

Metropolitan Water Reclamation District of Greater Chicago

RESEARCH AND DEVELOPMENT DEPARTMENT

REPORT NO. 07-6

ANNUAL BIOSOLIDS MANAGEMENT REPORT FOR

2006

FEBRUARY 2007

ANNUAL BIOSOLIDS MANAGEMENT REPORT FOR 2006

By

Albert E. Cox Soil Scientist III

Pauline Lindo Soil Scientist I

Minaxi Patel Sanitary Chemist I

Thomas C. Granato Assistant Director of Research and Development Environmental Monitoring and Research Division

Research and Development Department Louis Kollias, Director

February 2007

	Metropolitan Wate	r Reclamation District of G	reater Chicago
	100 East Erie Street	Chicago, IL 60611-2803	(312) 751-5600
	200	6 REPORTING REQUIRMENTS	
	UNDER T	HE 40 CFR PART 503 REGULATIO	DNS
	Co are	ppies of this Report Number 07-6 available on the District Web Site	
1			

Metropolitan Water Reclamation District of Greater Chicago100 EAST ERIE STREETCHICAGO, ILLINOIS 60611-3154312:751:5600

BOARD OF COMMISSIONERS Terrence J. O'Brien President Kathleen Therese Meany Vice President Gloria Alitto Majewski Chairman of Finance Frank Avila Patricia Horton Barbara J. McGowan Cynthia M. Santos Debra Shore Patricia Young

Louis Kollias, P.E., BCEE Director of Research and Development

312.751.5190

February 16, 2007

Mr. Patrick Kuefler Chief of Enforcement Section 2 USEPA – Region V Water Enforcement and Compliance Assurance Branch (WC-15J) 77 West Jackson Blvd. Chicago, IL 60604-3590

Dear Mr. Kuefler:

Subject: 2006 Reporting Requirements Under the 40 CFR Part 503 Regulations

The Metropolitan Water Reclamation District of Greater Chicago (District) herein submits the 2006 records required under the 40 CFR Part 503 Regulations at Section 503.18, titled "Annual Biosolids Management Report for 2006."

We believe this report satisfies the reporting requirements under the 40 CFR Part 503 Regulations.

Certification Statement Required for Record Keeping

"I certify under penalty of law, that the information that will be used to determine compliance with the Class A pathogen requirements, Class B pathogen requirements, vector attraction reduction requirements, management practices, site restrictions, and requirements to obtain information as described in Sections 503.32a6, 503.32a8, 503.32b2, 503.32b3, 503.33b1, 503.33b9, 503.13, 503.14, and 503.16 for the District's land application sites was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment." Mr. Patrick Kuefler

Subject: 2006 Reporting Requirements Under the 40 CFR Part 503 Regulations

If you have any questions, please telephone me at (312) 751-5190.

Very truly yours,

Louis Kollias Director Research and Development

LK:TCG:AC:spy Attachment cc w/att.:

Aistars (USEPA) Bramscher (USEPA) Keller (IEPA) Kluge (IEPA) Garretson (IEPA) Sulski (IEPA) Lanyon Jamjun Feldman Sobanski Stuba Granato O'Connor Cox Lindo

TABLE OF CONTENTS

	Page
LIST OF TABLES	iii
ACKNOWLEDGEMENT	V
DISCLAIMER	V
FOREWORD	vi
INTRODUCTION	1
LEMONT WRP	3
JAMES C. KIRIE WRP	4
NORTH SIDE WRP	5
JOHN E. EGAN WRP	6
Summary of Use and Disposal at Landfills	6
Biosolids Conveyed to Other WRPs for Further Processing	6
Land Application of Centrifuge Cake Biosolids	6
HANOVER PARK WRP	11
Treatment Plant and Biosolids Process Train Description	11
Land Application of Liquid Biosolids	11
CALUMET WRP	16
Treatment Plant and Biosolids Process Train Description	16
Summary of Use and Disposal at Landfills	16
Land Application of Centrifuge Cake Biosolids	17
Land Application of Aged, Air-Dried Biosolids	17

TABLE OF CONTENTS (Continued)

	Page
STICKNEY WRP	26
Treatment Plant and Biosolids Process Train Description	26
Summary of Use and Disposal at Landfills	27
Land Application of Centrifuge Cake Biosolids	27
Land Application of Aged, Air-Dried Biosolids	27
DISTRICT BIOSOLIDS DISTRIBUTED TO LANDFILLS UNDER 40 CFR PARTS 258 AND 261	32
Stickney WRP	32
Calumet WRP	32
APPENDICES	
Biosolids Management Programs of the Metropolitan Water Reclamation District of Greater Chicago Under 40 CFR Part 503	AI-1
Reduction in Frequency of Monitoring for Pathogens in Biosolids	AII-1
Designation of Site-Specific Equivalency to PFRP for District Biosolids Processing Trains	AIII-1

LIST OF TABLES

Table No.		Page
1	2006 Production and Uses of Sludge and Biosolids	2
2	Nitrogen and Metals Concentrations in Centrifuge Cake Biosolids from the John E. Egan Water Reclamation Plant Applied to Farm- land in 2006	7
3	Digester Temperatures and Detention Times for Biosolids from the John E. Egan Water Reclamation Plant Applied to Farmland in 2006	10
4	Nitrogen and Metals Concentrations in Biosolids from the Hanover Park Water Reclamation Plant Applied to the Fischer Farm Site in 2006	12
5	Digester Temperatures and Detention Times for Biosolids from the Hanover Park Water Reclamation Plant Applied to the Fischer Farm Site in 2006	14
6	Volatile Solids Reduction for Biosolids Generated at the Hanover Park Water Reclamation Plant and Applied to the Fischer Farm Site in 2006	15
7	Nitrogen and Metals Concentrations in Centrifuge Cake Biosolids Generated at the Calumet Water Reclamation Plant Applied to Farmland in 2006	18
8	Digester Temperatures and Detention Times for Centrifuge Cake Biosolids from the Calumet Water Reclamation Plant and Applied to Farmland in 2006	20
9	Quantities of Calumet Water Reclamation Plant Biosolids Utilized by Each Site Under the Controlled Solids Distribution Program in 2006	21
10	Nitrogen Concentrations, Volatile Solids Reduction, and Metals Concentrations in Air-Dried Biosolids from the Calumet Water Reclamation Plant Applied to Land in 2006	22
11	Data for Monitoring Part 503 Class A Pathogen Compliance at the Calumet Water Reclamation Plant in 2006	24

LIST OF TABLES (Continued)

Table No.	·	Page
12	Summary of Results of Additional Anaerobic Digestion Tests for Volatile Solids Reduction at the Calumet Water Reclamation Plant Following Option 2 of Section 503.33(b)	25
13	Nitrogen and Metals Concentrations in Centrifuge Cake Biosolids from the Stickney Water Reclamation Plant Applied to Farmland in 2006	28
14	Digester Temperatures and Detention Times for Centrifuge Cake Biosolids Generated at the Stickney Water Reclamation Plant Ap- plied to Farmland in 2006	31

