

Metropolitan Water Reclamation District of Greater Chicago

RESEARCH AND DEVELOPMENT DEPARTMENT

REPORT NO. 2000-8

BIOLOGICAL CONDITIONS IN THE

DES PLAINES RIVER

DURING 1992 AND 1993

Chicago, IL 60611-2803

(312) 751-5600

BIOLOGICAL CONDITIONS IN THE DES PLAINES RIVER DURING 1992 AND 1993

 $\mathbf{B}\mathbf{y}$

Samuel G. Dennison Biologist III

Irwin Polls Microbiologist IV

Richard Gore Microbiologist II

James T. Zmuda Microbiologist IV

Bernard Sawyer Coordinator of Research

Prakasam Tata
Assistant Director of Research and Development
Environmental Monitoring and Research Division

Research and Development Department Richard Lanyon, Director

April 2000

TABLE OF CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	x
ACKNOWLEDGMENTS	xi
DISCLAIMER	xi
EXECUTIVE SUMMARY	xii
Des Plaines River Water Quality	xii
Bacteria	xii
Benthic Invertebrates	xiv
Fish	xv
INTRODUCTION	1
Study Area	3
Biological Samples	3
Bacteria	3
Benthic Invertebrates	5
Fish	6
METHODS AND MATERIALS	8
Bacteria	8
Sample Collection	8
Sample Analysis	8
Benthic Invertebrates	9
Fish	14
Sample Collection	14
Sample Analysis	14

TABLE OF CONTENTS (Continued)

	Page
Index of Biotic Integrity	15
Chemical Analysis and Bluegill Toxicity Indices	16
RESULTS	24
Bacteria	24
Benthic Invertebrates	26
Lake-Cook Road	35
Oakton Street	35
Belmont Avenue	36
Roosevelt Road	36
Ogden Avenue	37
Willow Springs Road	37
Stephen Street	38
Fish	38
Abundance And Species Composition	38
Lake-Cook Road	47
Oakton Street	47
Belmont Avenue	48
Roosevelt Road	48
Ogden Avenue	48
Willow Springs Road	48
Stephen Street	49
Index Of Biotic Integrity	49

TABLE OF CONTENTS (Continued)

	Page
Bluegill Toxicity Index	49
DISCUSSION	53
Bacteria	53
Benthic Invertebrates	54
Fish	57
REFERENCES	62
APPENDÍX AI	AI-1
Bacterial Indicator Densities for the Des Plaines River During 1992 and 1993	
APPENDIX AII	AII-1
Benthic Invertebrates in the Des Plaines River During 1992 and 1993	
APPENDIX AIII	AIII-1
Fish Catch Statistics for the Des Plaines River During 1992 and 1993	
APPENDIX AIV	AIV-1
Index of Biotic Integrity for Fish Col- lections from the Des Plaines River Dur- ing 1992 and 1993	
APPENDIX AV	AV-1
Bluegill Toxicity Index for Water Samples from the Des Plaines River Taken at the Time of Fish Collections During 1992 and 1993	

LIST OF TABLES

Table No.		Page
1	Waterways Monitored During the Ecosystem- atic Study	2
2	Results of Colony Confirmation Tests for the Ecosystematic Study during the Period April 1992 through October 1993	10
3	Description of Benthic Invertebrate Sam- pling Sites in the Des Plaines River	11
4	Calculation of the Index of Biotic Integrity (IBI) for Station Number 1 at Lake Cook Road on the Des Plaines River on August 11, 1993	17
5	Calculation of the Bluegill Toxicity Index (BTI) for a Water Sample from the Des Plaines River at Station Number 1, Lake-Cook Road, Wheeling, Illinois, August 11, 1993	19
6	96 Hour LC_{50} (Concentration of Toxicant Which is Lethal to 50 Percent of the Test Fish in 96 Hours) for Each Water Quality Constituent Included in the Calculation of the Bluegill Toxicity Index	20
7	Classification of Stream Water Toxicity to Fish Based on the Bluegill Toxicity Index (BTI)	23
8	Geometric Means of Bacterial Densities in the Des Plaines River for the Period April 1992 through October 1993	25
9	Benthic Invertebrates Collected from the	27

Table No.		Page
10	Average Number of Benthic Invertebrate Organisms Per Square Meter Collected from the Des Plaines River During 1992 and 1993, and the Percentage (in Parentheses) that Each Taxonomic Group Represented of the Total Number of All Taxa, at Each of Seven Stations and for All Stations Combined	32
11	Common and Scientific Names of the Fishes Collected in the Des Plaines River During 1992 and 1993	39
12	Total Number of Each Fish Species Collected During 1992 and 1993, and the Percentage (in Parentheses) that Each Species Represented of the Total Number of All Fishes, at Each of Seven Stations on the Des Plaines River and for All Stations Combined	41
13	Stream Quality Descriptions Based on the Average Index of Biotic Integrity (IBI) for the Des Plaines River During 1992 and 1993	50
14	Water Quality Descriptions Based on the Average Bluegill Toxicity Index (BTI) for the Des Plaines River During 1992 and 1993	51
15	Characteristics of the Benthic Inverte- brate Communities at Seven Sampling Sta- tions on the Des Plaines River During 1992 and 1993	56
16	Fish Community Characteristics for Sampling Stations in the Des Plaines River, 1992 and 1993	58

Table No.		Page
AI-1	Bacterial Indicator Densities for the Des Plaines River at Lake-Cook Road During 1992 and 1993	AI-1
AI-2	Bacterial Indicator Densities for the Des Plaines River at Oakton Street During 1992 and 1993	AI-2
AI-3	Bacterial Indicator Densities for the Des Plaines River at Belmont Avenue During 1992 and 1993	AI-3
AI-4	Bacterial Indicator Densities for the Des Plaines River at Roosevelt Road During 1992 and 1993	AI-4
AI-5	Bacterial Indicator Densities for the Des Plaines River at Ogden Avenue During 1992 and 1993	AI-5
AI-6	Bacterial Indicator Densities for the Des Plaines River at Willow Springs Road Dur- ing 1992 and 1993	AI-6
AI-7	Bacterial Indicator Densities for the Des Plaines River at Stephen Street During 1992 and 1993	AI-7
AII-1	Number of Benthic Invertebrates in the Des Plaines River at Lake-Cook Road Dur- ing 1992 and 1993	AII-1
AII-2	Number of Benthic Invertebrates in the Des Plaines River at Oakton Street During 1992 and 1993	AII-5
AII-3	Number of Benthic Invertebrates in the Des Plaines River at Belmont Avenue Dur- ing 1992 and 1993	8-IIA

