

Metropolitan Water Reclamation District of Greater Chicago

RESEARCH AND DEVELOPMENT DEPARTMENT

REPORT NO. 04-21
BIOSOLIDS CHEMICAL CHARACTERISTICS

December 2004

BIOSOLIDS CHEMICAL CHARACTERISTICS

By

Pauline Lindo Soil Scientist I

Albert E. Cox Soil Scientist III (Acting)

Thomas C. Granato Soil Scientist IV (Acting)

Research and Development Department Richard Lanyon, Director

December 2004

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
DISCLAIMER	iii
INTRODUCTION	1
BIOSOLIDS CHEMICAL CHARACTERISTICS	2
Biosolids Nutrients and Trace Metal Chemistry	2
Biosolids Toxicity Characteristic Leaching Procedure (TCLP) Analyses	2
Tiered Approach to Corrective Action Objectives (TACO)	2
Topsoil Properties of Biosolids	17

LIST OF TABLES

Table No		Page
1	Chemical Composition of Centrifuge Cake Biosolids Collected from the Calumet WRP in 2003 and Applicable Part 503 EQ Limits	3
2	Chemical Composition of Centrifuge Cake Biosolids Collected from the John E. Egan WRP in 2003 and Applicable Part 503 EQ Limits	4
3	Chemical Composition of Centrifuge Cake Biosolids Collected from the Stickney WRP in 2003 and Applicable Part 503 EQ Limits	5
4	Chemical Composition of Lagoon-aged, Air-dried Biosolids Collected from the Calumet WRP in 2003 and Applicable Part 503 EQ Limits	6
5	Chemical Composition of Lagoon-aged, Air-dried Biosolids Collected from the Stickney WRP in 2003 and Applicable Part 503 EQ Limits	7
6	TCLP Analysis of a Composite Sample of Lagoon-aged, Air-dried Biosolids Collected from the Calumet WRP on April 14, 2003 and the Applicable Part 261 Regulatory Limits	8
7	TCLP Analysis of Air-dried Centrifuge Cake Biosolids Collected from the John E. Egan WRP on February 11, 2003 and the Applicable Part 261 Regulatory Limits	11
8	TCLP Analysis of Air-dried Centrifuge Cake Biosolids Collected from the Stickney WRP on October 4, 2004 and the Applicable Part 261 Regulatory Limits	14
9	Total Concentrations of TACO Target Organic Compounds and Inorganic Parameters in Four Air-dried Biosolids Samples Collected in 2000 and their Corresponding TACO Tier 1 Residential Objectives for the Soil and Groundwater Exposure Routes	18
10	TCLP Extract Concentrations of TACO Target Inorganic Parameters in Four Air-Dried Biosolids Samples Collected in 2000 and their Corresponding TACO Tier 1 Residential Objectives for the Groundwater Exposure Route	25
11	Topsoil Chemical Properties of Five Biosolids Samples from the Calumet WRP and Four Samples from the Stickney WRP Collected in 2000	26

DISCLAIMER

Mention of propriety equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

INTRODUCTION

The Metropolitan Water Reclamation District of Greater Chicago (District) generates about 190,000 dry tons of biosolids annually through the operation of seven water reclamation plants (WRPs). Final biosolids products are generated at four of the District's WRPs: Calumet, John E. Egan, Hanover Park, and Stickney. The biosolids are produced through two main sludge processing trains (SPTs), the high solids sludge processing train (HSSPT) and low solids sludge processing train (LSSPT). In the HSSPT, anaerobically digested sludge is centrifuged to 20 - 30 percent solids content. At this stage, it meets the Class B pathogen criteria of the United States Environmental Protection Agency's (USEPA) Part 503 regulations for the land application of biosolids. The centrifuge cake biosolids are either land applied directly (Calumet, Egan, and Stickney WRPs) or are further processed by lagoon-aging followed by airdrying to approximately 65 percent solids (Calumet and Stickney WRPs). LSSPT, the anearobically-digested sludge is gravity thickened by lagoon-aging and then air-dried. The air-dried biosolids from both processing trains meet the Part 503 Class A pathogen criteria, the Part 503 Vector Attraction Reduction Requirements, and have a soil-like appearance and properties that allow them to be used as a soil conditioner.

Most of the District's biosolids are managed by land application through the following programs under permits issued by the Illinois Environmental Protection Agency (IEPA):

 Fischer Farm Land Application -The anaerobically digested liquid Class B biosolids from the Hanover Park WRP are applied to the Fischer Farm located on the plant grounds.

- Farmland Application Class B centrifuge cake biosolids from the Calumet, Stickney, and John E. Egan WRPs are used to fertilize farmland in Cook and other nearby counties.
- Controlled Solids Distribution -Aged, air-dried Class A biosolids from the Stickney and Calumet WRPs are used in the Chicago Metropolitan area as a soil substitute or amendment for the construction of recreational fields, landscaping, golf courses etc.
- Landfill Final and Daily Covers -Biosolids from the Stickney and Calumet WRPs are also used for landfill final and daily covers.

The District generates data on the characteristics of its biosolids through routine monitoring and reporting requirements of regulatory agencies and operating permits. Data on biosolids properties are also generated through scientific research or other studies that are designed specifically for evaluating biosolids characteristics not measured in the routine monitoring programs.

The purpose of this report is to provide information on the chemical characteristics of the District's biosolids to biosolids users.

BIOSOLIDS CHEMICAL CHARACTERISTICS

Biosolids Nutrients and Trace Metal Chemistry

The District conducts analysis of its biosolids as required by the USEPA's Part 503 biosolids land application regulations and by permits issued by the IEPA. The data reported here also include some parameters that are not required for Part 503 or IEPA monitoring compliance. These data are primarily used to provide information to biosolids users, and for estimating agronomic and metal loading rates for the Class B biosolids farmland application program.

A summary of the nutrient and trace metal data for centrifuge cake biosolids generated at the Calumet, John E. Egan, and Stickney WRPs in 2003 are presented in <u>Tables 1</u>, 2, and <u>3</u>, respectively. These biosolids are used to fertilize crops. They are Class B with respect to the Part 503 pathogen standards and can meet the vector attraction reduction requirements through incorporation into soil.

Data for the Class A lagoon-aged, air-dried biosolids from the Calumet and Stickney WRPs are presented in Tables 4 and 5, respectively. The John E. Egan WRP does not produce lagoon-aged, air-dried biosolids. All lagoon-aged, air-dried District biosolids that are land applied as a soil conditioner or topsoil substitute meet the Part 503 Exceptional Quality (EQ) criteria. The most distinct chemical differences between the centrifuge cake and the air-dried biosolids are the lower concentrations of volatile solids, total Kjeldhal nitrogen (TKN), and ammonia-nitrogen (NH₃-N) in the air-dried bio-These lower concentrations are solids. mainly due to the loss of volatile solids and NH₃-N by volatilization during the lagoonaging and air-drying processes.