ACKNOWLEDGEMENT

The assistance of the following individuals is greatly appreciated: Mr. Daniel Collins, Principal Civil Engineer, Lawndale Avenue Solids Management Area; Mr. Terrence Ballowe, Senior Civil Engineer, Calumet Solids Management Area; Ms. Katarzyna Lai, Assistant Engineer of Treatment Plant Operations I, John E. Egan Water Reclamation Plant (WRP); Mr. Carl Athas, Treatment Plant Operator II, Hanover Park WRP; Mr. George Kedl, Assistant Civil Engineer, Stickney WRP; Dr. Geeta Rijal, Microbiologist IV, Analytical Microbiology and Biomonitoring Section; Mr. John Chavich, Sanitary Chemist IV, John E. Egan Analytical Laboratory Section; Mr. Tom Liston, Sanitary Chemist IV, Calumet Analytical Laboratory Section; and Ms. Ellice Durham, Sanitary Chemist IV, of the Stickney Analytical Laboratory Section.

Special thanks are given to Ms. Sabina Yarn for the typing of this report.

DISCLAIMER

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

FOREWORD

The data and information in this report fulfill the frequency of monitoring and the reporting requirements for Biosolids Management by the Metropolitan Water Reclamation District of Greater Chicago as specified in the United States Environmental Protection Agency's (USEPA) 40 CFR Part 503 Regulations for 2006.

INTRODUCTION

The Metropolitan Water Reclamation District of Greater Chicago (District) herein reports the 2006 records required under the 40 CFR Part 503 Regulations at Section 503.18.

The District has four Illinois Environmental Protection Agency (IEPA) permitted biosolids management programs that must comply with Part 503. These programs are as follows:

- 1. Fulton County Dedicated Biosolids Application to Land Site (IEPA Permit No. 2005-SC-5073).
- 2. Hanover Park Fischer Farm Biosolids Application to Land Site (IEPA Permit No. 2002-SC-0672).
- 3. Controlled Solids Distribution Program (Biosolids Application to Land in the Chicago Area under IEPA Permit No. 2005-SC-3793).
- 4. Land Application to Farmland (Application of biosolids from Calumet, Stickney, and John E. Egan Water Reclamation Plants (WRPs) to farmland under IEPA Permit No. 2005-SC-5073).

The 40 CFR Part 503 Regulations require that the District report certain data. In the following sections, we have prepared a short description of the sludge processing and biosolids management operations at the District's seven WRPs. The Lemont, James C. Kirie, and North Side WRPs do not produce a final biosolids product, while the Calumet, Stickney, John E. Egan, and Hanover Park WRPs produced final biosolids products that were used beneficially or disposed of in 2006. In addition, we also discuss the uses for these biosolids, outline the data reporting requirements under the 40 CFR Part 503 Regulations, and present the required monitoring data in summary tables. The 2006 production and final disposition of sludges and biosolids generated by the District are summarized in <u>Table 1</u>. It should be noted that the total biosolids production in any given year may not equal the amount of the final biosolids product distributed, since biosolids may be distributed from production inventory from a previous year, or biosolids produced in a given year may be aged for distribution at a later time.

	Water Reclamation Plants										
Production and Use	Stickney*	Calumet [*]	North Side	Egan [*]	Hanover Park [*]	Kirie	Lemont				
				- Dry Tons -							
Production ^{**}	133,475	31,256	41,703	7,279	769	7,961	265				
Land Applied	34,870	22,739	0	5,734	3,402	0	0				
Surface Disposal	0	0	0	0	0	0	0				
Landfill (Total)	40,298	748	0	0	0	0	0				
Co-disposal	2,427	748									
Daily cover	37,871	0									
Final Cover	0	0									
Incinerated	0	0	0	0	0	0	0				
To Other WRPs for	0	0	41,703	1,545	0	7,961	265				
Further Processing Other ^{***}	0	0	0	1	0	0	0				

TABLE 1: 2006 PRODUCTION AND USES OF SLUDGE AND BIOSOLIDS

^{*}Differences between biosolids production and total use or disposal in 2006 were due to a net withdrawal or storage in lagoons or drying areas, and processing of biosolids imported from other WRPs.

** Stickney, Calumet, Egan, and Hanover Park produce biosolids while North Side, Kirie, and Lemont produce undigested sludge. Figures represent total solids generated at the end of each plant's processing train including those imported from other plants for further processing.

*** Trucked to Interstate Brands Corp., Schiller Park, Illinois, for seeding digesters.

 \mathbf{N}

LEMONT WRP

The Lemont WRP, located in Lemont, Illinois, has a design capacity of 3.4 mgd. Wastewater reclamation processes include both primary (primary settling) and secondary (activated sludge process) treatment. In 2006, the Lemont WRP produced 265 dry tons of solids (<u>Table 1</u>), which were gravity concentrated and transported to the Stickney WRP for further processing.

No final biosolids product is produced at this WRP.

JAMES C. KIRIE WRP

The James C. Kirie WRP, located in Des Plaines, Illinois, has a design capacity of 72 mgd. Wastewater reclamation processes include grit tanks, secondary (activated sludge process), and tertiary (sand filtration) treatment. In 2006, the James C. Kirie WRP produced 7,961 dry tons of solids (<u>Table 1</u>), which were sent via force main to the John E. Egan WRP for further processing.

No final biosolids product is produced at this WRP.

NORTH SIDE WRP

The North Side WRP, located in Skokie, Illinois, has a design capacity of 333 mgd. Wastewater reclamation processes at the North Side WRP include primary (primary settling) and secondary (activated sludge process) treatment. In 2006, the North Side WRP produced 41,703 dry tons of solids (<u>Table 1</u>), which were sent via pipeline to the Stickney WRP for further treatment. This total includes solids generated from water reclamation at the North Side WRP and biosolids conveyed from the John E. Egan WRP.

No final biosolids product is produced at this WRP.

JOHN E. EGAN WRP

The John E. Egan WRP, located in Schaumburg, Illinois, has a design flow of 30 mgd. Wastewater reclamation processes include primary (primary settling), secondary (activated sludge process), and tertiary (sand filtration) treatment. All solids managed at the John E. Egan WRP are anaerobically digested. During winter or when the centrifuges are not operating, liquid digested biosolids are sent via sewers to the North Side WRP. Centrifuge centrate containing biosolids are also sent via sewers to the North Side WRP.

In 2006, the total biosolids production at the John E. Egan WRP was 7,279 dry tons ($\underline{\text{Ta-ble 1}}$). This total includes biosolids generated from processing of sludge originating at the John E. Egan WRP as well as the sludge that was imported from the James C. Kirie WRP for further processing.

Summary of Use and Disposal at Landfills

In 2006, none of the biosolids generated at the John E. Egan WRP were sent to landfills.