Table No.		Page
AII-4	Number of Benthic Invertebrates in the Des Plaines River at Roosevelt Road Dur- ing 1992 and 1993	AII-12
AII-5	Number of Benthic Invertebrates in the Des Plaines River at Ogden Avenue During 1992 and 1993	AII-16
AII-6	Number of Benthic Invertebrates in the Des Plaines River at Willow Springs Road During 1992 and 1993	AII-21
AII-7	Number of Benthic Invertebrates in the Des Plaines River at Stephen Street During 1992 and 1993	AII-24
	Fish Catch Statistics for Electrofishing and Minnow Seine Collections at Lake-Cook Road, Des Plaines River, During 1992 and 1993	AIII-1
AIII-2	Fish Catch Statistics for Electrofishing and Minnow Seine Collections at Oakton Street, Des Plaines River, During 1992 and 1993	AIII-4
AIII-3	Fish Catch Statistics for Electrofishing and Minnow Seine Collections at Belmont Avenue, Des Plaines River, During 1992 and 1993	AIII-8
AIII-4	Fish Catch Statistics for Electrofishing and Minnow Seine Collections at Roosevelt Road, Des Plaines River, During 1992 and 1993	AIII-11

Table No.		Page
AIII-5	Fish Catch Statistics for Electrofishing and Minnow Seine Collections at Ogden Avenue, Des Plaines River, During 1992 and 1993	AIII-14
AIII-6	Fish Catch Statistics for Electrofishing and Minnow Seine Collections at Willow Springs Road, Des Plaines River, During 1992 and 1993	AIII-17
AIII-7	Fish Catch Statistics for Electrofishing and Minnow Seine Collections at Stephen Street, Des Plaines River, During 1992 and 1993	AIII-21
AIV-1	Calculation of the Index of Biotic Integrity (IBI) for Lake-Cook Road on the Des Plaines River During 1992 and 1993	AIV-1
AIV-2	Calculation of the Index of Biotic In- tegrity (IBI) for Oakton Street on the Des Plaines River During 1992 and 1993	AIV-2
AIV-3	Calculation of the Index of Biotic Integrity (IBI) for Belmont Avenue on the Des Plaines River During 1992 and 1993	AIV-3
AIV-4	Calculation of the Index of Biotic Integrity (IBI) for Roosevelt Road on the Des Plaines River During 1992 and 1993	AIV-4
AIV-5	Calculation of the Index of Biotic Integrity (IBI) for Ogden Avenue on the Des Plaines River During 1992 and 1993	AIV-6
AIV-6	Calculation of the Index of Biotic Integrity (IBI) for Willow Springs Road on the Des Plaines River During 1992 and 1993	AIV-7

Table No.		Page
AIV-7	Calculation of the Index of Biotic Integrity (IBI) for Stephen Street, on the Des Plaines River During 1992 and 1993	AIV-9
AV-1	Water Quality Constituents and Bluegill Toxicity Indices (BTIs) for Lake-Cook Road on the Des Plaines River During 1992 and 1993	AV-1
AV-2	Water Quality Constituents and Bluegill Toxicity Indices (BTIs) for Oakton Street on the Des Plaines River During 1992 and 1993	AV-2
AV-3	Water Quality Constituents and Bluegill Toxicity Indices (BTIs) for Belmont Ave- nue on the Des Plaines River During 1992 and 1993	AV-3
AV-4	Water Quality Constituents and Bluegill Toxicity Indices (BTIs) for Roosevelt Road on the Des Plaines River During 1992 and 1993	AV-4
AV-5	Water Quality Constituents and Bluegill Toxicity Indices (BTIs) for Ogden Avenue on the Des Plaines River During 1992 and 1993	AV-5
AV-6	Water Quality Constituents and Bluegill Toxicity Indices (BTIs) for Willow Springs Road on the Des Plaines River During 1992 and 1993	AV-6
AV-7	Water Quality Constituents and Bluegill Toxicity Indices (BTIs) for Stephen Street on the Des Plaines River During 1992 and 1993	AV-7

LIST OF FIGURES

Figure No.		Page
1	Summary of Biological Sampling Results from the Ecosystematic Study of the Des Plaines River in Cook County, Illinois During 1992 and 1993	xiii
2	Map of Major Facilities, Service Areas, and Biological Sample Stations During the 1992 - 1993 Ecosystematic Study	4

ACKNOWLEDGMENTS

The authors wish to thank the laboratory technicians and laboratory assistants who assisted with the collection and analyses of samples and with the subsequent data analyses. These personnel include the following: Dennis Burns, Anthony Halaska, Mary Lynn Hartford, Maria Kaplan, Damrong Mangkorn, James Papanikolau, Richard Schackart, Michael Sopcak, Sheril Sullivan, Gary Whyte, and Marguerite Yates.

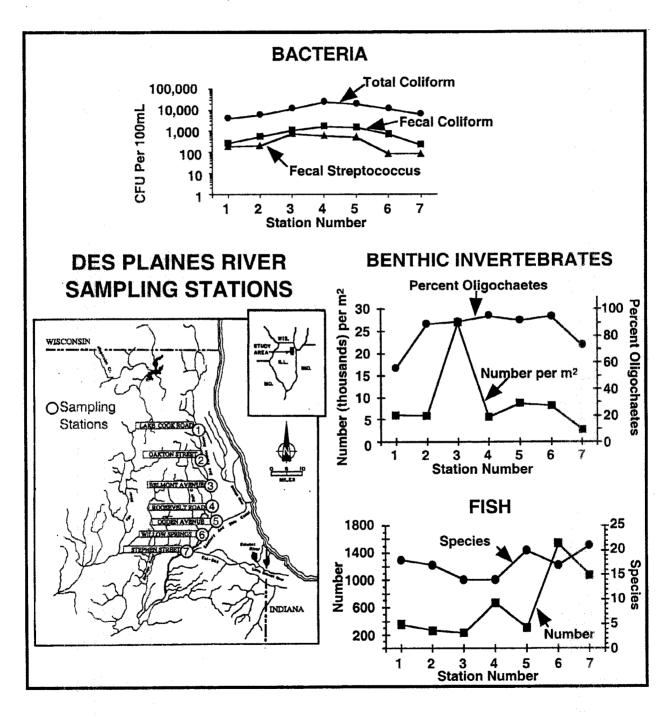
DISCLAIMER

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

EXECUTIVE SUMMARY

The Des Plaines River within Cook County, Illinois was studied during 1992 and 1993. The studies were designed to determine the water quality within the system by examining populations of the indigenous biota, including selected bacterial indicators, benthic invertebrates, and fish. The Des Plaines River must meet the General Use Water Quality Standards of the State of Illinois for fecal coliform bacteria (Title 35: Subtitle C: Chapter I: Part 302 B: § 302.209 Fecal Coliform). Although there are no biological criteria for benthic invertebrates or fish, the General Use water quality standards protect aquatic life in the Des Plaines River.