Biosolids Toxicity Characteristic Leaching Procedure (TCLP) Analyses

The TCLP analyses of biosolids are required to meet the requirements of the USEPA's Part 261 rule where biosolids are used as landfill daily cover. The suite of analyses needed to meet those requirements includes total-extractable as well as TCLPextractable concentrations. The TCLP data generated for lagoon-aged, air-dried biosolids from the Calumet and Stickney WRPs, and for centrifuge cake biosolids from the John E. Egan WRP are presented in Tables 6, 7, and 8, respectively. The data show that, in the TCLP extracts, most of the organic compounds are undetectable and the concentrations of the metals are much lower than the Part 261 regulatory limits. All District biosolids passed the TCLP test and are thereby classified by the USEPA and IEPA as non-hazardous and are suitable for use as daily landfill cover.

Tiered Approach to Corrective Action Objectives (TACO)

The TACO Standards were promulgated in 1997 as a voluntary program under Title 35, Illinois Administrative Code Part 742 to establish standards for the cleanup of contaminated sites in Illinois. The program was designed primarily to address the "how clean is clean" problem experienced in the implementation of other brownfield cleanup programs, such as the Site Remediation Program and the Leaking Underground Storage Tanks Program. For brownfields that meet the TACO cleanup objectives in the respective programs, the state issues a "No Further Remediation" letter. Objectives were devel-

TABLE 1. CHEMICAL COMPOSITION OF CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE CALUMET WRP IN 2003 AND APPLICABLE PART 503 EQ LIMITS

Parameter	Units	Mean	Min.	Max.	503 Limi
oH		8.1	7.7	8.5	general general de la company de la comp
Total Solids	%	26.4	18.8	33.7	
Fotal Volatile Solids	%	51.7	39.3	66.3	
Volatile Acids	mg/dry kg	558	96	1,570	
Total Kjeldahl-N	11	43,767	28,372	77,673	
NH ₃ -N	†i	4,805	2,581	8,435	
Total P	97	23,465	16,833	36,339	
Ag	17	14	9	19	
Al	11	14,411	9,496	20,261	
As	57	7	3	10	41
Ba	77	465	326	600	
Be	**	< 0.06	< 0.06	< 0.06	*
Ca	78	43,232	25,956	55,457	
Cd	27	4	3	6	39
Cr	18	107	57	134	
Cu	81	400	249	478	1,500
Fe	17	28,909	14,157	39,496	
Hg	**	0.63	0.26	1.6	17
ĸ	34	3,071	1,584	5,362	
Mg	79	13,802	6,995	20,803	
Mn	11	721	493	1,271	
Mo	11	17	9	21	75
Na	11	1,086	668	3,572	
Ni	**	37	23	48	420
Pb	11	123	58	161	300
Sb	, H	3	1	4	
Se		6	2	9	100
Tl	"	<6	<6	<6	
Zn	. ,,	1,057	544	1,220	2,800

TABLE 2. CHEMICAL COMPOSITION OF CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE JOHN E. EGAN WRP IN 2003 AND APPLICABLE PART 503 EQ LIMITS

Parameter	Units	Mean	Min.	Max.	503 Limi
pН		8.4	7.8	8.7	the state of the s
Total Solids	%	24.8	21.8	29.9	
Total Volatile Solids	%	65.3	59.9	76.3	
Volatile Acids	mg/dry kg	${ m ND}^1$	ND	ND	
Total Kjeldahl-N	11	52,223	32,905	126,562	
NH ₃ -N	**	5,857	3,964	17,202	
Total P	**	24,211	12,685	60,440	
Ag	11	ND	ND	ND	
Al	**	9,572	7,705	10,968	
As	**	0.7	<1.0	4.1	41
Ba	**	ND	ND	ND	
Be	Ħ	ND	ND	ND	
Ca	11	34,103	29,877	37,985	
Cd	**	5	4	7	39
Cr	**	139	102	192	
Cu	**	816	727	896	1,500
Fe	**	ND	ND	ND	
Hg	11	0.80	0.37	1.3	17
K	11	2,046	1,542	2,538	
Mg		7,006	5,021	9,037	
Mn	"	606	442	805	
Mo	11	24	19	30	75
Na	11	1,122	692	2,928	
Ni	11	61	49	84	420
Pb	11	59	49	70	300
Sb	71	ND	ND	ND	
Se	## .	<1	<1	3	100
Tl	15	ND	ND	ND	
Zn	**	941	834	1,042	2,800

¹ ND=No data.

TABLE 3. CHEMICAL COMPOSITION OF CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE STICKNEY WRP IN 2003 AND APPLICABLE PART 503 EQ LIMITS

Parameter	Unit	Mean	Min.	Max.	503 Limi
pH		7.6	6.9	8.2	
Total Solids	%	24.2	16.2	31.8	
Total Volatile Solids	%	52.0	40.3	69.5	
Volatile Acids	mg/dry kg	558	276	1,099	
Total Kjeldhal-N		49,966	31,081	83,186	
NH_3 - N	11	7,331	2,555	17,441	
Total P	#	20,915	13,745	28,901	
Ag	11	ND^1	ND	ND	
Al	11	17,633	8,759	24,750	
As	tt	8	<1	12	41
Ba	11	ND	ND	ND	
Ве	11	ND	ND	ND	
Ca	*1	35,264	23,450	55,089	
Cd	11	4	2	5	39
Cr	11	272	134	422	
Cu		405	274	768	1,500
Fe	11	16,464	10,200	36,564	
Hg	11	0.72	0.26	1.5	17
K	**	2,829	1,405	4,233	
Mg	**	15,075	5,468	24,363	
Mn	Ħ	477	272	737	
Mo	11	17	12	25	75
Na	. "	1,153	475	2,122	
Ni	11	58	38	75	420
Pb	"	137	52	224	300
Sb	11	ND	ND	ND	
Se	11	2	<1	6	100
T1	11	ND	ND	ND	
Zn	**	806	580	1,196	2,800

¹ ND=No data.

