13	11	<1
	Maximum	8.4	45	506	<1	31	<5	0.14	13	<1
	Std. Dev.	0.2	3	51	0	3	0	0.01	2	NA
	Median	8.3	42	428	<1	30	<5	0.12	12	<1
	Coeff. of Var. (%)	2.3	7	12	0	9	0	9.1	15	NA
QC-11	Minimum	7.9	34	286	<1	14	<5	0.10	20	<1
	Mean	8.1	36	317	<1	19	<5	0.12	20	<1
	Maximum	8.3	37	366	2	22	<5	0.15	21	<1
	Std. Dev.	0.2	. 1	35	0.3	4	0	0.03	1	NA
	Median	8.0	36	308	2	21	<5	0.12	20	<1
	Coeff. of Var. (%)	2.6	4	11	30	19	0	21	2	NA
QC-12	Minimum	7.5	70	928	<1	30	310	0.29	187	<1
	Mean	7.7	78	979	<1	35	349	0.33	209	<1
	Maximum	8.0	84	1,000	1	38	393	0.36	232	<1
	Std. Dev.	0.2	6	34	0	4	35	0.03	19	NA
	Median	7.7	80	993	1	37	347	0.34	208	<1
	Coeff. of Var. (%)	3.0	8	3	18	10	10	8.9	9	NA
QC-13	Minimum	7.4	38	420	<1	48	26	0.18	37	<1
-	Mean	7.6	54	439	<1	55	31	0.19	39	<1
	Maximum	7.8	89	490	2	63	34	0.21	41	<1
	Std. Dev.	0.2	24	34	0.3	7	3	0.01	2	NA
	Median	7.6	44	423	1	54	31	0.19	39	<1
	Coeff. of Var. (%)	2.8	45	8	30	12	10	6.5	4	NA

TABLE 2 (Continued): DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

Well ¹	Statistic	pH	EC ²	TDS ²	TOC ²	Cl	SO ₄ ²⁻	NH3-N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mL
QC-14	Minimum	7.3	60	700	3	128	<5	0.24	131	<1
X	Mean	7.5	68	748	3	134	<5	0.28	147	<1
	Maximum	7.6	77	810	4	142	<5	0.32	161	<1
	Std. Dev.	0.1	7	47	0	6	0	0.03	12	NA
	Median	7.4	67	741	3	134	<5	0.28	147	<1
	Coeff. of Var. (%)	1.8	10	6	15	4	0	12	8	NA
QC-15	Minimum	7.9	31	304	1	12	<5	0.18	12	<1
-	Mean	8.3	36	327	4	12	<5	0.22	14	<1
	Maximum	8.5	45	360	6	13	<5	0.25	16	<1
	Std. Dev.	0.3	6	25	4	1	0	0.03	2	NA
	Median	8.3	35	321	4	12	<5	0.22	14	<1
	Coeff. of Var. (%)	3.2	17	8	99	5	0	13	12	NA
QC-16	Minimum	7.7	40	488	1	21	65	< 0.10	84	<1
	Mean	7.8	49	527	3	22	90	0.16	84	<1
	Maximum	8.0	56	588	4	22	138	0.27	84	<1
	Std. Dev.	0.2	8	53	2	1	41	0.1	0	NA
	Median	7.8	49	506	3	22	68	0.27	84	<1
	Coeff. of Var. (%)	2.3	16	10	85	3	46	63	0	NA
QC-17	Minimum	7.4	45	506	<1	<10	180	0.27	156	<1
-	Mean	7.9	58	517	3	<10	182	0.28	161	2
	Maximum	8.3	71	528	8	<10	185	0.28	166	6
	Std. Dev.	0.5	14	10	4	0	2	0.01	5	NA
	Median	8.0	58	516	1	<10	182	0.28	162	1
	Coeff. of Var. (%)	5.7	25	2	129	0	1	2.1	3	NA