A summary of the major results of the biological samplings are shown in Figure 1.


Des Plaines River Water Quality

BACTERIA

Geometric mean densities of total and fecal coliform bacteria, and fecal streptococci indicated that the water quality of the Des Plaines River varied little among the seven sampling stations (Figure 1). There was some indication that

FIGURE 1

SUMMARY OF BIOLOGICAL SAMPLING RESULTS FROM THE ECOSYSTEMATIC STUDY OF THE DES PLAINES RIVER IN COOK COUNTY, ILLINOIS DURING 1992 AND 1993

water quality was best at Lake-Cook Road and at Stephen Street, the most upstream and downstream stations, respectively, in the Des Plaines River as it flows through Cook County. The observed greater mean densities of indicator bacteria at the Roosevelt Road and Ogden Avenue stations may be attributable to flow from Silver Creek, the Salt Creek flood control structures, combined sewer overflows, and flow from Salt Creek, which transports treated wastewater from water reclamation plants in Cook and DuPage Counties.

BENTHIC INVERTEBRATES

A benthic community composed almost entirely of aquatic worms (less diversity) denotes organic/nutrient enrichment and sedimentation, and a subsequent reduction in the self-purification process. Benthic invertebrate data from the Des Plaines River indicate that water quality was best at the Lake-Cook Road station. These data also indicated that the Stephen Street station had recovered from organic/nutrient enrichment. Oligochaete worms dominated the benthic community at Oakton, Belmont, Roosevelt, Ogden, and Willow Springs, comprising more than 88 percent of the fauna. However, densities of benthic invertebrates less than 15,000/m², as found at these stations, are indicative of mild rather than severe nutrient/organic enrichment. The stations at Lake-Cook Road and

Stephen Street had a relatively low percentage of pollution tolerant oligochaete worms, 55.7 and 73.0 percent, respectively. The benthic invertebrate communities at these two stations were not dominated by oligochaetes, but were composed of other intolerant benthic organisms, midges and caddis fly larvae, suggesting a more balanced benthic community structure.

FISH

The Indices of Biotic Integrity (IBIs) calculated from the data collected for this study indicated that the Des Plaines River in Cook County is a Class D stream with fair stream quality. This reach is classified as a limited aquatic resource. The IBI classes are explained in the report on page 14. Average IBI scores ranged from 25 to 30. As differences among IBI scores of 10 percent or less are considered to be not significant, there was not much difference in stream quality among the seven Des Plaines River sample stations.

However, the fish collection data did suggest that water and sediment quality were better at Lake-Cook Road than at the six downstream monitoring stations. Of the 30 fish species collected from the Des Plaines River during 1999, five are classified as intolerant of siltation or environmental degradation, and nine fish species are classified as being to

of environmental conditions. The remaining 16 fish species are considered to be of intermediate tolerance to environmental degradation. Fish species tolerant of environmental degradation increased in percent composition from 23.2 percent at Lake-Cook Road (location where the Des Plaines River flows into Cook County from Lake County) to 87.9 percent at Stephen Street in Lemont (location where the Des Plaines River flows into Will County from Cook County). Conversely, those species intolerant of siltation and environmental degradation decreased in percent composition with 47.3 percent intolerant at Lake-Cook Road and 1.2 percent at Stephen Street. Environmental conditions affecting the diversity of the fish population have improved towards the end of the study reach since more fish species were collected at the Stephen Street station than at any other monitoring station (Figure 1).

Chemical analyses of water showed that relatively good water quality occurred at each Des Plaines River monitoring station, such that a balanced fish community had the potential to be maintained. However, water quality alone does not consider habitat, flow or other physical factors. It appears that these other factors were limiting the fish populations in the Des Plaines River in Cook County.

INTRODUCTION

The Metropolitan Water Reclamation District of Greater Chicago (District) is concerned about water quality in natural and man-made waterways within its service area. In 1975, the Research and Development (R&D) Department initiated a monitoring program to characterize the biological communities in Chicago area inland waterways (1). The program was called an "Ecosystematic Study" since the ecological monitoring of the waterways was conducted on a systematic basis. This allowed for comprehensive monitoring, both spatial and temporal, of all the waterways within the District's service area, as shown in Table 1. During 1992 and 1993, the Ecosystematic Study included the Des Plaines River in Cook County. The results from this study are included in this report.

The primary objectives of the Ecosystematic Study of the Des Plaines River were to describe the aquatic biological communities in order to assess the effects of pollution control activities implemented by the District. Bacterial densities were measured in water because bacteria are good indicators of the sanitary quality of the water for human and animal health. Benthic invertebrates were monitored because they are indicators of the water and sediment quality in the Des Plaines River. Fish were collected because they are indicators

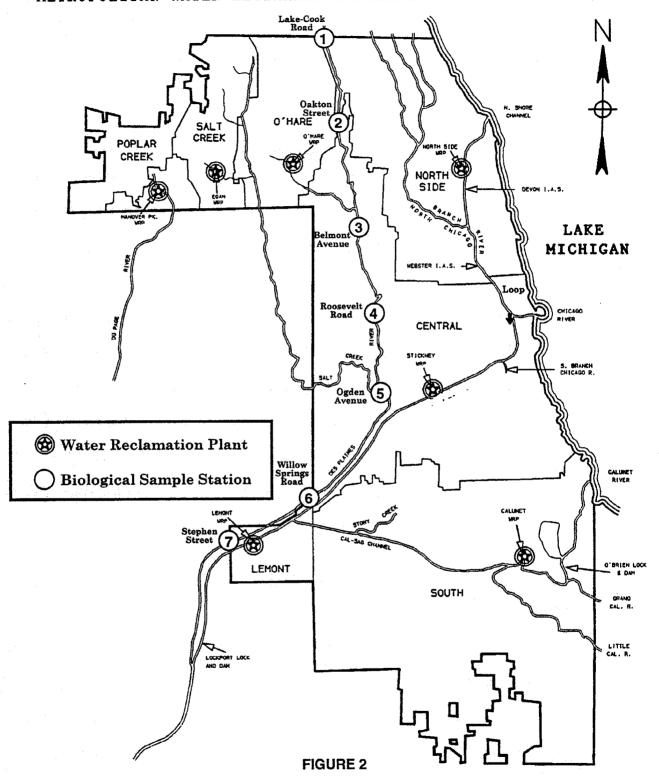
METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO TABLE 1

WATERWAYS MONITORED DURING THE ECOSYSTEMATIC STUDY

YEARS	WATERWAYS
1975, 1976 and 1977	North Shore Channel North Branch of the Chicago River Chicago River South Branch of the Chicago River Chicago Sanitary and Ship Canal Calumet River Little Calumet River Cal-Sag Channel
1978 and 1979	Des Plaines River in Cook County
1980 and 1981	North Branch of the Chicago River including the West Fork, Middle Fork, and Skokie River
1982 and 1983	Little Calumet River and Thorn Creek
1984 and 1985	Wilmette, Chicago and Calumet Harbors
1986 and 1987	North Shore Channel North Branch Chicago River
1988 and 1989	Calumet River Little Calumet River Cal-Sag Channel
1990 and 1991	Chicago Sanitary and Ship Canal
1992 and 1993	Des Plaines River in Cook County

of the quality of the river for fish. In addition, the chemical quality of the water was determined at the time of fish collections in order to assess the relative toxicity of the water to fish.