Biosolids Conveyed to Other WRPs for Further Processing

In 2006, 948 dry tons of biosolids were pumped to North Side WRP. Of this amount, 760 dry tons were conveyed to the North Side WRP in centrifuge centrate and 188 dry tons were conveyed as liquid digested biosolids. In 2006, 597 dry tons of centrifuge cake biosolids were trucked to the Calumet Solids Management Area late in the year, and were placed in storage for the following application season.

Land Application of Centrifuge Cake Biosolids

In 2006, the John E. Egan WRP land applied a total of 5,734 dry tons of centrifuge cake biosolids to farmland under IEPA Permit No. 2005-SC-5073 through a contract with Synagro Midwest, Inc. This total consists of 4,092 dry tons trucked directly from the John E. Egan WRP and 1,642 dry tons that was temporarily stored at the Lawndale Avenue Solids Management Area before being land applied. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is six times per year.

All John E. Egan WRP centrifuge cake biosolids that were land applied in 2006 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 2</u>), the Class B pathogen requirements of Section 503.32b2 (<u>Table 3</u>), and the vector attraction reduction requirements of Section 503.33b10. <u>Table 2</u> also shows the biosolids nitrogen concentration data that were used by the land applier to compute the agronomic loading rates at the farmland sites.

<u>The John E. Egan WRP did not have any additional requirement for reporting under Part</u> 503 in 2006.

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
						mg/dry kg	ç				
01/25/2006	14,839	7,355	<1.0	3.0	662	0.69	21	69	72	<0.8	809
04/01/2006	32,445	5,843	4.1	3.4	794	NA	16	92	61	< 0.8	760
04/08/2006	35,836	4,879	<1.0	3.7	840	2.3	17	96	65	< 0.8	802
04/15/2006	25,380	4,067	<1.0	3.5	822	NA	15	90	53	< 0.8	770
04/22/2006	27,550	4,421	<1.0	3.4	846	NA	17	89	50	< 0.8	780
04/29/2006	45,735	5,190	<1.0	3.7	874	NA	17	89	56	< 0.8	803
05/03/2006	58,670	11,183	<1.0	3.0	710	2.8	21	83	72	2.0	892
05/06/2006	32,280	4,138	1.3	3.5	888	1.4	17	127	57	< 0.8	768
05/13/2006	46,661	4,842	1.1	4.6	896	NA	18	87	48	< 0.8	844
05/20/2006	27,314	4,651	<1.0	3.4	855	NA	17	83	46	< 0.8	832
05/27/2006	54,174	7,571	<1.0	3.4	841	NA	16	78	44	< 0.8	817
06/03/2006	28,680	4,542	2.0	4.2	785	NA	16	82	55	< 0.8	806
06/06/2006	57,160	13,394	<1.0	3.0	778	0.22	21	82	59	2.0	875
06/11/2006	42,884	4,395	<1.0	3.9	859	2.5	16	79	44	< 0.8	865
06/17/2006	51,168	4,760	1.4	3.6	826	NA	15	73	47	< 0.8	854
06/24/2006	30,399	4,664	1.0	3.9	868	NA	18	80	47	< 0.8	967
07/01/2006	50,566	4,454	<1.0	3.7	836	NA	19	82	45	5.9	1,042
070/8/2006	43,954	5,294	1.1	4.7	825	1.3	19	80	45	2.2	988
07/15/2006	41,303	5,865	4.7	4.2	802	NA	19	78	43	< 0.8	1,010
07/22/2006	34,821	5,845	<1.0	3.3	856	NA	20	80	48	5.2	1,058

TABLE 2: NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROM THEJOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
						mg/dry kg	<u>,</u>				
07/29/2006	41,815	5,923	<1.0	3.3	874	NA	20	76	50	5.9	1,052
08/05/2006	42,355	6,592	1.6	3.1	812	NA	21	78	49	< 0.8	1,092
08/11/2006	51,043	5,287	>1.0	3.2	710	2.0	19	91	60	< 0.8	722
08/12/2006	43,382	6,600	1.6	3.0	802	2.0	24	74	52	< 0.8	1,134
08/19/2006	40,931	6,079	<1.0	3.2	815	NA	21	76	50	< 0.8	1,099
08/26/2006	30,288	5,088	<1.0	3.3	811	NA	23	76	61	< 0.8	1,163
09/02/2006	19,465	2,761	1.1	3.4	825	NA	23	79	53	< 0.8	1,182
09/09/2006	22,196	3,117	<1.0	3.3	903	1.7	23	79	58	< 0.8	1,236
09/16/2006	43,745	4,445	<1.0	3.3	776	NA	23	70	58	< 0.8	1,120
09/23/2006	78,862	11,105	<1.0	3.6	858	NA	24	79	87	< 0.8	1,134
09/30/2006	39,452	4,180	<1.0	3.8	860	NA	25	75	58	< 0.8	1,107
10/07/2006	49,534	4,795	1.1	3.3	852	1.0	24	68	56	< 0.8	1,064
10/14/2006	51,439	5,076	<1.0	3.6	762	NA	22	72	58	< 0.8	971
10/21/2006	30,783	3,427	<1.0	3.4	847	NA	22	71	60	4.9	987
10/28/2006	34,622	7,009	<1.0	3.4	784	NA	21	72	59	< 0.8	960
11/04/2006	35,422	4,099	5.2	3.3	746	NA	20	68	56	< 0.8	934
11/11/2006	20,446	4,418	5.1	3.0	698	0.68	18	60	51	< 0.8	857
11/18/2006	44,279	7,768	3.1	3.2	768	NA	21	67	60	< 0.8	932
11/25/2006 12/02/2006	41,452 42,348	6,866 7,188	2.2 4.2	3.1 3.0	739 688	NA NA	19 18	64 64	62 47	$<\!\!0.8 <\!\!0.8$	858 823

TABLE 2 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROMTHE JOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

TABLE 2 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROMTHE JOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Мо	Ni	Pb	Se	Zn
						mg/dry kg	g				
Mean*	39,642	5,709	2.5	3.5	810	1.5	20	79	55	1.4	944
Minimum	14,839	2,761	<1.0	3.0	662	0.68	15	60	43	< 0.8	722
Maximum 503 Limit	78,862 NL	13,394 NL	5.2 41	4.7 39	903 1,500	2.5 17	25 75	127 420	87 300	5.9 100	1,236 2,800

^{*}In calculating the means, values less than the detection limit were considered as the detection limit.

NA = No analysis.

NL = No limit: not applicable.