TABLE 4. CHEMICAL COMPOSITION OF LAGOON-AGED, AIR-DRIED BIOSOLIDS COLLECTED FROM THE CALUMET WRP IN 2003 AND APPLICABLE PART 503 EQ LIMITS

Parameter	Units	Mean	Min.	Max.	503 Limit
pН		6.7	6.0	7.8	
Total Solids	%	67.3	60.9	79.1	
Total Volatile Solids	11	41.7	28.6	47.1	
Volatile Acids	mg/dry kg	263	113	597	
Total Kjeldahl-N	**	22,859	13,440	33,045	
NH ₃ -N	**	2,535	31	7,565	
NO ₂ +NO ₃ -N	f t	679	12	1,922	
Total P	11	22,826	13,159	32,058	
Al ·	***	19,205	10,637	26,289	
As	11	10	8	13	41
Ca	11	48,291	38,561	57,175	
Cd	11	8	6	13	39
Cr	11	224	94	372	
Cu	11	441	304	538	1,500
Fe	11	24,547	17,095	33,041	·
Hg	**	0.86	0.31	1.2	17
K	**	3,670	1,948	4,901	
Mg	**	17,989	14,944	21,779	
Mn	ŧŧ	632	544	744	
Mo	11	19	12	24	75
Na	71	1,238	548	1,664	
Ni	11	50	34	89	420
Pb	11	173	140	227	300
Se	11	10	3	20	100
Zn	11	1,399	1,009	1,874	2,800

TABLE 5. CHEMICAL COMPOSITION OF LAGOON-AGED, AIR-DRIED BIOSOLIDS COLLECTED FROM THE STICKNEY WRP IN 2003 AND APPLICABLE PART 503 EQ LIMITS

Parameter	Unit	Mean	Minimum	Maximum	503 Limit
pН		6.8	5.7	7.9	
Total Solids	%	69.8	55.1	90.3	
Total Volatile Solids	%	38.1	14.1	47.1	
Volatile Acids	mg/dry kg	119	64	224	
Total Kjeldhal-N	**	20,330	7,209	60,633	
NH ₃ -N	**	4,144	247	12,344	
NO ₃ +NO ₂ -N	17	544	16	2,812	
Total P	11	16,069	2,182	25,962	
Al	11	22,263	12,556	36,267	
As	11	7	0.5	15	41
Ca	**	44,214	36,097	55,670	
Cd	11	8	3	34	39.0
Cr	***	362	199	542	1,500
Cu	**	455	146	624	
Fe	11	20,396	16,470	26,100	
Hg	71	1.1	0.23	2.7	. 17
K	11	4,007	1,554	6,575	
Mg	**	20,005	317	26,414	
Mn	"	601	317	853	
Mo	"	18	5	28	75
Na	11	1,149	308	2,825	
Ni	***	63	43	89	420
Pb	**	176	126	266	300
Se	11	1	<1	5	100
Zn	11	1,065	569	1,505	2,800

TABLE 6. TCLP ANALYSIS¹ OF A COMPOSITE SAMPLE OF LAGOON-AGED, AIR-DRIED BIOSOLIDS COLLECTED FROM THE CALUMET WRP ON APRIL 14, 2003 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit
Flash Point, Open Cup	>180°F	<140°F
Paint Filter Test	NFL ²	NL^3
pH, 10 Percent Solution	6.80	2.1-12.4
Total Solids	84.0%	NL
Ash, Percent of Total Solids	61.0%	NL
	Total Concen	tration (mg/dry kg)
Extractable Halogens	<50.0	NL
Phenols	6.80	NL
Cyanide - Reactive	<1.30	NL
Sulfide - Reactive	<19.0	NL
Total PCB	1.62	NL
Inorganics		
Ag	25.0	NL
As	11.0	NL
Ba	480	NL
Cd	4.00	NL
Cr	83.0	NL
Hg	1.30	NL
Pb	140	NL
Se	14.0	NL
	TCLP ⁴ Extract (Concentration (mg/L)
<u>Inorganics</u>		
Ag	< 0.020	5.0
As	< 0.050	5.0
Ba	2.50	100.0
Cd	< 0.010	1.0
Cr	< 0.010	5.0
Hg	< 0.0002	0.2

TABLE 6 (Continued). TCLP ANALYSIS¹ OF A COMPOSITE SAMPLE OF LAGOON-AGED, AIR-DRIED BIOSOLIDS COLLECTED FROM THE CALUMET WRP ON APRIL 14, 2003 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit	
	TCLP ⁴ Extract Concentration (mg/		
Pb	<0.050	5.0	
Se	< 0.100	1.0	
Organo-chlorine Pesticides			
Chlordane	< 0.010	0.03	
Endrin	<0.002	0.02	
Heptachlor	< 0.001	0.008	
Heptachlor Epoxide	< 0.001	0.008	
Lindane	< 0.001	0.4	
Methoxychlor	< 0.010	10.0	
Toxaphene	<0.060	0.5	
Chlorinated Herbicides			
2,4-D	<0.010	10.0	
2,4,5-TP	<0.010	400.0	
Volatile Organic Compounds			
Benzene	< 0.100	0.5	
Carbon Tetrachloride	< 0.100	0.5	
Chlorobenzene	< 0.100	100.0	
Chloroform	< 0.100	6.0	
Methyl ethyl ketone	<1.000	200.0	
Tetrachloroethylene	< 0.100	0.5	
Trichloroethylene	<0.100	0.5	
Vinyl Chloride	< 0.100	0.2	
1,4-Dichlorobenzene	< 0.100	7.5	
1,2-Dichloroethane	< 0.100	0.5	
1,1-Dichloroethylene	< 0.100	0.7	

TABLE 6 (Continued). TCLP ANALYSIS¹ OF A COMPOSITE SAMPLE OF LAGOON-AGED, AIR-DRIED BIOSOLIDS COLLECTED FROM THE CALUMET WRP ON APRIL 14, 2003 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit
	TCLP ⁴ Extrac	et Concentration (mg/L)
Semi-Volatile Organic Compounds		
o-Cresol	< 0.050	200
m,p-Cresols	140	200
Hexachlorobenzene	< 0.050	0.13
Hexachloro-1,3-butadiene	< 0.050	0.13
Hexachloroethane	< 0.050	3.0
Nitrobenzene	< 0.050	2.0
Pentachlorophenol	< 0.250	100.0
Pyridine	< 0.400	5.0
2,4-Dinitrotoluene	< 0.050	0.13
2,4,5-Trichlorophenol	< 0.050	400.0
2,4,6-Trichlorophenol	< 0.050	2.0

All analyses were performed using EPA Method SW-846 and Standard Methods for the Examination of Water and Wastewater.

²NFL – No Free Liquid.

³NL=No limit.

⁴Toxicity Characteristic Leaching Procedure (TCLP).