Study Area


The Des Plaines River is a shallow, sluggish stream. The entire Des Plaines River watershed covers 448,000 acres (700 square miles) in Kenosha and Racine Counties in Wisconsin and in Lake, Cook, DuPage and Will Counties in Illinois. In Cook County, much of the river's adjacent flood plain is owned by the Cook County Forest Preserve District. In the area of the District's jurisdiction (Figure 2), the Des Plaines River flows southward through a highly urbanized watershed from the Lake-Cook County Line to Highway 171, at which point it flows southwestward, parallel and adjacent to the Chicago Sanitary and Ship Canal, to Lockport (2).

Biological Samples

BACTERIA

Total coliforms (TC), fecal coliforms (FC), and fecal streptococci (FS), are indicator organisms used by the District to evaluate the sanitary quality of water. Analyses (Figure 2) for these indicator bacteria have been performed

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

MAP OF MAJOR FACILITIES, SERVICE AREAS, AND BIOLOGICAL SAMPLE STATIONS DURING THE 1992-1993 ECOSYSTEMATIC STUDY

routinely on all District waterways, including the Des Plaines River, for many years.

The Enterococcus group is a subgroup of the FS that is a valuable bacterial indicator for determining the extent of fecal contamination of recreational surface waters. Studies at bathing beaches have shown that swimming associated gastroenteritis is related directly to the quality of the bathing water and that enterococci are efficient bacterial indicators of water quality (4).

Escherichia coli (E. coli) is a member of the fecal coliform group. E. coli is also a valuable indicator of bathing water quality (4).

Pseudomonas aeruginosa is a common inhabitant of soil and water and has a worldwide distribution. It is responsible for a number of infections in humans, particularly in debilitated or immunocompromised hosts.

Salmonella are enteric pathogens, some species of which occur naturally in the environment.

The Standard Plate Count (SPC) is used to estimate the total number of viable heterotrophic bacteria in water.

BENTHIC INVERTEBRATES

Benthic invertebrates have been used to assess the biological quality of aquatic systems. These organisms are sensitive to both physical and chemical changes in the environment and continually monitor water and sediment quality. They also have sufficiently long life cycles and low motility, and, therefore, define past and present environmental conditions.

This report describes the benthic invertebrate community in that portion of the Des Plaines River in Cook County during surveys conducted in 1992 and 1993. In the present study, the environmental condition of the river was evaluated using benthic invertebrates. Measures of benthic community health included species richness, total abundance, and percent composition of major benthic groups.

FISH

Fish collections and analyses give the most meaningful index of water quality to the public. Fish occupy the upper levels of the aquatic food chain as the ultimate aquatic consumer. Therefore, changes in water quality that significantly affect the other kinds of organisms within the aquatic community will also affect the species composition and abundance of the fish population.

A knowledge of the assemblage of fish species in a stream and the numerical relationships of these species provides an excellent biological picture of the watercourse and its well being. When such information is available over a long period of time, fish can be one of the most sensitive indicators of the quality of the aquatic environment (3).

METHODS AND MATERIALS

Bacteria

SAMPLE COLLECTION

Water samples for bacterial analysis were collected quarterly from bridges crossing over the Des Plaines River at seven stations, as indicated in <u>Figure 2</u>. Samples were placed in sterile four-liter plastic containers, with sufficient sodium thiosulfate to neutralize 15 mg/L chlorine, and transported on ice to the Research and Development Laboratory in Stickney, Illinois.

SAMPLE ANALYSIS

Sample analyses began approximately six to twenty-four hours after sample collection and two to twenty-two hours after the last sample was collected. Pseudomonas aeruginosa densities were determined according to the tentative method in Standard Methods for the Examination of Water and Wastewater, 15th edition (Standard Methods) (4). Salmonella densities were estimated using the most probable number (MPN) technique described by Kenner and Clark (5). Presumptive Salmonella isolates were confirmed biochemically and using the API 20° system for the identification of enterobacteriaceae with polyvalent "O" antisera (Group A-E;Vi, Lot No. G3GIUG, Expiration July 1, 1994, BBL®) and membrane filtration procedures for TC, FC, FS, and total heterotrophic bacteria were performed ac-

cording to <u>Standard Methods</u>, 14th edition (6). *Enterococcus*, and *E. coli* were enumerated using membrane filtration procedures developed by Dufour (7), and Dufour <u>et al</u>.(8), respectively.

Colony confirmation percentages for TC, FC, FS, E. coli, Enterococcus, and Pseudomonas aeruginosa were 78 percent, 93 percent, 91 percent, 84 percent, 89 percent, and 75 percent, respectively, as presented in Table 2.

Benthic Invertebrates

Seven sampling stations were established along the Des Plaines River extending from Lake-Cook Road in Wheeling, Illinois to Stephen Street in Lemont, Illinois, as shown in Figure 2 and described in Table 3. A linear transect was established at each of the seven sampling stations. Benthic samples were collected at two points (center and right or left side) on each transect.

At each sampling station, triplicate sediment samples were collected with a petite Ponar Grab sampler from the center and from one of the sides of the Des Plaines River. A petite Ponar Grab sampler collects sediment from an area of $0.023~\text{m}^2$. The samples were collected during April and May

METROPOLITAN WATER RECLAMATION DISTRCT OF GREATER CHICAGO

TABLE 2

RESULTS OF COLONY CONFIRMATION TESTS¹ FOR THE ECOSYSTEMATIC STUDY DURING THE PERIOD APRIL 1992 THROUGH OCTOBER 1993

Analysis	Primary Isolation Medium	Number of Colonies Picked	Number of Colonies Confirmed	Percent Confirmed
Total Coliforms	m-Endo	223	174	78
Fecal Coliforms	mFC	221	205	93
Escherichia coli	mTEC	222	187	84
Fecal Streptococcus	KF Streptococcus	233	212	91
Enterococcus	mE	211	187	89
Pseudomonas aeruginosa	mPA	169	127	75

Total coliform: gas in lauryl tryptose broth and gas in brilliant green bile broth or Colifirm® test kit (an enzyme detection system from Millipore). Fecal coliform: gas in EC medium at 44.5°C. Escherichia coli: gas in lauryl tryptose broth; oxidase test (negative); citrate (negative); urease (negative). Fecal Streptococcus: catalase (negative); growth at 45°C; growth in 40% bile. Enterococcus: growth on, and blackening of, bile esculin agar; growth at 45°C; growth in 6.5% NaCl. Pseudomonas aeruginosa: casein hydrolysis and yellowish to greenish diffusable pigments on milk agar.