Month	Average Temperature	0		Minimum Detention Time Required by 503.32b3 ^{**}
	^o F	days		days
January	96	22.2	yes	15.0
February	96	23.2	yes	15.0
March	96	24.8	yes	15.0
April	96	25.7	yes	15.0
May	96	25.9	yes	15.0
June	96	25.9	yes	15.0
July	96	27.7	yes	15.0
August	97	32.7	yes	15.0
September	97	27.6	yes	15.0
October	96	28.0	yes	15.0
November	96	24.8	yes	15.0
December	97	24.6	yes	15.0

TABLE 3: DIGESTER* TEMPERATURES AND DETENTION TIMES FOR BIOSOLIDS FROM THE JOHN E. EGAN WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

*Data are for primary Digesters A and C and do not include additional digestion achieved in secondary Digesters B and D.
 **For anaerobic digestion at average temperature achieved.

HANOVER PARK WRP

Treatment Plant and Biosolids Process Train Description

The Hanover Park WRP, located in Hanover Park, Illinois, has a design capacity of 12 mgd. Wastewater reclamation processes at this WRP include primary (primary settling), secondary (activated sludge process), and tertiary (sand filtration) treatment. All solids produced at the Hanover Park WRP are anaerobically digested and stored in lagoons. The digested biosolids stored in the lagoons are then applied by injection at an on-site farm, formerly the Fischer Farm. All of the biosolids produced by the Hanover Park WRP are land applied at the Fischer Farm, which is contained on the plant grounds.

Land Application of Liquid Biosolids

In 2006, the total biosolids production at this WRP was 769 dry tons (<u>Table 1</u>). In 2006, the Hanover Park WRP land applied a total of 3,402 dry tons of biosolids at the Hanover Park Fischer Farm site under the IEPA Permit No. 2002-SC-0672. This included 1,377 dry tons of liquid biosolids and supernatant stored in a lagoon and 2,025 dry tons of untreated sediment from a combined sewer overflow retention pond. The quantity of land applied biosolids (1,377 dry tons) was higher than the quantity of biosolids produced in 2006 due to net removal of biosolids that were stored in a lagoon. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is six times per year.

All Hanover Park WRP lagooned biosolids that were land applied in 2006 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 4</u>), the Class B pathogen anaerobic digester time and temperature requirements of Section 503.32b3 (<u>Table 5</u>), and the vector attraction reduction requirements of Section 503.33b1 (<u>Table 6</u>). Management practices at this land application site complied with Section 503.14 as previously described in a letter to Mr. Michael J. Mikulka dated January 28, 1994 (<u>Appendix I</u>).

Composite											
Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
					n	ng/dry kg -					
02/04/06*	539,538	569,231	20	< 0.5	207	0.37	5	42	7	4	265
04/01/06*	478,563	412,125	15	1	150	0.26	2	31	3	<2	194
07/15/06*	280,182	200,627	13	< 0.3	120	0.17	3	28	4	5	146
07/22/06*	289,944	253,383	14	< 0.3	152	0.18	3	34	4	4	178
08/05/06*	337,625	367,688	14	< 0.4	119	0.26	3	35	4	2	145
08/12/06**	3,076	999	12	7	219	0.96	3	40	48	< 0.8	238
08/19/06**	3,818	425	7	5	96	0.53	1	35	31	< 0.8	145
08/19/06*	435,750	408,250	17	< 0.5	108	0.12	3	42	6	10	132
08/26/06**	2,188	427	6	5	115	0.30	2	37	33	< 0.8	161
08/26/06*	353,500	344,357	19	< 0.4	84	0.12	3	36	6	5	109
09/09/06*	376,125	306,500	16	< 0.4	59	0.15	<1	29	4	2	71
09/16/06*	429,643	365,000	15	< 0.4	73	0.11	<1	30	4	8	88
09/23/06*	291,556	303,389	15	< 0.3	77	0.12	2	23	4	4	89
10/14/06*	382,923	369,692	15	< 0.5	92	0.20	3	23	5	5	104
11/18/06	121,995	20,880	7	2	1,267	4.93	20	76	36	9	1024
11/25/06	61,193	23,777	6	2	1,268	1.55	17	64	35	9	945
12/02/06	69,077	25,044	8	2	1,185	3.30	17	56	34	8	847

TABLE 4: NITROGEN AND METALS CONCENTRATIONS IN BIOSOLIDS FROM THE HANOVER PARKWATER RECLAMATION PLANT APPLIED TO THE FISCHER FARM SITE IN 2006

TABLE 4 (Continued): TABLE 4: NITROGEN AND METALS CONCENTRATIONS IN BIOSOLIDS FROM THE HANOVER
PARK WATER RECLAMATION PLANT APPLIED TO THE FISCHER FARM SITE IN 2006

Composite Sample Date	e TKN	NH ₃ -N	As	Cd	Cu	Hg	Мо	Ni	Pb	Se	Zn
					1	ng/dry kg -					
Minimum	2,188	425	6	1	59	0.11	1	23	3	2	71
Mean ^{***}	262,159	233,635	13	2	317	0.80	5	39	16	5	287
Maximum	539,538	569,231	20	7	1,268	4.93	20	76	48	10	1,024
503 Limit	NL	NL	41	39	1,500	17.0	75	420	300	100	2,800

*Biosolids applied as supernatant.
** Retention pond sediment.
*** In calculating the mean, values less than the detection limit were considered as the detection limit. NL = No limit: not applicable.

Month	Average Temperature	Average Detention Time	Meets Part 503 Class B Requirements	Minimum Detention Time Required by 503.32b3 [*]
	^o F	days		days
January	96	25.8	yes	15.0
February	96	47.9	yes	15.0
March	95	36.6	yes	15.0
April	96	34.5	yes	15.0
May	96	28.4	yes	15.0
June	96	25.7	yes	15.0
July	96	25.4	yes	15.0
August	96	20.6	yes	15.0
September	96	22.4	yes	15.0
October	96	26.1	yes	15.0
November	96	24.7	yes	15.0
December	96	28.4	yes	15.0

TABLE 5: DIGESTER TEMPERATURES AND DETENTION TIMES FOR BIOSOLIDS FROM THE HANOVER PARK WATER RECLAMATION PLANT APPLIED TO THE FISCHER FARM SITE IN 2006

*For anaerobic digestion at average temperature achieved.

Month	Digester Feed	Digester Draw	Lagoon Biosolids	Volatile Solids Reduction [*]
Wolten	1 ccu	Diaw	Diosonas	Reddetion
	%	Total Volatile Soli	ids	%
February	84.6	75.2	56.9	76.0
April	85.8	74.5	46.8	85.4
July	83.1	74.2	62.3	66.4
August	83.9	75.3	67.2	60.8
September	82.5	75.1	60.7	67.3
October	81.7	73.8	65.4	57.7
November	83.1	73.8	70.7	51.1
December	83.7	74.1	69.2	56.3

TABLE 6: VOLATILE SOLIDS REDUCTION FOR BIOSOLIDS GENERATED AT THE HANOVER PARK WATER RECLAMATION PLANT AND APPLIED TO THE FISCHER FARM SITE IN 2006

*Volatile solids reduction computed using digester feed and lagoon biosolids data, and only for the months that biosolids were applied to the fields.