TABLE 2 (Continued): DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

Well ¹	Statistic	pH	EC ²	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mL
QC-18	Minimum	8.8	43	358	<1	<10	27	0.10	7	<1
	Mean	8.9	49	389	3	<10	29	0.10	7	<1
	Maximum	9.0	55	428	7	<10	31	0.10	7	<1
	Std. Dev.	0.1	6	31	3	0	2	0.00	0	NA
	Median	8.9	49	385	7	<10	29	0.10	7	<1
	Coeff. of Var. (%)	1.0	13	8	120	0	6	0.00	0	NA
QC-19	Minimum	8.1	35	418	<1	<10	65	0.28	89	<1 .
	Mean	8.3	41	439	5	<10	119	0.29	105	<1
	Maximum	8.5	46	470	13	<10	152	0.30	120	<1
	Std. Dev.	0.2	6	28	7	0	48	0.01	16	NA
	Median	8.4	43	428	1	<10	141	0.29	106	<1
	Coeff. of Var. (%)	2.2	15	6	137	0	40	4.9	15	NA
QC-20	Minimum	7.3	27	258	3	11	<5	0.10	19	<1
	Mean	7.9	35	269	5	17	<5	0.14	20	<1
	Maximum	8.4	42	286	7	19	<5	0.15	20	<1
	Std. Dev.	0.5	8	12	3	4	0	0.02	1	NA
	Median	7.9	37	266	5	18	<5	0.15	20	<1
	Coeff. of Var. (%)	6.1	21	4	63	22	0	18	3	NA
QC-21	Minimum	7.3	40	376	7	18	<5	< 0.10	44	<1
	Mean	7.7	49	402	10	19	6	< 0.10	51	<1
	Maximum	7.9	53	440	18	20	8	0.14	. 64	<1
	Std. Dev.	0.3	6	27	5	1	2	0.02	9	NA
	Median	7.7	51	396	7	20	6	< 0.10	48	<1
	Coeff. of Var. (%)	3.7	13	7	55	5	25	18	18	NA

TABLE 2 (Continued): DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

Well ¹	Statistic	pH	EC ²	TDS ²	TOC ²	Cl	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform ³
			mS/m				mg/L -			MPN/100 mL
QC-22	Minimum	7.9	25	254	2	13	<5	0.21	35	<1
X	Mean	8.0	34	270	4	13	5	0.22	36	<1
	Maximum	8.1	39	290	9	13	6	0.22	36	<1
	Std. Dev.	0.1	8	18	4	0	0.4	0.01	1	NA
	Median	8.0	38	266	2	13	5	0.22	36	<1
	Coeff. of Var. (%)	1.2	24	7	107	0	8	2.7	2	NA
QC-23	Minimum	7.7	32	316	<1	19	<5	<0.10	6	<1
	Mean	8.3	40	352	<1	19	<5	< 0.10	6	<1
	Maximum	9.0	50	386	7	20	<5	0.10	6	<1
	Std. Dev.	0.7	9	35	4	1	0	3.6	0	NA
	Median	8.2	38	354	7	19	<5	1.0	6	<1
	Coeff. of Var. (%)	7.8	22	10	117	3	0	117	0	NA
QC-24	Minimum	7.8	24	198	<1	27	<5	0.14	14	<1
	Mean	8.2	30	232	4	28	<5	0.14	14	<1
	Maximum	8.5	36	264	10	28	<5	0.14	14	<1
	Std. Dev.	0.4	6	33	5	1	0	0.00	0	NA
	Median	8.4	29	234	<1	28	<5	0.14	14	<1
	Coeff. of Var. (%)	4.5	20	14	128	2	0	0.00	0	NA
QC-25	Minimum	7.8	27	228	<1	12	7	0.13	22	<1
	Mean	8.2	30	238	<1	12	12	0.14	24	<1
	Maximum	8.5	33	244	8	12	19	0.16	26	<1
	Std. Dev.	0.4	3	9 1 0 6		6	0.02	2	NA	
	Median	8.2	30	242	8	12	9	0.14	24	<1
	Coeff. of Var. (%)	4.3	10	4	119	0	55	11	8	NA

TABLE 2 (Continued): DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

Well ¹	Statistic	pH	EC ²	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform ³	
			mS/m		mg/L						
QC-26	Minimum	7.8	31	266	<1	10	<5	< 0.10	6	<1	
QC-20	Mean	8.5	35	200	4	11	<5	< 0.10	6	<1	
	Maximum	9.1	40	274	11	12	<5	0.11	7	<1	
	Std. Dev.	0.7	5	4	6	12	0	0.10	i	NÁ	
	Median	8.5	32	272	1	11	<5	<0.10	6	<1	
	Coeff. of Var. (%)	7.9	14	2/2	133	9	0	5.6	9	NA	
QC-27	Minimum	7.9	27	244	<1	1	<5	0.15	24	<1	
	Mean	8.2	31	255	2	8	<5	0.16	25	<1	
	Maximum	8.4	37	262	4	12	6	0.18	25	<1	
	Std. Dev.	0.2	5	9	2	5	0.5	0.02	1	NA	
	Median	8.2	29	258	1	10	5	0.16	25	<1	
	Coeff. of Var. (%)	2.8	16	4	89	60	9	9.4	2	NA	
QC-28	Minimum	8.0	27	264	1	12	<5	< 0.10	16	<1	
	Mean	8.1	32	286	3	12	<5	< 0.10	16	<1	
	Maximum	8.1	39	304	5	13	<5	< 0.10	17	<1	
	Std. Dev.	0.1	6	20	2	1	0	0.00	1	NA	
	Median	8.1	30	290	2	12	<5	< 0.10	16	<1	
	Coeff. of Var. (%)	0.9	19	7	87	5	0	0.00	4	NA	
QC-29	Minimum	6.7	41	716	1	70	129	0.54	257	<1	
	Mean	7.2	62	921	2	163	170	0.71	373	<1	
	Maximum	7.6	86	1,096	7	204	188	0.79	426	<1	
	Std. Dev.	0.4	21	137	2	53	24	0.10	68	NA	
	Median	7.4	51	950	2	182	180	0.73	404	<1	
	Coeff. of Var. (%)	5.2	33	15	92	33	14	14	18	NA	