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

TABLE 3

DESCRIPTION OF BENTHIC INVERTEBRATE SAMPLING STATIONS
IN THE DES PLAINES RIVER

Sampling Station Number	Description of Waterway	Sampling Station ¹		
1	Des Plaines River	200 feet below Lake- Cook Road bridge in the center and along the right bank of the river.		
2	Des Plaines River	150 feet above the Oakton Street bridge in the center and along the left bank of the river.		
3	Des Plaines River	400 feet above the Milwaukee Road Rail-road bridge in the center and along the left bank of the river.		
4	Des Plaines River	300 feet above the Roosevelt Road bridge in the center and along the left bank of the river.		
5	Des Plaines River	1000 feet above the Ogden Avenue bridge in the center and along the left bank of the river.		
б	Des Plaines River	300 feet above the Willow Springs Road bridge in the center and along the left bank of the river.		

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

TABLE 3 (Continued)

DESCRIPTION OF BENTHIC INVERTEBRATE SAMPLING STATIONS IN THE DES PLAINES RIVER

Sampling Station Number	Description of Waterway Des Plaines River	Sampling Station ¹		
7		Beneath the Stephen Street bridge in the center and along the left bank of the river.		

¹Sampling site facing upstream in the waterway.

1992, July and August 1992, April and May 1993, and June though August 1993. Due to high flows and elevated water levels, no sediment samples were collected during April and May in 1992 at Lake-Cook Road and Oakton Street. The sediment samples were washed and screened in the field using a field sieve bucket with 250-micron openings. The sieved material was placed in a one gallon plastic container and returned to the laboratory for processing. All samples were stored at 4.0°C until processed.

The sediment samples were washed and screened in the laboratory through a U.S. Standard Number 60 sieve (250-micron openings). The sieved material was examined under a stereomicroscope at 7 to 30x magnification. All invertebrates were removed from the finer residual material, sorted into major taxonomic groups, and counted within three to four days from the time of sampling. In situations where there were large numbers of organisms in the sample, estimates of their abundance were made using a subsampling device. Identification of the benthic organisms was to the lowest possible taxonomic level.

The average number/m² and percentage composition of benthic invertebrates were calculated.

Fish

SAMPLE COLLECTION

Fish were collected during August and October in both 1992 and 1993 at each of seven locations on the Des Plaines River, as shown in Figure 2.

The gear used to collect the fish included the following:

- 1. A direct current backpack electrofisher. The water was electrified with 0.7 to 1 amp of current. Stunned fish were picked out of the water with dip nets. In most cases, the section of river sampled extended for 40 meters. Whenever possible, both sides of the river were electrofished.
- 2. A 25-foot bag seine with 3/16-inch mesh. In most cases, the section of river sampled extended for 40 meters. Whenever possible, both sides of the river were seined.

SAMPLE ANALYSIS

Large fish were identified to species, weighed to the nearest gram or nearest 0.1 gram (depending on size), measured for standard and total length to the nearest millimeter, and examined for the incidence of disease, parasites, or other anomalies, while at the sampling site and returned alive to

the river. Small fish were preserved in 10 percent (v/v) formalin and processed later in the laboratory. Small fish were processed in a similar manner as the large fish, except that they were weighed to the nearest 0.01 gram.

Index of Biotic Integrity (IBI). Fish populations integrate both chemical and physical perturbations that affect stream quality. Stream quality for fish is affected by the chemical and physical quality of the water, the quality of the physical habitat and the variability of stream flow.

The IBI assesses the health of a fish community using 12 fish community measures, or metrics, which fall into three broad categories: 1) species composition, 2) trophic composition, and 3) fish abundance and condition. The IBI has been used in Illinois (9,10) to develop a five-tiered stream classification system predicated largely on the type and condition of the fishery resource. This five-tiered classification system was used in this report to describe the stream quality of the Des Plaines River. The five categories of the stream classification system which describe stream quality as a function of IBI are:

Class A. Good stream quality for fish, IBI of 51 to 60, a unique aquatic resource, comparable to the best situations without human disturbance.

- Class B. Good stream quality for fish, IBI of 41 to 50, a highly valued aquatic resource, a good sport fishery.
- Class C. Fair stream quality for fish, IBI of 31 to 40, a moderate aquatic resource, a bullhead, sunfish, and carp fishery.
- Class D. Fair stream quality for fish, IBI of 21 to 30, a limited aquatic resource, carp or other less desirable species support fishery.
- Class E. Poor stream quality for fish, IBI less than or equal to 20, a restricted use aquatic resource, no sport fishery, few fish of any species present.

In this study IBIs were calculated based on information published by the Illinois Environmental Protection Agency (10). A sample calculation is shown in <u>Table 4</u>. An IBI was calculated for the catch with each type of fishing gear used (i.e., for both minnow seine and backpack electrofishing gear). The IBIs for each gear type were averaged together for each sample location for each of the four sample events during 1992-93.

Chemical Analysis and Bluegill Toxicity Indices. Water from the Des Plaines River was collected at the same stations

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

TABLE 4

CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR STATION NUMBER 1 AT LAKE COOK ROAD ON THE DES PLAINES RIVER ON AUGUST 11, 1993

		Fishing Gear Used		
	Seine		Electrofisher	
IBI Metric	_	Metric Scoresª	_	
Number of Species Per Sample	12	3	6	1
Number of Sucker Species	0	1	0	1
Number of Sunfish Species	4	5	3	3
Number of Darter Species	1	1	0	**************************************
Number of Intolerant Species	2	3	0	1
Percent Green Sunfish	4.	3 5	58.3	1
Percent Hybrids	0	5	2.8	. 1
Percent Diseased or Abnormal	1.	4 1	2.8	1
Percent Omnivores	11.	6 5	2.8	5
Percent Insectivorous Cyprinids	36.	2 3	0	1.
Percent Carnivores	13.	0 5	16.7	- 5
Number of Fish	69 ^b	1	120°	1
IBI (Sum of Metric Scores)		38		22

^aMetric scores based on the Des Plaines River being an order 5 stream in the Northeast Illinois basin.

bTotal number of fish collected seining.

cNumber of fish caught per hour of backpack electrofishing.

and on the same day as the fish collections. The Bluegill Toxicity Index (BTI) was calculated for un-ionized ammonia, arsenic, boron, cadmium, total residual chlorine, chromium, copper, cyanide, fluoride, iron, methylene blue active substances (MBAS), lead, manganese, mercury, nickel, nitrite plus nitrate, phenol, silver, and zinc. These analyses were performed by the Analytical Laboratories Division of the Research and Development Department according to Standard Methods for the Examination of Water and Wastewater, 15th Edition (4). Effects of temperature, total hardness, dissolved oxygen, and pH on toxicity were also considered. A sample calculation is shown in Table 5.