CALUMET WRP

Treatment Plant and Biosolids Process Train Description

The Calumet WRP, located in Chicago, Illinois, has a design capacity of 354 mgd. Wastewater reclamation processes at this WRP include primary (primary settling) and secondary (activated sludge process) treatment. All solids produced at the Calumet WRP are anaerobically digested. Calumet WRP biosolids are then:

- a. Placed into lagoons for dewatering, aging and stabilization, and then transported to paved cells and air-dried prior to:
 - 1. Application to land as Exceptional Quality (EQ) biosolids under the District's Controlled Solids Distribution Permit.
 - 2. Use at local municipal solid waste landfills as final landfill cover.
 - 3. Disposal in local municipal solid waste landfills.
- b. Dewatered by centrifuging to approximately 25 percent solids content, and then applied to farmland by a private contractor as a Class B cake.
- c. Dewatered by centrifuging to approximately 25 percent solids content, and then transported to paved cells and air-dried prior to use as daily landfill cover.
- d. Dewatered by centrifuging to approximately 25 percent solids content, placed into lagoons for aging and stabilization, and transported to paved cells and airdried prior to:
 - 1. Application to land as EQ biosolids under the District's Controlled Solids Distribution Permit.
 - 2. Use at local municipal solid waste landfills as final landfill cover.

In 2006, the total biosolids production at the Calumet WRP was 31,256 dry tons (<u>Table</u> <u>1</u>). The quantity of biosolids that were used and disposed of in 2006 (23,486 dry tons) was lower than the total production for the Calumet WRP due to net storage of biosolids stored in lagoons or on drying cells.

Summary of Use and Disposal at Landfills

In 2006, the Calumet WRP sent 748 dry tons of biosolids to landfills as co-disposal with municipal solid wastes. This practice is exempt from the Part 503 Regulations and requires no further reporting.

Land Application of Centrifuge Cake Biosolids

In 2006, the Calumet WRP land applied 20,840 dry tons of centrifuge cake biosolids to farmland under IEPA Permit No. 2005-SC-5073 through a contract with Synagro Midwest, Inc. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is twelve times per year.

All Calumet WRP centrifuge cake biosolids that were land applied in 2006, met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 7</u>), the Class B pathogen anaerobic digester time and temperature requirements of Section 503.32b3 (<u>Table 8</u>), and the vector attraction reduction requirements of Section 503.33b10. <u>Table 7</u> also contains the biosolids nitrogen concentration data that were utilized by the land applier to compute the agronomic loading rates at the farmland sites.

Land Application of Aged, Air-Dried Biosolids

In 2006, the Calumet WRP land applied a total of 1,899 dry tons of air-dried EQ biosolids through the District's Controlled Solids Distribution Program under IEPA Permit No. 2005-SC-3743 for maintenance of golf courses, landscaping, nurseries, and construction of recreation fields. The quantities of biosolids utilized by each site under the Controlled Solids Distribution Program and how they were used are shown in <u>Table 9</u>. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is six times per year.

The USEPA Region V designated, on a site-specific basis for the Calumet and Stickney WRPs, two of the District's biosolids processing trains as equivalent to a Process to Further Reduce Pathogens (PFRP). The PFRP equivalency took effect on August 1, 2002 (<u>Appendix III</u>), and on this basis, all EQ biosolids produced by the Calumet WRP met the Part 503 Class A pathogen requirements of 503.32a8 in 2006.

All Calumet WRP EQ biosolids that were land applied in 2006 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 10</u>), the Class A pathogen limits of Section 503.32a8 (<u>Table 11</u>), and the vector attraction reduction requirements of Section 503.33b1 (<u>Table 10</u>) or Section 503.33b2 (<u>Table 12</u>), management practices complied with Section 503.14 as previously described in a letter to Mr. Michael J. Mikulka dated January 28, 1994 (<u>Appendix I</u>).

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
						mg/dry kg					
3/27-3/30/06	51,068	1,919	6	3	454	0.71	20	49	95	10	1,010
04/10-13/06	61,859	1,902	2	3	455	1.01	19	48	93	11	1,047
04/24-4/27/06	47,597	2,278	3	3	449	2.25	17	37	88	9	942
06/20-6/21/06	31,339	2,317	6	4	447	1.02	14	46	84	12	985
07/10/06	43,157	1,412	6	3	450	1.18	12	44	87	8	961
07/19/06	19,371	1,551	8	7	410	0.69	14	37	105	13	1,173
07/17-7/18/06	41,681	2,667	7	3	367	1.24	11	32	82	4	788
07/19/06	36,887	2,089	7	7	392	1.13	14	35	105	15	1,191
07/24/06	32,930	1,663	6	8	463	1.55	18	44	122	16	1,338
07/25-07/27/06	37,839	2,291	6	4	427	1.19	14	39	114	11	1,041
07/31-08/05/06	31,074	1,907	8	4	418	1.22	17	47	112	13	1,165
08/05/06	28,825	1,453	11	9	479	1.05	16	46	128	15	1,373
08/07/06	35,698	2,123	7	3	413	1.27	15	45	116	5	1,158
08/07/06	29,501	1,285	7	8	458	1.67	17	43	129	17	1,332
08/14/06	28,742	1,237	4	8	416	2.21	15	42	126	15	1,274
10/02/06	17,057	782	8	9	459	0.54	14	36	122	9	1,162
10/02/06	18,451	545	4	8	455	0.71	14	35	135	5	1,171
10/13-10/14/06	21,144	821	10	8	459	0.74	15	44	123	10	1,168
10/08-10/10/06	20,954	1,127	8	3	429	0.82	15	48	132	10	1,224
10/25/06	21,476	992	7	8	416	2.62	13	38	111	9	1,080
10/26/06	27,078	1,606	9	9	449	1.84	14	36	111	15	1,141
10/30-11/01/06	20,057	1,162	3	3	353	1.27	14	37	109	12	963

TABLE 7: NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS GENERATED
AT THE CALUMET WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

TABLE 7 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDSGENERATED AT THE CALUMET WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
						- mg/dry kg	;				
Minimum	17,057	545	2	3	353	0.56	11	32	82	4	788
Mean*	31,990	1,597	6	6	433	1.27	15	41	110	11	1,122
Maximum	61,859	2,667	11	9	479	2.62	20	49	135	17	1,373
503 Limit	NL	NL	41	39	1,500	17	75	420	300	100	2,800

^{*}In calculating the mean, values less than the detection limit were considered as the detection limit. NL = No applicable limit.