TABLE 7. TCLP ANALYSIS¹ OF AIR-DRIED CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE JOHN E. EGAN WRP ON FEBRUARY 11, 2003 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit
Flash Point, Open Cup	>180°F	<140°F
Paint Filter Test	NFL^2	
pH, 10 Percent Solution	8.55	2.1-12.4
Total Solids	11.0%	NL
Ash, Percent of Total Solids		NL
	Total Concentra	ation (mg/dry kg)
Extractable Halogens	<180	NL
Phenois	59.0	N. Daniel
Cyanide - Reactive	<4.50	NL
Sulfide - Reactive	<68.0	NL
Total PCB	<0.077	NL
Inorganics		
Ag	50.0	NL
As	2.80	NL
Ba	440	NL
Cd	<4.50	NI
Cr	130	NL
Hg	2.00	NL
Pb	33.0	NL
Se	5.90	NL
	TCLP ³ Extract Co	ncentration (mg/L)
Inorganics	.0.000	<i>"</i> . ^
Ag	<0.020	5.0
As	< 0.050	5.0
Ba	2.40	100.0
Cd	<0.010	1.0
Cr	<0.010	5.0
Hg	< 0.010	0.2
Pb	< 0.050	5.0
Se	< 0.100	1.0

TABLE 7 (Continued). TCLP ANALYSIS¹ OF AIR-DRIED CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE JOHN E. EGAN WRP ON FEBRUARY 11, 2003 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit
	TCLP ³ Extract Co	ncentration (mg/L)
Organo-chlorine Pesticides		
Chlordane	< 0.010	0.03
Endrin	< 0.002	0.02
Heptachlor	< 0.001	0.008
Heptachlor Epoxide	< 0.001	0.008
Lindane	< 0.001	0.4
Methoxychlor	< 0.010	10.0
Toxaphene	<0.060	0.5
Chlorinated Herbicides		
2,4-D	< 0.010	10.0
2,4,5-TP	<0.010	400.0
Volatile Organic Compounds	-0.100	
Benzene	<0.100	0.5
Carbon Tetrachloride	<0.100	0.5
Chlorobenzene	<0.100	100.0
Chloroform	<0.100	6.0
Methyl ethyl ketone	<1.000	200.0
Tetrachloroethylene	< 0.100	0.5
Trichloroethylene	< 0.100	0.5
Vinyl Chloride	<0.100	0.2
1,4-Dichlorobenzene	< 0.100	7.5
1,2-Dichloroethane	< 0.100	0.5
1,1-Dichloroethylene	<0.100	0.7
Semi-Volatile Organic Compour	ıds	
o-Cresol	<0.050	200
m,p-Cresols	< 0.050	200
Hexachlorobenzene	<0.050	0.13

TABLE 7 (Continued). TCLP ANALYSIS¹ OF AIR-DRIED CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE JOHN E. EGAN WRP ON FEBRUARY 11, 2003 AND THE APPLICABLE PART 261 REGULATORY LIMIT

Parameter	Concentration	Regulatory Limit
	TCLP ³ Extract Co	oncentration (mg/L)
Hexachloro-1,3-butadiene	< 0.050	0.13
Hexachloroethane	< 0.050	3.0
Nitrobenzene	< 0.050	2.0
Pentachlorophenol	< 0.250	100.0
Pyridine	< 0.400	5.0
2,4-Dinitrotoluene	< 0.050	0.13
2,4,5-Trichlorophenol	< 0.050	400.0
2,4,6-Trichlorophenol	< 0.050	2.0

¹ All analyses were performed using EPA Method SW-846 and Standard Methods for the Examination of Water and Wastewater.

² NFL¹ – No Free Liquid

³ Toxicity Characteristic Leaching Procedure (TCLP).

TABLE 8. TCLP ANALYSIS¹ OF AIR-DRIED CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE STICKNEY WRP ON OCTOBER 4, 2004 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit
Flash Point, Open Cup	>180°F	<140°F
Paint Filter Test	NFL ²	2,02
pH, 10 Percent Solution	6.94	2.1-12.4
Total Solids	69.0%	NL
Ash, Percent of Total Solids	68.0%	NL
	Total Concentra	ation (mg/dry kg)
Extractable Halogens	<60.0	NL
Phenols	0.81	NL
Cyanide - Reactive	<1.50	NL
Sulfide - Reactive	120	NL
T-4-1 DCD		NL
Total PCB		
Inorganics		
Ag	28.0	NL
As	14.0	NL
Ba	360	NL
Cd	3.30	NL
Cr	240	NL
Hg	0.92	NL
Pb	160	NL
Se	4.2	NL
	TCLP ³ Extract Co	oncentration (mg/L)
Inorganics	•	
Ag	< 0.020	5.0
As	< 0.050	5.0
Ba	< 0.210	100.0
Cd	< 0.010	1.0
Cr	< 0.010	5.0
Hg	< 0.0002	0.2
Pb	< 0.050	5.0
Se	< 0.100	1.0

TABLE 8 (Continued). TCLP ANALYSIS¹ OF AIR-DRIED CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE STICKNEY WRP ON OCTOBER 4, 2004 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit
	TCI P ³ Extract Co	oncentration (mg/L)
Organo-chlorine Pesticides	TODI DAHATI CO	inounciation (ing 12)
Chlordane	< 0.025	0.03
Endrin	< 0.005	0.02
Heptachlor	< 0.0025	0.008
Heptachlor Epoxide	< 0.0025	0.008
Lindane	< 0.0025	0.4
Methoxychlor	< 0.025	10.0
Toxaphene	< 0.150	0.5
Chlorinated Herbicides		
2,4-D	< 0.100	10.0
2,4,5-TP	<0.100	400.0
Volatile Organic Compounds		
Benzene	< 0.100	0.5
Carbon Tetrachloride	<0.100	0.5
Chlorobenzene	< 0.100	100.0
Chloroform	<0.100	6.0
Methyl ethyl ketone	<1.000	200.0
Tetrachloroethylene	<0.100	0.5
Trichloroethylene	<0.100	0.5
Vinyl Chloride	< 0.100	0.2
1,4-Dichlorobenzene	< 0.100	7.5
1,2-Dichloroethane	< 0.100	0.5
1,1-Dichloroethylene	<0.100	0.7
Semi-Volatile Organic Compounds		
o-Cresol	< 0.050	200
m,p-Cresols	<0.050	200
Hexachlorobenzene	<0.050	0.13

TABLE 8 (Continued). TCLP ANALYSIS¹ OF AIR-DRIED CENTRIFUGE CAKE BIOSOLIDS COLLECTED FROM THE STICKNEY WRP ON OCTOBER 4, 2004 AND THE APPLICABLE PART 261 REGULATORY LIMITS

Parameter	Concentration	Regulatory Limit
	TCLP ³ Extract Co	oncentration (mg/L)
Hexachloro-1,3-butadiene		(· G –)
Hexachloroethane	< 0.050	0.13
Nitrobenzene	< 0.050	3.0
Pentachlorophenol	<0.250	2.0
Pyridine	< 0.400	100.0
2,4-Dinitrotoluene	< 0.050	5.0
2,4,5-Trichlorophenol	< 0.050	0.13
2,4,6-Trichlorophenol	< 0.050	400.0
1		2.0

¹ All analyses were performed using EPA, Method SW-846 and Standard Methods.
² NFL-No Free Liquid.
³ Toxicity Characteristic Leaching procedure (TCLP).

oped for intended future land uses, specifically residential or commercial/industrial. The most stringent objectives were developed for sites anticipated for residential redevelopment. The default objectives are risk-based and include the following human exposure routes: soil ingestion, dust inhalation, and leachability to potable groundwater. Because the TACO standards are based on a risk level of 10⁻⁶ with many worst-case assumptions built into the risk pathways, the default for Tier I residential property are extremely conservative.