A component toxicity, expressed in bluegill toxic units (BGTUs) was calculated for each toxicant by dividing the environmental concentration of the toxicant by its 96 hour LC50 to bluegill.

The 96 hour LC_{50} is the concentration of toxicant which is lethal to 50 percent of the test fish during a 96 hour period. A list of the 96 hour LC_{50} s for each toxicant is shown in <u>Table</u> 6.

The component toxicities were then summed to yield the toxicity index (also in BGTUs). A sample of river water with a toxicity of 1.0 BGTU, for example, would be lethal, by definition, to 50 percent of the bluegills exposed to it for 96

TABLE 5

CALCULATION OF THE BLUEGILL TOXICITY INDEX (BTI) FOR A WATER SAMPLE FROM THE DES PLAINES RIVER AT STATION NUMBER 1, LAKE-COOK ROAD, WHEELING, ILLINOIS, AUGUST 11, 1993

Water Quality Constituent	Analytical Value	Bluegill Toxic Units (BGTUs)
Limiting Factors		and the large way of the property of the second and
Temperature (°C)	22.5	
Hardness		
(mg/L as CaCO ₃)	308	
Dissolved Oxygen (mg/L)	6.52	
pH (units)	7.25	
Total NH ₃ -N (mg/L)	0.30	
Toxicants		
Un-ionized NH ₃ (mg/L)	0.0031	0.0058
Arsenic (mg/L)	<0.2	0.0000
Boron (mg/L)	0.23	0.0001
Cadmium (mg/L)	<0.005	0.0000
Total Residual Chlorine (mg/L)	<0.01	0.0000
Chromium (Tri) (mg/L)	<0.006	0.0000
Chromium (Hex) (mg/L)	<0.006	0.0000
Copper (mg/L)	0.010	0.0011
Cyanide (mg/L)	0.007	0.0671
Fluoride (mg/L)	0.56	0.0126
Iron (mg/L)	1.00	0.0304
MBAS (mg/L)	0.008	0.0041
Lead (mg/L)	<0.08	0.0000
Manganese (mg/L)	0.09	0.0022
Mercury (µg/L)	<0.1	0.0000
Nickel (mg/L)	<0.05	0.0000
$NO_2+NO_3-N \ (mg/L)$	5.23	0.0026
Phenol (mg/L)	<0.003	0.0000
Silver (mg/L)	<0.006	0.0000
Zinc (mg/L)	0.400	0.0275
BTI (Sum of Toxicities)		0.1536

TABLE 6

96 HOUR LC₅₀ (CONCENTRATION OF TOXICANT WHICH IS LETHAL TO 50 PERCENT OF THE TEST FISH IN 96 HOURS) FOR EACH WATER QUALITY CONSTITUENT INCLUDED IN THE CALCULATION OF THE BLUEGILL TOXICITY INDEX

Water Quality Constituent	96-Hour LC ₅₀ (mg/L)
Un-ionized Ammonia	If Temperature \leq 22°C, then A = 0.012 If Temperature \geq 28°C, then A = 0.026 If 23°C \leq Temperature \leq 27°C, then A = (0.193 x Temperature - 22) + 0.64
	If $45.7 \le D0%^a \le 100.3$, then $B = (0.13297 \times D0%) - 0.32965$ If $D0% < 45.7$, then $B = 0.278$ If $D0% > 100.3$, then $B = 1.004$
	$LC_{50} = A \times B$
Arsenic	20.2
Boron	2393
Cadmium	(0.100321 x Hardness) - 0.066417
Total Chlorine Residual	0.012 (If Temperature > 30°C) 0.026 (If Temperature < 20°C) 0.25 - (0.015 x (Temperature - 21)) If 20°C ≥ Temperature ≤ 30°C
Chromium	125.5
Copper	((0.031834 x Hardness) - 0.248404) x (0.72210 (log10 DO%)

TABLE 6 (Continued)

96 HOUR LC₅₀ (CONCENTRATION OF TOXICANT WHICH IS LETHAL TO 50 PERCENT OF THE TEST FISH IN 96 HOURS) FOR EACH WATER QUALITY CONSTITUENT INCLUDED IN THE CALCULATION OF THE BLUEGILL TOXICITY INDEX

Water Quality Constitu	uent 96-Hour LC ₅₀ (mg/L)	
Cyanide	(-0.00333 x Temperature) + 0.235) x ((0.003089 x DO%) + 0.691071)	
Fluoride	44.4	
Iron	32.9	
MBAS	(0.029256 x DO%) - 0.353387	
Lead	(1.355 x Hardness) - 0.9 x (0.72210 x log ₁₀ DO%) - 0.43707	
Manganese	40	
Mercury	9.540 ^b	
Nickel	(0.100971 x Hardness) + 3.250588	
NO ₂ + NO ₃	4.4268 x 8753	
Phenol	$(0.72210 \times log_{10}DO%) - 0.43707$	
Silver	0.0039	
Zinc	(0.182889 x DO%) + ((0.042461 x Hardness) - 12.96521)	

aDO% = Percent saturation of dissolved oxygen.

b48-Hour LC50.

hours (24).

BTI values used for the classification of stream water quality are shown in $\frac{1}{2}$.

CLASSIFICATION OF STREAM WATER TOXICITY TO FISH BASED ON THE BLUEGILL TOXICITY INDEX (BTI)

TABLE 7

BTI in Bluegill Toxic Units(BGTUs ¹)	Water Quality ²
< 0.2	Good. Acceptable toxicant concentrations such that balanced fish populations are maintained in the stream. No acute toxicity.
0.2 to 0.4	Fair. Marginal toxicity. Toxicant concentrations becoming unacceptably high. Balanced bass-bluegill fish populations changing to unbalanced carp-dominated populations.
> 0.4 to < 1.0	Poor. Stressful toxicity. Relatively high concentrations of toxicants. Unbalanced fish populations due to toxicity.
≥ 1.0	Very poor. Lethal toxicity. High concentrations of toxicants causing death to ≥ 50 percent of the fish.