19

Month	Average Temperature	Average Detention Time	Meets Part 503 Class B Requirements	Minimum Detention Time Required by 503.32b3 ^{**}
	^o F	days		days
January	96	21.9	yes	15.0
February	97	23.6	yes	15.0
March	97	20.4	yes	15.0
April	97	19.5	yes	15.0
May	97	18.3	yes	15.0
June	97	17.3	yes	15.0
July	96	18.7	yes	15.0
August	96	19.0	yes	15.0
September	97	24.4	yes	15.0
October	96	21.3	yes	15.0
November	97	22.5	yes	15.0
December	96	27.9	yes	15.0

TABLE 8: DIGESTER^{*} TEMPERATURES AND DETENTION TIMES FOR CENTRIFUGE CAKE BIOSOLIDS FROM THE CALUMET WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

*Temperatures and detention times are for primary digesters 1 through 8 at the Calumet WRP. All biosolids exiting these primary digesters also received additional processing in secondary digesters 9 through 12.

** For anaerobic digestion at average temperature achieved.

TABLE 9: QUANTITIES OF CALUMET WATER RECLAMATION PLANT BIOSOLIDS UTILIZED BY EACH SITE UNDER THE CONTROLLED SOLIDS DISTRIBUTION PROGRAM IN 2006

Site [*]	Quantity
	Dry Tons
Westmont Park District Westmont, IL 60559	30
Village of Evergreen Park Evergreen Park, IL 60805	97
Longwood Country Club Crete, IL 60417	29
St. Laurence High School Burbank, IL 60459	576
University of Chicago Chicago, IL 60637	33
Lakepoint Club Corp./DBA Cinder Ridge Golf Course Wilmington, IL 60481	198
Chalet Hills Golf Course Cary, IL 60013	59
Notre Dame High School Niles, IL 60714	281
University of Illinois-Chicago Chicago, IL 60607	55
Crete-Monee School District Crete, IL 60417	57
Plainfield School District Plainfield, IL 60544	262
Village of Steger Steger, IL 60475	222

*All biosolids were used as soil conditioner and nutrient source for turf growth.

Sample Data	TKN	NH3-N	TVS^*	TVS [*] Reduction	٨٥	Cd	Cu	U~	Мо	Ni	Pb	Se	Zn
Date	IKIN	INH3-IN	1 V S	Reduction	AS	Cu	Cu	Hg	MO	INI	PO	Se	ZII
	mg/	dry kg		%]	mg/dry kg	g			
06/13-6/16/06	15,815	91	41	55	8	9	491	1.06	18	44	167	14	1,607
06/19/06	19,066	88	40	56	12	9	483	1.72	19	46	166	18	1,617
06/21/06	9,690	102	41	54	10	9	488	1.95	18	46	171	20	1,587
07/06/06	21,034	109	41	51	9	8	476	1.54	17	45	153	16	1,508
07/06/06	23,456	187	41	49	10	9	480	2.06	16	42	155	19	1,519
07/18-07/19/06	36,544	137	39	53	6	8	420	1.62	13	36	147	17	1,433
07/19/06	21,779	240	41	50	5	8	401	1.24	14	36	101	6	1,091
07/24/06	23,434	3,423	44	42	6	9	490	2.80	16	42	127	19	1,435
07/29/06	20,459	3,468	42	47	11	8	489	2.70	15	42	131	16	1,488
07/31/06	22,804	3,112	41	50	9	8	492	0.85	14	38	129	21	1,463
07/31/06	22,765	2,831	42	49	8	8	477	1.14	15	43	127	16	1,455
08/28/06**	21,007	1,058	42	36	6	8	481	1.93	13	42	127	20	1,478
09/26/06**	12,175	131	41	36	5	9	519	0.96	12	51	136	14	1,622
09/26/06**	14,141	137	41	36	6	9	523	1.36	12	42	139	15	1,621
11/02/06	9,245	151	41	64	6	8	467	1.20	11	38	122	16	1,389
11/02/06	8,506	800	41	65	9	8	447	1.58	12	34	123	12	1,295
11/07/06	7,387	1,888	34	73	3	8	341	1.22	9	36	115	14	965
11/14/06	7,000	549	41	64	5	8	478	1.47	12	33	121	21	1,360
11/21-11/22/06	8,232	1,162	20	87	4	7	197	1.02	7	36	95	2	627
11/21-11/22/06	10,875	610	41	64	9	8	474	1.58	13	37	126	17	1,423
11/21-11/22/06	7,850	1,287	20	87	5	7	195	0.31	8	35	90	8	609

TABLE 10: NITROGEN CONCENTRATIONS, VOLATILE SOLIDS REDUCTION, AND METALS CONCENTRATIONS IN AIR-DRIED BIOSOLIDS FROM THE CALUMET WATER RECLAMATION PLANT APPLIED TO LAND IN 2006

TABLE 10 (Continued): NITROGEN CONCENTRATIONS, VOLATILE SOLIDS REDUCTION, AND METALS CONCENTRATIONS IN AIR-DRIED BIOSOLIDS FROM THE CALUMET WATER RECLAMATION PLANT APPLIED TO LAND IN 2006

Sample Date	TKN	NH ₃ -N	TVS^*	TVS [*] Reduction	As	Cd	Cu	Hg	Мо	Ni	Pb	Se	Zn
	mg/	dry kg		%					mg/dry k				
Minimum	7,000	88	20	36	3	7	195	0.31	7	33	90	2	609
Mean ^{***}	16,346	1,027	39	56	7	8	443	1.49	13	40	132	15	1,362
Maximum	36,544	3,468	44	87	12	9	523	2.80	19	51	171	21	1,622
503 Limit	NL	NL	NL	38	41	39	1,500	17	75	420	300	100	2,800

^{*}TVS = Total Volatile Solids.

^{*}Biosolids did not meet vector attraction reduction requirements in Section 503.33b1, but they were managed in accordance with requirements in 503.33b10. ****In calculating the mean, values less than the detection limit were considered as the detection limit.

NL = No limit: not applicable.

Sample Date	Lagoon Source	Total Solids	Fecal Coliform		
		%	No./g		
06/21/06	17	67.8	10		
07/18/06	7	69.7	97		
07/25/06	7	76.6	660		
08/15/06	7	69.7	720		
10/19/06	6	78.0	87		
10/19/06	6	79.7	120		
10/19/06	6	66.0	150		
10/31/06	6	77.4	58		
11/07/06	6	80.7	35		
11/29/06	7	70.9	40		

TABLE 11: DATA FOR MONITORING PART 503 CLASS A PATHOGEN COMPLIANCEAT THE CALUMET WATER RECLAMATION PLANT IN 2006

Test Start	Befo	ore Test	Afte	er Test	Volatile Solid	ls Reduction	
Date	TS^*	TVS [*]	TS	TVS	By Equation ^{**}	By Mass	
			Q	%			
01/05/2006	1.95	61.57	1.78	57.85	14.3	14.6	
02/02/2006	2.09	60.48	1.90	56.03	16.7	16.0	
03/02/2006	2.10	59.38	1.89	56.75	10.2	14.3	
04/06/2006	2.40	56.91	2.18	52.50	16.3	16.1	
05/04/2006	2.53	53.29	2.34	49.73	13.3	13.6	
05/18/2006	2.56	51.10	2.39	47.16	14.6	13.9	
06/01/2006	2.55	49.00	2.44	45.27	13.9	11.5	
07/06/2006	2.67	49.22	2.53	44.93	15.8	13.4	
08/03/2006	2.80	49.29	2.69	44.59	17.2	12.8	
08/24/2006	3.14	43.72	2.97	41.85	7.4	9.3	
09/07/2006	3.28	43.78	3.12	42.05	6.8	8.5	
10/05/2006	2.93	43.46	2.81	42.90	2.3	5.5	
11/09/2006	2.63	47.37	2.43	44.49	11.0	13.1	
12/07/2006	2.00	51.18	1.87	47.44	13.9	13.3	