The objectives of the TACO program are not directly applicable to biosolids. However, in 2000, the District conducted an evaluation of its biosolids to consider instances in which the TACO standards may be applicable to biosolids use in the remediation of brownfields. The TACO analyses for four biosolids samples and the corresponding TACO Tier 1 Residential objectives are presented in Tables 9 and 10. Total extract concentrations (Table 9) are used to evaluate the objectives for the soil exposure and dust inhalation routes for organic compounds and inorganic parameters and the groundwater route for organic compounds. The TCLP extract concentrations (Table 10) are used to evaluate the groundwater route for inorganic parameters. The data indicate that biosolids are very clean and meet nearly all of the Tier I residential objectives.

The data for the four biosolids samples show that most of the organic compounds are undetectable and that the concentrations of most of the detectable compounds are lower than the TACO Tier 1 residential limits. The concentrations of most of the inorganic parameters are also much lower than the TACO standards.

Topsoil Properties of Biosolids

Some of the lagoon-aged, air-dried biosolids from the Stickney and Calumet WRPs are used as topsoil substitutes or amendments. Information in this section may be helpful in planning the use of biosolids as a topsoil or soil conditioner. The District has conducted studies of biosolids physical properties. The results of these studies are available in Research and Development Department reports (Nos. 03-8 and 03-10).

Biosolids used as a soil conditioner or soil substitute also have a significant inherent fertilizer value, which can be determined from the information presented in this section. In 2000, the District conducted a study to determine chemical characteristics of its lagoon-aged, air-dried biosolids that are important in assessing the suitability of topsoil for establishing vegetation. The results from this study are presented in Table 11. The data show that biosolids are a good source of macro- and micro-nutrients. The electrical conductivity (a measure of soluble salt content) tends to be higher than the suitability range for some sensitive plant species. Biosolids users should be aware of this and should consult with soil science professionals in the Biosolids Utilization and Soil Science Section when planning the use of biosolids as a soil conditioner or topsoil substitute. These inquiries may be initiated by contacting Dr. Thomas Granato at 708-588-4116 or Dr. Albert Cox at 708-588-4054.

TABLE 9. TOTAL CONCENTRATIONS OF TACO TARGET ORGANIC COMPOUNDS AND INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE SOIL AND GROUNDWATER EXPOSURE ROUTES

		Biosolid	s Source		TACO Tier 1 Residential Objectives			
•	Stickney WRP		Calum	et WRP	Soil Expo	sure Route	Groundwater Exposure Route	
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Ingestion	Inhalation	Class I	Class II
				Total Conc	entration (mg/	kg)		
Organics								
DDD	< 0.00079	< 0.00079	< 0.00079	< 0.00077	3	NL ¹	16	80
DDE	0.07	0.036	0.036	< 0.00019	2	NL	54	270
DDT	< 0.00079	< 0.00079	< 0.00079	< 0.00077	2	NL	32	160
Alachlor	< 0.0098	< 0.0099	< 0.0099	< 0.0096	8	NL	0.04	0.2
Aldrin	< 0.00059	< 0.00059	< 0.0006	< 0.00058	0.04	3	0.5	2.5
alpha-HCH (alpha-BHC)	< 0.00039	< 0.00039	< 0.0004	< 0.00039	0.1	0.8	0.0005	0.003
Atrazine	< 0.0098	< 0.0099	< 0.0099	< 0.0096	2,700	NL	0.066	0.33
Chlordane	< 0.0024	< 0.0024	< 0.0024	< 0.0023	0.5	20	10	48
Dieldrin	< 0.00039	< 0.00039	< 0.0004	< 0.00039	0.04	1	0.004	0.02
Endosulfan		-	,		470	NL	18	90
Endosulfan I	< 0.00059	< 0.00059	< 0.0006	< 0.00058	·			
Endosulfan II	< 0.0022	< 0.0022	< 0.0022	< 0.0021		, 4-		
Endrin	< 0.00098	< 0.00099	< 0.00099	< 0.00096	23	NL	1	5
Gamma-HCH (Lindane)	< 0.00059	< 0.00059	< 0.0006	< 0.00058	0.5	NL	0.009	0.047
Heptachlor	< 0.0012	< 0.0012	< 0.0012	< 0.0012	0.1	0.1	23	110
Heptachlorepoxide	< 0.00039	< 0.00039	< 0.0004	< 0.00039	0.07	5 .	0.7	3.3
Methoxychlor	< 0.0055	< 0.0055	< 0.0056	< 0.0054	390	NL	160	780
Simazine	< 0.0098	< 0.0099	< 0.0099	< 0.0096	390	NL	0.04	0.37
Toxaphene	< 0.042	< 0.042	< 0.042	< 0.041	0.6	89	31	150
Polychlorinated biphenyls (PCBs)	Pril san		- -		1	NL	NL	NL
Aroclor 1016	< 0.0581	< 0.0582	< 0.0586	< 0.0569			***	

TABLE 9 (Continued). TOTAL CONCENTRATIONS OF TACO TARGET ORGANIC COMPOUNDS AND INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE SOIL AND GROUNDWATER EXPOSURE ROUTES