 $^{^{1}}$ BGTUs calculated as shown in 1 BGTUs.

²Based on information in reference 11

RESULTS

Bacteria

Geometric means of the bacterial groups determined during 1992 and 1993 in the Des Plaines River are summarized in <u>Table</u>

8. The data from which <u>Table 8</u> was derived are presented in Tables AI-1 - AI-7.

Geometric mean densities of TC and FC indicator bacteria were relatively low at Lake-Cook Road, the furthest upstream station in Cook County. The geometric mean densities of TC and FC were highest at Roosevelt Road in central Cook County, and decreased to relatively low levels at Stephen Street, near the point where the Des Plaines River flows out of Cook County. Similar trends can be seen in Table 8 for the geometric mean densities of FS, E. coli, Enterococci and total heterotrophic bacteria, that is, low densities were observed at the farthest upstream and downstream locations and relatively higher densities were observed in the mid-river portion of Cook County. Geometric mean densities of P. aeruginosa were highest at Lake Cook Road and lowest at Oakton Street. Salmonella geometric mean densities were about the same (0.21 to 0.24 MPN/100 mL) in the Des Plaines River throughout Cook County.

TABLE 8

GEOMETRIC MEANS OF BACTERIAL DENSITIES¹ IN THE DES PLAINES RIVER FOR THE PERIOD APRIL 1992 THROUGH OCTOBER 1993

				Bacteria	l Group	2		
Sample Station	TC	FC	FS	EC	ENT	SPC	PA	SAL
Lake-Cook Road	4,100	270	190	210	130	8,000	110	0.21
Oakton Street	5,900	550	210	330	220	9,500	18	0.21
Belmont Avenue	12,000	1,100	760	870	410	12,000	66	0.21
Roosevelt Road	25,000	1,700	600	1,000	180	10,000	50	0.22
Ogden Avenue	20,000	1,500	510	600	310	8,600	27	0.22
Willow Springs Road	12,000	720	85	440	87	7,400	42	0.24
Stephen Street	6,600	230	85	160	31	6,000	28	0.24

All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard plate count for total heterotrophic bacteria; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

As shown in <u>Tables AI-1</u> through <u>AI-7</u>, FC levels exceeded the Illinois General Use Standard of 400 cfu/100 mL over the two-year period, in 3 of 8 samples (38%) from all three of the following stations: Lake Cook Road; Oakton Street; and Stephen Street. FC levels exceeded the Illinois General Use Standard in 4 of 8 samples (50%) from the Willow Springs Road station, in 5 of 8 samples (63%) from the Ogden Avenue station, and in 6 of 8 samples (75%) from both the Belmont Avenue and Roosevelt Road stations.

Benthic Invertebrates

Benthic invertebrates collected at each of the seven sampling stations along the Des Plaines River during the spring and summer of 1992 and 1993 are presented in <u>Tables AII-1</u> through AII-7.

A total of 61 benthic taxa were collected from the seven sampling stations on the Des Plaines River (<u>Table 9</u>). The number of taxa collected ranged from a low of 14 at Willow Springs Road to a high of 33 at Lake-Cook Road.

As shown in <u>Table 10</u>, the estimated average number of benthic invertebrates found in the study area during the 1992-1993 surveys was $8,713/m^2$. The average numbers ranged from a low of $3,036/m^2$ at Stephen Street to a high of $23,474/m^2$ at Belmont Avenue.

TABLE 9

BENTHIC INVERTEBRATES COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993

Taxon Number	Phylum	Class	Order	Family	Genus/Species
			HYDRA		
1	Coelenterata	Hydrozoa	Hydroida	Hydridae	Hydra sp.
			FLATWORMS		
2	Platyhelminthes	Turbellaria	Tricladida		
			SLUDGEWORMS		
3	Annelida	Oligochaeta			
			LEECHES		
4	Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Helobdella stagnalis
_	Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Placobdella ornata
•	Annelida Annelida	Hirudinea Hirudinea	Pharyngobdellida Pharyngobdellida	Erpobdellidae Erpobdellidae	Mooreobdella fervida Mooreobdella microstoma
7	Annellaa	Hirudinea	Pharyngobdellida	Erpobdellidae	MOOI eODGella Miclostoma
			AQUATIC SOW BUGS		
8	Arthropoda	Crustacea	Isopođa	Asellidae	Caecidotea intermedius
			SCUDS		
9	Arthropoda	Crustacea	Amphipoda	Talitridae	Hyalella azteca

TABLE 9 (Continued)

BENTHIC INVERTEBRATES COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993

Taxon					
Number	Phylum	Class	Order	Family	Genus/Species
	<u>a a como de c</u>		CRAYFISH		
10	Arthropoda	Crustacea	Decapoda	Cambarinae	Cambarus sp.
11 /	Arthropoda	Crustacea	Decapoda	Cambarinae	Orconectes virilis
			MAYFLIES		
	Arthropoda	Insecta	Ephemeroptera	Caenidae	Caenis sp.
	Arthropoda	Insecta	Ephemeroptera	Ephemeridae	Ephemerella sp.
14	Arthropoda	Insecta	Ephemeroptera	Ephemeridae	Hexagenia sp.
			DRAGONFLIES		
	Arthropoda	Insecta	Odonata	Gomphidae	Gomphus sp.
16	Arthropoda	Insecta	Odonata	Lebellulidae	Plathemis sp.
			WATER BUGS		
17 2	Arthropoda	Insecta	Hemiptera	Corixidae	
			ALDERFLIES		
18 2	Arthropoda	Insecta	Megaloptera	Sialidae	Sialis sp.
			CADDISFLIES		
	Arthropoda	Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche sp.
	Arthropoda	Insecta	Trichoptera	Glossosomatidae	Glossosoma sp.
21	Arthropoda	Insecta	Trichoptera	Leptoceridae	Oecetis sp.