TABLE 12: SUMMARY OF RESULTS OF ADDITIONAL ANAEROBIC DIGESTION TESTS FOR VOLATILE SOLIDS REDUCTION AT THE CALUMET WATER RECLAMATION PLANT FOLLOWING OPTION 2 OF SECTION 503.33(b)

^{*}TS = Total Solids content, TVS = Total Volatile Solids content. ^{**}The Van Kleeck Equation was used in calculations.

STICKNEY WRP

Treatment Plant and Biosolids Process Train Description

The Stickney WRP, located in Stickney, Illinois, has a design capacity of 1,200 mgd. Wastewater reclamation processes include primary (Imhoff and primary settling) and secondary (activated sludge process) treatment. All solids produced at this WRP are anaerobically digested. Stickney WRP biosolids are then:

- a. Placed into lagoons for dewatering, aging, and stabilization, and then transported to paved cells and air-dried prior to:
 - 1. Application to land as EQ biosolids under the District's Controlled Solids Distribution Permit.
 - 2. Use at local municipal solid waste landfills as final landfill cover.
 - 3. Disposal in local municipal solid waste landfills.
- b. Dewatered by centrifuging to approximately 25 percent solids content, and then applied to land by a private contractor as a Class B cake.
- c. Dewatered by centrifuging to approximately 25 percent solids content, transported to paved cells, and air-dried prior to use as daily landfill cover.
- d. Dewatered by centrifuging to approximately 25 percent solids content, placed into lagoons for aging and stabilization, and transported to paved cells and air-dried prior to:
 - 1. Application to land as EQ biosolids under the District's Controlled Solids Distribution Permit.
 - 2. Use at local municipal solid waste landfills as final landfill cover.
 - 3. Disposal in local municipal solid waste landfills.

In 2006, the total biosolids production at the Stickney WRP was 133,475 dry tons (Table 1). This total includes biosolids generated from processing of sludge originating at the Stickney WRP as well as the sludge that was imported from the North Side and Lemont WRPs for further processing. The quantity of biosolids that were used and disposed of (75,168 dry tons) was less than the total 2006 production for the Stickney WRP due to a net storage of biosolids in lagoons and on drying cells.

Summary of Use and Disposal at Landfills

In 2006, the Stickney WRP sent 40,298 dry tons of biosolids to landfills. Of this amount, 37,871 dry tons were used as daily cover, and 2,427 dry tons were co-disposed with municipal solid waste. These practices are exempt from the Part 503 Regulations and require no further reporting.

Land Application of Centrifuge Cake Biosolids

In 2006, the Stickney WRP land applied 34,870 dry tons of centrifuge cake biosolids to farmland under IEPA Permit No. 2005-SC-5073 through contracts with Synagro Midwest, Inc. This does not include the 1,642 dry tons of centrifuge cake that was transported from the John E. Egan WRP to the Lawndale Avenue Solids Management Area, prior to being applied to farmland by Synagro Midwest, Inc. In accordance with Table 1 of Section 503.16, the frequency of monitoring for this biosolids product is 12 times per year.

All Stickney WRP centrifuge cake biosolids that were land applied in 2006 met the pollutant concentration limits in Table 3 of Section 503.13 (<u>Table 13</u>), the Class B pathogen anaerobic digester time and temperature requirements of Section 503.32b3 (<u>Table 14</u>), and the vector attraction reduction requirements of Section 503.33b10. <u>Table 13</u> also contains the biosolids nitrogen concentration data that were used by the land applier to compute the agronomic loading rates at the farmland sites.

Land Application of Aged, Air-Dried Biosolids

In 2006, no air-dried EQ biosolids from the Stickney WRP were land applied through the District's Controlled Solids Distribution Program under IEPA Permit No. 2005-SC-3793.

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
					m	ng/dry kg					
01/02/06	56,460	7,504	6	3	360	0.53	22	52	91	<4	691
01/25/06	14,068	7,355	<5	3	146	0.69	21	69	72	<4	809
02/07/06	48,195	6,604	<5	4	388	1.04	16	51	103	<4	835
02/07/06	38,866	8,064	<5	5	189	1.02	25	61	156	<4	1,157
03/06/06	52,376	7,419	<5	4	372	1.66	16	55	103	5	822
03/22/06	52,516	11,796	<5	3	401	0.46	13	48	107	<4	802
04/03/06	48,362	6,191	<5	3	374	1.63	13	47	116	<4	770
04/05/06	49,189	8,471	<5	3	161	1.47	16	51	112	<4	825
04/28-29/06	38,113	7,480	<5	4	419	0.79	22	104	131	<4	904
05/03/06	42,669	9,288	<5	4	184	1.74	22	64	123	<4	1,010
05/08/06	42,902	4,652	<5	4	415	1.53	15	55	117	4	912
05/09-10/06	51,230	11,622	<5	4	434	1.20	22	50	136	<4	928
05/24/06	47,856	8,534	<5	4	437	0.94	21	70	129	<4	909
05/24/06	46,991	6,789	<5	5	162	0.38	14	48	138	<4	1,028
05/24/06	36,932	7,248	<5	5	160	0.69	21	51	122	<4	1,019
06/05/06	37,304	5,219	<5	4	409	0.50	15	50	148	<4	976
06/05/06	45,614	10,546	<5	4	452	0.63	23	73	130	<4	913
06/06/06	51,934	13,845	<5	4	169	0.68	21	56	128	7	1,018
07/04/06	40,570	4,486	<5	4	393	0.44	16	45	166	<4	926
07/06/06	31,754	4,387	<5	4	220	0.96	17	66	138	<4	914
07/06/06	52,479	12,034	<5	4	173	0.76	19	59	109	5	821