		Biosolid	s Source		•	TACO Tier 1 Re	sidential Objectiv	es
	Stickney WRP		Calum	et WRP	Soil Exp	osure Route	Groundwater Exposure Route	
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Ingestion	Inhalation	Class I	Class II
	40° due un die 40° due me die 10° due in die 10° due 1			Total Cond	centration (mg	/kg)		
Aroclor 1221	< 0.0492	< 0.0494	< 0.0497	< 0.0482				
Aroclor 1232	< 0.0585	< 0.0586	< 0.059	< 0.0573			***	
Aroclor 1242	< 0.0581	< 0.0582	< 0.0586	< 0.0569				
Aroclor 1248	0.458	0.488	0.512	1.06				
Aroclor 1254	< 0.0492	< 0.0494	< 0.0497	< 0.0482				
Aroclor 1260	0.212	0.295	0.671	0.439				
1,1,1-Trichloroethane	< 0.0011	< 0.0011	< 0.0011	< 0.0011	NL	1,200	2	9.6
1,1,2-Trichloroethane	< 0.0009	< 0.0009	< 0.0009	< 0.0009	310	1,800	0.02	0.3
1,1-Dichloroethane	< 0.0008	< 0.0008	< 0.0008	< 0.0008	7,800	1,300	23	110
1,1-Dichloroethene	< 0.0011	< 0.0011	< 0.0011	< 0.0011	700	1,500	0.06	0.3
1,2-Dibromo-3-	< 0.005	< 0.005	< 0.005	< 0.005	0.46	11	0.002	0.002
chloropropane								
1,2-Dibromoethane	< 0.0007	< 0.0007	< 0.0007	< 0.0007	0.0075	0.17	0.0004	0.004
1,2-Dichlorobenzene	< 0.0016	< 0.0016	< 0.0016	< 0.0016	7,000	560	17	43
1,2-Dichloroethane	< 0.0012	< 0.0012	< 0.0012	< 0.0012	7	0.4	0.02	0.1
1,2-Dichloropropane	< 0.0008	< 0.0008	< 0.0008	< 0.0008	9	15	0.03	0.15
1,4-Dichlorobenzene	< 0.001	< 0.001	< 0.001	< 0.001	NL	NL	2	11
1-Butanol	< 0.05	< 0.05	< 0.05	< 0.05	7,800	10,000	17	17
Acetone	< 0.03	< 0.03	< 0.03	< 0.03	7,800	100,000	16	16
Benzene	0.0016	< 0.0007	< 0.0007	< 0.0007	22	0.8	0.03	0.17
Bromodichloromethane	< 0.0007	< 0.0007	< 0.0007	< 0.0007	10	3,000	0.6	0.6
Bromoform	< 0.005	< 0.005	< 0.005	< 0.005	81	53	0.8	0.8

TABLE 9 (Continued). TOTAL CONCENTRATIONS OF TACO TARGET ORGANIC COMPOUNDS AND INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE SOIL AND GROUNDWATER EXPOSURE ROUTES

		Biosolid	s Source		Т	ACO Tier 1 Re	sidential Object	tives	
	Stickne	y WRP	Calum	et WRP	Soil Expo	sure Route	Groundwater	Groundwater Exposure Route	
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Ingestion	Inhalation	Class I	Class II	
	Total Concentration (mg/kg)								
Bromomethane	< 0.0014	< 0.0014	< 0.0014	< 0.0014	110	10	0.2	1.2	
Carbon disulfide	< 0.0012	< 0.0012	< 0.0012	< 0.0012	7,800	720	32	160	
Carbon tetrachloride	< 0.0017	< 0.0017	< 0.0017	< 0.0017	5	0.3	0.07	0.33	
Chlorobenzene	< 0.0012	< 0.0012	< 0.0012	< 0.0012	1,600	130	1	6.5	
Chloroform	< 0.0013	< 0.0013	< 0.0013	0.0074	100	0.3	0.6	2.9	
cis-1,2-Dichloroethene	< 0.0011	< 0.0011	< 0.0011	< 0.0011	780	1,200	0.4	1.1	
1,3-dichloropropene					4	0.1	0.004	0.02	
cis-	< 0.0007	< 0.0007	< 0.0007	< 0.0007					
trans-	< 0.0006	< 0.0006	< 0.0006	< 0.0006					
Dibromochloromethane	< 0.0012	< 0.0012	< 0.0012	< 0.0012	1,600	1,300	0.4	0.4	
Ethylbenzene	< 0.0014	< 0.0014	< 0.0014	< 0.0014	7,800	400	13	19	
m-Xylene	< 0.0024	< 0.0024	< 0.0024	< 0.0024	160,000	420	210	210	
p-Xylene	< 0.0024	< 0.0024	< 0.0024	< 0.0024	160,000	460	200	200	
Methylene chloride	< 0.0027	< 0.0027	< 0.0027	0.0179	85	13	0.02	0.2	
o-Xylene	< 0.005	< 0.005	< 0.005	< 0.005	160,000	410	190	190	
Styrene	0.0011	< 0.0011	< 0.0011	< 0.0011	16,000	1,500	4	18	
Tetrachloroethene	< 0.0016	< 0.0016	< 0.0016	< 0.0016	12	11	0.06	0.3	
Toluene	0.0062	0.0183	0.0055	< 0.0016	16,000	650	12	29	
trans-1,2-Dichloroethene	< 0.0011	< 0.0011	< 0.0011	< 0.0011	1,600	3,100	0.7	3.4	
Trichloroethene	< 0.001	< 0.001	< 0.001	< 0.001	58	5	0.06	0.3	
Vinyl acetate	< 0.01	< 0.01	< 0.01	< 0.01	78,000	1,000	170	170	
Vinyl chloride	< 0.0013	< 0.0013	< 0.0013	< 0.0013	0.3	0.03	0.01	0.07	

TABLE 9 (Continued). TOTAL CONCENTRATIONS OF TACO TARGET ORGANIC COMPOUNDS AND INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE SOIL AND GROUNDWATER EXPOSURE ROUTES

		Biosolid	s Source		T	ACO Tier 1 Re	esidential Objec	tives
	Stickney WRP		Calum	Calumet WRP Soil Expe		sure Route	Groundwater	Exposure Route
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Ingestion	Inhalation	Class I	Class II
				Total Con	centration (mg/	kg)		
Xylenes, Total	< 0.005	< 0.005	< 0.005	< 0.005	160,000	410	150	150
1,2,4-Trichlorobenzene	< 0.74	< 0.67	< 0.84	< 0.45	780	3,200	5	53
2,4,5-Trichlorophenol	< 0.62	< 0.55	< 0.69	< 0.37	7,800	NL	270	1,400
2,4,6-Trichlorophenol	< 0.44	< 0.39	< 0.49	< 0.27	58	200	0.2	0.77
2,4-Dichlorophenol	< 0.67	< 0.6	< 0.76	< 0.41	230	NL	1	1
2,4-Dimethylphenol	< 0.33	< 0.3	< 0.37	< 0.2	1,600	NL	9	9
2,4-Dinitrophenol	<1.1	< 0.97	<1.2	< 0.65	160	NL	0.2	0.2
2,4-Dinitrotoluene	< 0.38	< 0.34	< 0.42	< 0.23	0.9	NL	0.0008	0.0008
2,6-Dinitrotoluene	< 0.3	< 0.26	< 0.33	< 0.18	0.9	NL	0.0007	0.0007
2-Chlorophenol	< 0.55	< 0.49	< 0.62	< 0.33	390	53,000	4	4
3,3'-Dichlorobenzidine	<1.6	<1.4	<1.8	< 0.97	1	NL	0.007	0.033
4-Chloroaniline	< 0.33	< 0.29	1.3	1.2	310	NL	0.7	0.7
Acenaphthene	< 0.56	0.66	< 0.63	< 0.34	4,700	NL	570	2,900
Anthracene	1.2	1.4	1.2	0.9	23,000	NL	12,000	59,000
Benz(a)anthracene	1.7	1.4	2.7	2.4	0.9	NL	2	8
Benzo(a)pyrene	1.5	1.6	4	3.6	0.09	NL	8	82
Benzo(b)fluoranthene	< 0.78	< 0.7	< 0.87	< 0.47	0.9	NL	5	25
Benzo(k)fluoranthene	< 0.78	< 0.7	< 0.87	< 0.47	9	NL	49	250
Benzoic acid	<6.8	<6.1	<7.7	<4.1	310,000	NL	400	400
Bis(2-chloroethyl)ether	< 0.71	< 0.64	< 0.8	< 0.43	0.6	0.2	0.0004	0.0004
Bis(2-	54	58	55	29	46	31,000	3,600	31,000
ethylhexyl)phthalate								