TABLE 2 (Continued): DESCRIPTIVE STATISTICS FOR GROUNDWATER DATA OF MONITORING WELLS QC-2 THROUGH QC-36 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN DURING 2012

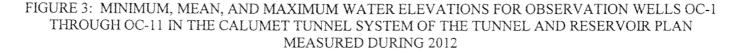
Well ¹	Statistic	pH	EC^{2}	TDS ²	TOC ²	Cľ	SO4 ²⁻	NH3-N	Hardness	Fecal Coliform ³
			mS/m				mg/L			MPN/100 mL
QC-30	Minimum	7.6	33	380	1	<10	65	0.13	54	<1
	Mean	7.9	44	416	4	<10	73	0.25	58	<1
	Maximum	8.3	70	500	10	<10	85	0.40	65	<1
	Std. Dev.	0.3	12	41	4	0	7	0.12	4	NA
	Median	7.8	42	406	2	<10	73	0.23	57	<1
	Coeff. of Var. (%)	3.7	27	10	106	0	10	47	7	NA
QC-31	Minimum	7.1	5	552	1	14	182	1.0	234	<]
	Mean	7.6	43	573	2	15	187	1.0	240	<1
	Maximum	7.9	53	588	7	15	200	1.1	246	<1
	Std. Dev.	0.2	17	12	2	1	6	0.0	5	NA
	Median	7.6	50	574	1	15	184	1.1	238	<1
	Coeff. of Var. (%)	3.0	40	2	113	4	3	3.6	2	NA

¹Wells QC-1 and QC-32 through QC-37 either could not be sampled, or only a single sample was retrieved; non-functional pumps. ²EC = electrical conductivity; TDS =- total dissolved solids; TOC = total dissolved organic carbon.

³Geometric mean calculated.

⁴Not applicable.

		Observation Well No.													
Date ¹	OC-1	OC-2	OC-3	OC-4	OC-5	OC-6	OC-7	OC-8	OC-8-1	OC-9	OC-10	OC-11			
						Ele	vation $(ft)^2$ -								
01/13/12	-27.8	-21.6	-148	-162	-144	-79.7	-203	-184	-242	-205	-209	-215			
01/27/12	-27.8	-21.6	-155	-169	-145	-72.7	-210	-184	-241	-211	-210	-223			
02/10/12	-26.8	-23.6	-151	-171	-148	-78.7	-211	-185	-241	-214	-212	-225			
02/17/12	-30.8	-24.6	-155	-165	-152	-81.7	-208	-183	-231	-212	-222	-220			
02/24/12	-30.8	-25.6	-154	-164	-152	-79.7	-209	-183	-231	-212	-224	-220			
03/09/12	-27.8	-23.6	-146	NR ³	-145	-79.7	-214	-188	-238	-211	-207	-229			
03/16/12	-30.8	-24.6	-154	NR	-152	-81.7	-208	-182	-230	-212	-223	-220			
04/06/12	-25.8	-21.6	-146	-165	-141	-75.7	-207	-182	-235	-209	-214	-218			
04/13/12	-28.8	-21.6	-147	-173	-143	-80.7	-212	-186	-237	-212	-208	-227			
04/19/12	-28.8	-23.6	-145	NR	-144	-79.7	-212	-186	-238	-211	-207	-226			
05/04/12	-24.8	-20.6	-143	NR	-142	-75.7	-199	-178	-235	-200	-213	-209			
05/11/12	-31.8	-25.6	-155	-164	-152	-79.7	-207	-180	-231	-212	-222	-219			
05/18/12	-31.8	-25.6	-155	-164	-150	-79.7	-209	-183	-221	-216	-222	-221			
06/01/12	-26.8	-22.6	-143	NR	-147	-76.7	-202	-180	-241	-204	-213	-216			
06/08/12	-25.8	-23.6	-150	-175	-141	-82.7	-215	-188	-241	-213	-211	-222			
06/29/12	-26.8	-22.6	-146	-172	-140	-78.7	-211	-190	-216	-211	-207	-217			
07/20/12	-28.8	-20.6	-148	-172	-144	-81.7	-211	-186	-238	-211	-209	-227			
07/26/12	-26.8	-23.6	-156	NR	-152	-80.7	-213	-185	-243	-216	-224	-223			
08/03/12	-28.8	-23.6	-148	-174	-143	-81.7	-213	-194	-220	-209	-209	-218			
08/24/12	-26.8	-22.6	-145	-171	-141	-78.7	-211	-197	-218	-207	-207	-216			
08/31/12	-27.8	-21.6	-145	-168	-144	-81.7	-209	-188	-238	-212	-207	-229			
09/07/12	-27.8	-21.6	-149	-166	-150	-79.7	-210	-183	-237	-213	-219	-220			
09/14/12	-24.8	-21.6	-156	-167	-153	-80.7	-211	-184	-236	-214	-221	-220			