TABLE 13: NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
					n	ng/dry kg					
08/02/06	42,759	11,787	5	4	385	0.99	16	67	140	<4	935
08/07/06	36,940	3,587	<5	4	405	1.13	16	43	153	<4	957
08/08-10/06	37,695	10,136	7	4	394	0.92	15	47	146	<4	938
08/11/06	45,457	8,002	<5	5	162	1.18	16	59	109	<4	783
08/15-18/06	40,810	10,117	6	4	388	0.56	15	46	134	<4	919
08/21-23/06	34,507	10,205	6	4	374	0.97	14	44	135	<4	877
08/22/06	26,684	11,041	<5	4	175	1.54	18	55	137	<4	957
08/23/06	41,130	10,480	6	4	423	0.44	21	50	134	<4	927
08/31/06	52,641	16,989	<5	5	452	1.42	19	67	129	<4	894
09/01-02/06	47,035	15,465	<5	4	430	0.42	18	56	120	<4	898
09/06-09/06	49,881	16,032	<5	4	417	1.77	18	56	117	<4	899
09/15/06	36,166	9,010	<5	4	363	0.59	17	49	112	<4	802
09/15-16/06	46,312	13,547	<5	4	421	0.26	17	54	116	<4	873
09/18-22/06	41,079	10,692	<5	4	433	0.29	20	57	128	<4	924
09/22/06	35,248	3,944	<5	4	400	2.08	14	43	149	<4	929
09/26-28/06	35,920	8,760	<5	4	398	1.54	18	53	114	<4	840
09/28/06	54,487	15,121	<5	2	782	0.92	21	96	57	<4	823
09/29/06	18,575	169	7	5	338	1.85	16	57	211	<4	1,105
10/02/06	49,012	8,361	<5	3	742	1.80	20	81	70	<4	870
10/03/06	35,317	3,835	<5	4	402	1.16	16	48	153	<4	984
10/11/06	30,845	6,162	<5	4	199	0.86	19	61	147	<4	1,002

TABLE 13 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDSFROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

Sample Date	TKN	NH ₃ -N	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
					n	ng/dry kg					
10/11/06	38,617	9,796	<5	4	202	0.91	16	59	147	<4	882
10/11/06	40,394	7,032	<5	5	223	0.68	24	65	140	<4	1,017
11/02-04/06	30,198	6,571	6	5	433	1.49	19	55	178	<4	1,023
11/04/06	36,529	7,047	6	4	375	1.09	15	44	147	<4	914
11/06/06	35,057	4,148	<5	4	368	1.65	14	48	136	<4	835
11/06-09/06	26,836	6,977	<5	5	449	1.83	21	56	166	<4	1,003
11/07/06	35,392	5,625	<5	4	180	1.81	14	46	141	<4	891
11/07/06	36,195	4,777	<5	4	187	1.66	14	48	156	<4	897
11/10/06	40,754	7,854	5	4	382	1.14	14	49	139	<4	887
11/22/06	30,865	7,255	5	5	412	1.37	18	52	148	<4	932
11/24-25/06	39,741	7,770	6	4	353	1.18	14	46	136	<4	840
11/27-29/06	33,629	6,697	6	4	399	1.23	17	52	121	<4	856
12/05/06	40,752	5,608	<5	4	383	0.87	15	47	123	<4	841
Minimum	1,468	169	<5	2	159	0.26	13	43	57	<4	691
Mean [*]	40,543	8,339	<5	4	331	1.09	18	56	129	<4	905
Maximum	56,460	16,989	7	5	782	2.08	25	104	211	7	1,157
503 Limit	NL	NL	41	39	1,500	17	75	420	300	100	2,800

TABLE 13 (Continued): NITROGEN AND METALS CONCENTRATIONS IN CENTRIFUGE CAKE BIOSOLIDS FROM THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

^{*}In calculating the mean, values less than the detection limit were considered as the detection limit.

.

NA= No analysis.

NL = No limit; not applicable.

Month	Average Temperature	Average Retention Time	Meets Part 503 Class B Requirements	Minimum Detention Time Required by 503.32b3 [*]
	°F	days		days
January	97	19.0	yes	15.0
February	97	22.6	yes	15.0
March	97	20.7	yes	15.0
April	98	21.6	yes	15.0
May	98	20.4	yes	15.0
June	98	23.0	yes	15.0
July	98	22.2	yes	15.0
August	99	22.2	yes	15.0
September	98	25.1	yes	15.0
October	97	22.3	yes	15.0
November	97	25.3	yes	15.0
December	98	23.8	yes	15.0

TABLE 14: DIGESTER TEMPERATURES AND DETENTION TIMES FOR CENTRIFUGE CAKE BIOSOLIDS GENERATED AT THE STICKNEY WATER RECLAMATION PLANT APPLIED TO FARMLAND IN 2006

*For anaerobic digestion at average temperature achieved.

DISTRICT BIOSOLIDS DISTRIBUTED TO LANDFILLS UNDER 40 CFR PARTS 258 AND 261

Biosolids from two of the District's WRPs (Stickney and Calumet) were sent to landfills in 2006 for co-disposal with municipal solid waste, use as daily cover, and use as final cover. Biosolids going to these landfills are either processed to meet the requirements of AS 95-4, AS 98-5, and AS 03-02 (Adjusted Standards) approved by the Illinois Pollution Control Board for biosolids used as a final vegetative cover, or they are centrifuged and air-dried to various end points, and analyzed as specified in 40 CFR Part 261 to establish the nonhazardous nature of this material for biosolids used as daily cover and co-disposed. Analytical results, including TCLP constituents, PCB, cyanide, sulfide, and paint filter test, are submitted to the landfill company to satisfy the requirements of their IEPA permit. District biosolids have always met the requirements of 40 CFR Parts 258 and 261, and the Illinois nonhazardous waste landfill regulations (Title 35, Subtitle G, Chapter I, Subchapter h, Part 810).

Stickney WRP

A total of 40,298 dry tons of biosolids from the Stickney WRP were co-disposed, used as daily cover with municipal solid waste, or used as a final vegetative cover at nonhazardous waste landfills in 2006.

A total of 2,427 dry tons were co-disposed at Land and Lakes River Bend Prairie Landfill at 801 East 138th Street, Dolton, Illinois.

A total of 37,871 dry tons were used as daily cover at Onyx Orchard Hills Landfill in Davis Junction, Illinois.

Calumet WRP

In 2006, a total of 748 dry tons of biosolids from the Calumet WRP were co-disposed with municipal solid waste at Land and Lakes River Bend Prairie Landfill at 801 East 138th Street, Dolton, Illinois.

APPPENDIX I

BIOSOLIDS MANAGEMENT PROGRAMS OF THE METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO UNDER 40 CFR PART 503

APPENDIX II

REDUCTION IN FREQUENCY OF MONITORING FOR PATHOGENS IN BIOSOLIDS

APPPENDIX III

DESIGNATION OF SITE-SPECIFIC EQUIVALENCY TO PFRP FOR DISTRICT BIOSOLIDS PROCESSING TRAINS

Metropolitan Water I	Reclamation	District of	Greater Chicago
100 East Erie Street	Chicago, IL	60611-2803	(312) 751-5600

2006 REPORTING REQUIREMENTS

UNDER THE 40 CFR PART 503 REGULATIONS

Copies of this Report Number ______ are Available on the District Web Site Under