TABLE 9 (Continued). TOTAL CONCENTRATIONS OF TACO TARGET ORGANIC COMPOUNDS AND INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE SOIL AND GROUNDWATER EXPOSURE ROUTES

		Biosolid	s Source			TACO Tier 1 Residential Objectives				
	Stickney WRP		Calum	Calumet WRP		Soil Exposure Route		er Exposure Route		
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Ingestion	Inhalation	Class I	Class II		
	***********			Total Con	centration (mg	/kg)				
Butyl benzyl phthalate	< 0.45	<0.4	< 0.51	<0.27	16,000	930	930	930		
Carbazole	< 0.53	< 0.47	< 0.59	< 0.32	32	NL	0.6	2.8		
Chrysene	1.9	2.1	3.4	3	88	NL	160	800		
Di-n-butyl phthalate	< 0.61	< 0.55	< 0.69	< 0.37	7,800	2,300	2,300	2,300		
Di-n-octyl phthalate	4	< 0.31	< 0.39	< 0.21	1,600	10,000	10,000	10,000		
Dibenzo(a,h)anthracene	< 0.47	< 0.42	< 0.53	< 0.29	0.09	NL	2.0	7.6		
Diethyl phthalate	< 0.42	< 0.38	< 0.47	< 0.25	63,000	2,000	470	470		
Fluoranthene	3.8	4	3.5	2.8	3,100	NL	4,300	21,000		
Fluorene	0.55	0.79	< 0.45	< 0.24	3,100	NL	560	2,800		
Hexachlorobenzene	< 0.32	< 0.29	< 0.36	< 0.19	0.4	1	2.0	11		
Hexachlorocyclopentadi- ene	< 0.86	<0.77	< 0.96	< 0.52	550	. 10	400	2,200		
Hexachloroethane	< 0.75	< 0.67	< 0.84	< 0.45	78	NL	0.5	2.6		
Indeno(1,2,3-cd)pyrene	< 0.44	0.48	1	0.76	0.9	NL	14	69		
Isophorone	< 0.57	< 0.52	< 0.65	< 0.35	15,600	4,600	8	8		
N-Nitrosodi-n- propylamine	< 0.92	< 0.83	<1	< 0.56	0.09	NL		0.00005		
N-Nitrosodiphenylamine	<1.1	<1	<1.3	< 0.67	130	NL	1	5.6		
Naphthalene	< 0.6	1.4	< 0.67	0.46	3,100	NL	84	420		
Nitrobenzene	< 0.58	< 0.52	< 0.65	< 0.35	39	92	0.1	0.1		
o-Cresol	< 0.87	< 0.78	< 0.98	< 0.53	3,900	NL *	15	15		
Pentachlorophenol	< 0.9	<0.8	<1	< 0.54	3	NL	0.03	0.14		

TABLE 9 (Continued). TOTAL CONCENTRATIONS OF TACO TARGET ORGANIC COMPOUNDS AND INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE SOIL AND GROUNDWATER EXPOSURE ROUTES

		Biosolio	ds Source		П	TACO Tier 1 Residential Objectives			
	Stickney WRP		Calum	et WRP	Soil Expo	osure Route	Groundwate	r Exposure Route	
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Ingestion	Inhalation	Class I	Class II	
— 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mr 400 M4 GD GD GD GD DV DV DV DV DV DV DV DV DV			Total Con	centration (mg/	'kg)		************	
Phenol	15	2.4	< 0.62	< 0.33	47,000	NL	100	100	
Pyrene	4.2	4.8	4.2	3.9	2,300	NL	4,200	21,000	
Aldicarb	< 0.025	< 0.025	< 0.025	< 0.025	78	NL	0.013	0.07	
Carbofuran	< 0.035	< 0.035	< 0.035	< 0.035	390	NL	0.22	1.1	
2,4,5-TP (Silvex)	<1.3	<1.5	<1.5	<1.3	630	NL	11	55	
2,4-D	<1.3	<1.5	<1.5	<1.6	780	NL	1.5	7.7	
Dalapon	<90	<100	<100	<90	2,300	NL	0.85	8.5	
Picloram	< 0.8	< 0.9	< 0.9	< 0.8	5,500	NL	2	20	
Endothal	280	<5	<3.1	<5	1,600	NL	0.4	0.4	
Dinoseb	<1	<0.5	<1	<1	78	NL	0.34	3.4	
Inorganics ²						•			
Antimony	125	94.4	185	132	31	NL			
Arsenic	6.72	7.1	8.1	6.8	13	750			
Barium	225	215	334	192	5,500	690,000			
Beryllium	0.301	0.248	0.338	0.305	0.1	1,300			
Boron	<36.3	<36.3	<36.6	<35.9	7,000	NL			
Cadmium	4.47	4.56	8.00	9.66	78	1,800			
Chloride	188	195	196	74	NL	NL			
Chromium	206	198	105	94.8	390	270			
Chromium ion, trivalent	204	1 97	104	93.8	78,000	NL			

TABLE 9 (Continued). TOTAL CONCENTRATIONS OF TACO TARGET ORGANIC COMPOUNDS AND INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE SOIL AND GROUNDWATER EXPOSURE ROUTES

• .		Biosolio	ds Source		Т	TACO Tier 1 Residential Objectives			
• . •	Stickney WRP		Calun	Calumet WRP		Soil Exposure Route		Groundwater Exposure Route	
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Ingestion	Inhalation	Class I	Class II	
			* ** ** ** ** ** ** ** ** ** ** ** ** *	Total Con	centration (mg/l	kg)	***************************************		
Chromium ion, hexavalent	<2.5	<1	<1	<1	390	270			
Cobalt	6.18	4.85	6.41	4.85	4,700	NL			
Copper	289	292	251	144	2,900	NL			
Cyanide	11	4	4	5	1,600	NL			
Fluoride	<5	<5	<5	<5	4,700	NL			
Iron	13,500	12,700	32,500	17,300	NL	NL			
Lead	125	109	122	97.2	400	NL			
Manganese	422	355	570	261	3,700	69,000			
Mercury	1.42	1.72	1.11	0.882	23	10			
Nickel	33.1	34.8	26.7	21.6	1,600	13,000			
Nitrate-N	82	<20	255	263	130,000	NL			
Selenium	<33.5	10.6	20	13.9	390	NL			
Silver	23	25.9	19.2	9.7	390	NL			
Sulfate	6,160	6,630	4,850	3,800	NL	NL			
Thallium	0.284	0.26	0.41	0.375	6.3	NL			
Vanadium	11.5	10.1	19.2	21.6	550	NL			
Zinc	784	622	1,020	697	23,000	NL			

¹ NL=No limit.