TABLE 3: GROUNDWATER ELEVATIONS FOR OBSERVATION WELLS OC-1 THROUGH OC-11 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2012

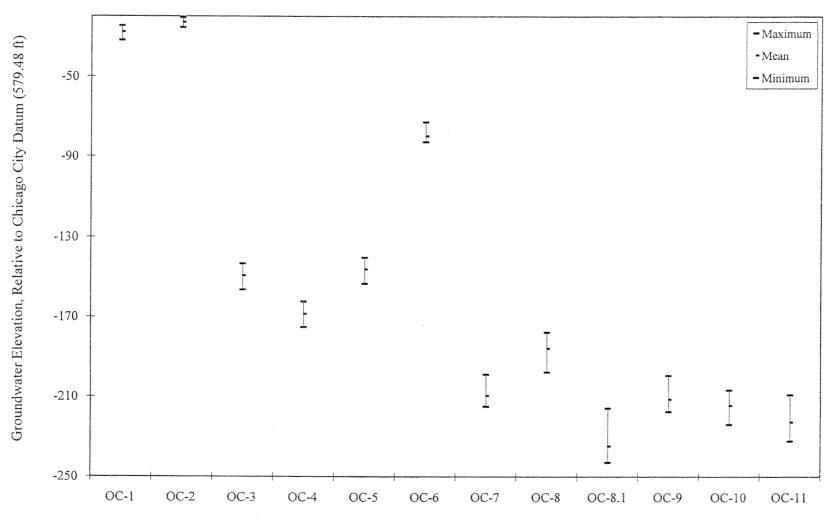

		Observation Well No.													
Date ¹	OC-1	OC-2	OC-3	OC-4	OC-5	OC-6	OC-7	OC-8	OC-8-1	OC-9	OC-10	OC-11			
					****	Elev	vation $(ft)^2$ -					*****			
09/28/12	-25.8	-21.6	-147	-169	-145	-81.7	-208	-188	-242	-217	-215	-230			
10/05/12	-27.8	-22.6	-144	-167	-141	-79.7	-211	-198	-218	-206	-207	-216			
10/26/12	-26.8	-22.6	-145	-171	-147	-79.7	-210	-187	-240	-218	-218	-232			
11/02/12	-28.8	-24.6	-151	-168	-145	-80.7	-209	-183	-238	-216	-223	-225			
11/08/12	-27.8	-22.6	-145	-170	-147	-80.7	-209	-187	-240	-218	-217	-232			
11/30/12	-26.8	-23.6	-149	-169	-144	-78.7	-212	-189	-242	-215	-219	-228			
12/14/12	-27.8	-21.6	-146	-167	-142	-81.7	-209	-194	-240	-213	-216	-230			
12/20/12	-26.8	-22.6	-151	-165	-145	-79.7	-211	-185	-240	-216	-218	-227			

TABLE 3 (Continued): GROUNDWATER ELEVATIONS FOR OBSERVATION WELLS OC-1 THROUGH OC-11 IN THE CALUMET TUNNEL SYSTEM OF THE TUNNEL AND RESERVOIR PLAN MEASURED DURING 2012

¹Dates measurements were taken.

²Relative to Chicago city datum (579.48 ft above mean sea level) at intersection of Madison and State Streets. ³No reading; well inaccessible.

Observation Well

20