² Objectives for groundwater exposure route for inorganics are based on TCLP concentrations.

TABLE 10. TCLP¹-EXTRACT CONCENTRATIONS OF TACO TARGET INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE GROUNDWATER EXPOSURE ROUTE

		Biosolic	TACO Tier 1 Resid	TACO Tier 1 Residential Objectives			
	Stickno	y WRP	Calum	et WRP	Groundwater Exposure Route		
Parameter	Sample 1	Sample 2	Sample 1	Sample 2	Class I	Class II	
	COS NOT TOO TOO TOO TOO TOO TOO TOO TOO TOO	THE CONTROL OF THE SEC	/L)				
Antimony	0.025	0.024	< 0.009	< 0.009	0.006	0.024	
Arsenic	0.09	0.098	0.065	< 0.05	0.05	0.2	
Barium	0.103	0.085	0.032	0.022	2.0	2.0	
Beryllium	< 0.007	< 0.007	< 0.007	< 0.007	0.004	0.5	
Boron	<2	<2	<2	<2	2.0	2.0	
Cadmium	0.007	0.007	0.009	0.016	0.005	0.05	
Chloride	15.6	15.4	15.6	8.2	200	200	
Chromium	< 0.042	< 0.042	< 0.042	< 0.042	0.1	1.0	
Chromium ion, trivalent	< 0.04	< 0.04	< 0.04	< 0.04	NL^2	NL	
Chromium ion, hexavalent	< 0.5	< 0.25	< 0.1	< 0.1	NL	NL	
Cobalt	< 0.136	< 0.136	< 0.136	< 0.136	1.0	1.0	
Copper	0.503	0.157	< 0.087	< 0.087	0.65	0.65	
Cyanide	< 0.05	< 0.05	< 0.05	< 0.05	0.2	0.6	
Fluoride	< 0.5	< 0.5	< 0.5	< 0.5	4.0	4.0	
Iron	1.23	0.316	0.394	0.334	5.0	5.0	
Lead	0.025	< 0.002	0.006	< 0.004	0.0075	0.1	
Manganese	1.69	1.69	2.87	1.59	0.15	10.0	
Mercury	< 0.015	< 0.015	< 0.015	< 0.015	0.002	0.01	
Nickel	< 0.153	< 0.153	< 0.153	< 0.153	0.1	2.0	
Nitrate-N	6.39	3.6	13	12.6	10.0	100	

TABLE 10 (Continued). TCLP¹-EXTRACT CONCENTRATIONS OF TACO TARGET INORGANIC PARAMETERS IN FOUR AIR-DRIED BIOSOLIDS SAMPLES COLLECTED IN 2000 AND THEIR CORRESPONDING TACO TIER 1 RESIDENTIAL OBJECTIVES FOR THE GROUNDWATER EXPOSURE ROUTE

Parameter		TACO Tier 1 Residential Objectives								
	Stickney WRP		Calumet WRP		Groundwater Exposure Route					
	Sample 1	Sample 2	Sample 1	Sample 2	Class I	Class II				
		TCLP-extract Concentration (mg/L)								
Selenium	0.009	<0.008	0.015	0.008	0.05	0.05				
Silver	< 0.062	< 0.062	< 0.062	< 0.062	0.05	NL				
Sulfate	322	361	257	188	400	400				
Thallium	< 0.005	< 0.005	< 0.005	< 0.005	0.002	0.02				
Vanadium	< 0.165	< 0.165	< 0.165	< 0.165	0.049	NL				
Zinc	0.82	0.581	1.37	1.39	5.0	10				

¹ TCLP = Toxcity characteristic leaching procedure.
² NL=No Limit.

TABLE 11. TOPSOIL CHEMICAL PROPERTIES OF FIVE BIOSOLIDS SAMPLES FROM CALUMET WRP AND FOUR SAMPLES FROM STICKNEY WRP COLLECTED IN 2000

Analysis	Units	Minimum	Maximum	Mean
Cation Exchange Capacity	cmol/kg	56.1	84.4	73.4
EC^1	dS/m	2.31	8.29	4.54
pH^1		5.94	7.18	6.58
Organic Carbon	%	8.4	14.6	11.9
Bray P1 Extractable P	mg/kg	252	523	407
Total Kjeldahl-N	mg/kg	13,655	28,228	20,554
1 M KCl-Extractable				
NH ₃ -N	mg/kg	28	3,547	1,776
NO ₃ -N	"	134	458	144
1 M NH ₄ OAc Exchangeable I	Bases			
Ca	mg/kg	3,691	8,417	5,649
K	"	366	980	787
Mg	66	862	1,969	1,528
Na	"	81	573	320
DTPA-Extractable				
Cd	mg/kg	3.2	8.6	4.8
Cr	44	0.0	0.6	0.1
Cu	"	6.7	126	50.5
Fe	44	4.9	275	114
Mn	44	27	131	65
Ni	44	5.1	23.0	14.0
Pb	44	11	36	17
Zn	46	150	1,049	485
Hot Water Extractable B	mg/kg	4.56	7.14	5.83
0.1 M HCl-Extractable				
Cd	mg/kg	0.08	0.41	0.24
Cr	"	0.27	1.73	0.80
Cu	. 66	1.3	5.1	2.4
Fe	66	35.6	120	67.5
Mn	"	8.4	13.9	11.0
Ni	"	0.40	1.08	0.66

TABLE 11 (Continued). TOPSOIL CHEMICAL PROPERTIES OF FIVE BIOSOLIDS SAMPLES FROM CALUMET WRP AND FOUR SAMPLES FROM STICKNEY WRP **COLLECTED IN 2000**

Analysis	Units	Minimum	Maximum	Mean
Pb	66	0.06	0.84	0.32
Zn	46	20	42	31
Saturation Paste Extractable				
Saturation moisture	%	118	217	159
Alkalinity (as CaCO ₃)	mg/L	300	2,745	1,527
В	"	0.31	0.51	0.38
Cl Cl	"	15	2,865	895
PO ₄ -P	"	1.6	6.3	3.7

¹ Electrical conductivity (EC) and pH in 1:2 air-dried biosolids:water ratio.
² Standard soil test method used in Illinois to determine plant available P content of soils.