22 82

TABLE 9 (Continued)

BENTHIC INVERTEBRATES COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993

Taxo		01	01	Romi las	Genus/Species
lumbe	er Phylum	Class	Order	Family	Genus/Species
			BEETLES		
22	Arthropoda	Insecta	Coleoptera	Elmidae	Dubiraphia sp.
23	Arthropoda	Insecta	Coleoptera	Elmidae	Narpus sp.
24	Arthropoda	Insecta	Coleoptera	Elmidae	Stenelmis sp.
			MOSQUITOS		
25	Arthropoda	Insecta	Diptera	Culucidae	Aedes sp.
			MIDGEFLIES		•
26	Arthropoda	Insecta	Diptera	Chironomidae ^a	Chironomus sp.
27	Arthropoda	Insecta	Diptera	Chironomidae ^a	Cladopelma sp.
28	Arthropoda	Insecta	Diptera	Chironomidae ^a	Cladotanytarsus sp.
29	Arthropoda	Insecta	Diptera	Chironomidae ^a	Cryptochironomus sp
30	Arthropoda	Insecta	Diptera	Chironomidae ^a	Cryptotendipes sp.
31	Arthropoda	Insecta	Diptera	Chironomidae ^a	Dicrotendipes sp.
32	Arthropoda	Insecta	Diptera	Chironomidaeª	Einfeldia sp.
33	Arthropoda	Insecta	Diptera	Chironomidae ^a	Glyptotendipes sp.
34	Arthropoda	Insecta	Diptera	Chironomidae ^a	Microspectra sp.
35	Arthropoda	Insecta	Diptera	Chironomidae ^a	Paracladopelma sp.
36	Arthropoda	Insecta	Diptera	Chironomidae ^a	<i>Paratanytarsus</i> sp.
37	Arthropoda	Insecta	Diptera	Chironomidae ^a	Paratendipes sp.
38	Arthropoda	Insecta	Diptera	Chironomidae ^a	Pheaenospectra sp.
3.9.	Arthropoda	Insecta	Diptera	Chironomidae ^a	<i>Polypedilíum</i> sp.
40	Arthropoda	Insecta	Diptera	Chironomidae	Rheotanytarsus sp.
41	Arthropoda	Insecta	Diptera	Chironomidae ^a	Seatheria sp.

29

TABLE 9 (Continued)

BENTHIC INVERTEBRATES COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993

Taxon					
Tumber	Phylum	Class	Order	Family	Genus/Species
		м	(IDGEFLIES (Continued)		
12 <i>1</i>	Arthropoda	Insecta	Diptera	Chironomidae	Stictochironomus sp.
43 <i>I</i>	Arthropoda	Insecta	Diptera	Chironomidae ^a	Tanytarsus sp.
44 <i>I</i>	Arthropoda	Insecta	Diptera	Chironomidae ^a	Tribelos sp.
45 <i>I</i>	Arthropoda	Insecta	Diptera	Chironomidae ^b	Cricotopus sp.
46 <i>I</i>	Arthropoda	Insecta	Diptera	Chironomidae ^b	Eukiefferiella sp.
47 <i>I</i>	Arthropoda	Insecta	Diptera	Chironomidae ^b	Nanocladius sp.
48 <i>i</i>	Arthropoda	Insecta	Diptera	Chironomidaec	Ablabesmyia sp.
19 <i>1</i>	Arthropoda	Insecta	Diptera	Chironomidae ^c	Macropelopia sp.
50 7	Arthropoda	Insecta	Diptera	Chironomidae ^c	Procladius sp.
51 7	Arthropoda	Insecta	Diptera	Chironomidae ^c	Tanypus sp.
			BITING MIDGES		
52 <i>I</i>	Arthropoda	Insecta	Diptera	Heleidae	Ceratopogon sp.
			SNAILS		
	Mollusca	Gastropoda	Basommatophora	Ancylidae	Ferrissia parallela
	Mollusca	Gastropoda	Basommatophora	Physidae	Physella integra
	Mollusca	Gastropoda	Basommatophora	Planorbidae	Gyraulus parvus
56 N	Mollusca	Gastropoda	Mesogastropoda	Hydrobiidae	Amnicola limosa
57 N	Mollusca	Gastropoda	Mesogastropoda	Pleuroceridae	Pleurocera acuta

TABLE 9 (Continued)

BENTHIC INVERTEBRATES COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993

Taxon Jumber	Phylum	Class	Order	Family	Genus/Species
			CLAMS		
58	Mollusca	Pelecypoda	Veneroida	Sphaeriidae	Musculium sp.
9	Mollusca	Pelecypoda	Veneroida	Sphaeriidae	<i>Pisidium</i> sp.
0	Mollusca	Pelecypoda	Veneroida	Sphaeriidae	Sphaerium sp.
51	Mollusca	Pelecypoda	Veneroida	Corbiculidae	Corbicula fluminea

^{*}Subfamily Chironominae in the Family Chironomidae.

^bSubfamily Orthocladinae in the Family Chironomidae.

^cSubfamily Tanypodinae in the Family Chironomidae.

TABLE 10

AVERAGE NUMBER OF BENTHIC INVERTEBRATE ORGANISMS PER SQUARE METER COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993, AND THE PERCENTAGE (IN PARENTHESES) THAT EACH TAXONOMIC GROUP REPRESENTED OF THE TOTAL NUMBER OF ALL TAXA, AT EACH OF SEVEN STATIONS AND FOR ALL STATIONS COMBINED

		De	s Plaines	River Samp	le Statio	n		
Taxonomic Group	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Willow Springs Road	Stephen Street	Average All Stations
Hydra	0	0	0	0	0	0	2 (0.06)	0.3 (0.003)
Flatworms	0	0	0	0	48 (0.54)	0	4 (0.12)	7 (0.08)
Sludgeworms	3,360 (55.65)	5,220 (88.76)	21,287 (90.68)	5,351 (95.03)	7,987 (91.38)	7,756 (94.70)	2,213 (72.88)	7,596 (87.18)
Leeches	4 (0.07)	0	324 (1.38)	32 (0.56)	22 (0.25)	2 (0.02)	14 (0.48)	57 (0.65)
Aquatic sow bugs	6 (0.10)	2 (0.04)	5 (0.02)	3 (0.06)	6 (0.07)	0	4 (0.12)	4 (0.04)
Scuds	0	2 (0.04)	0	0	2 (0.02)	0	2 (0.06)	0.8 (0.01)
Crayfish	0	0	5 (0.02)	0	0	0	4 (0.12)	1 (0.01)
Mayflies	25 (0.41)	0	0	2 (0.03)	0	0	27 (0.89)	8 (0.09)

TABLE 10 (Continued)

AVERAGE NUMBER OF BENTHIC INVERTEBRATE ORGANISMS PER SQUARE METER COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993, AND THE PERCENTAGE (IN PARENTHESES) THAT EACH TAXONOMIC GROUP REPRESENTED OF THE TOTAL NUMBER OF ALL TAXA, AT EACH OF SEVEN STATIONS AND FOR ALL STATIONS COMBINED

		Des Plaines River Sample Station						
Taxonomic Group	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Willow Springs Road	Stephen Street	Average All Stations
Dragonflies	0	0	11 (0.05)	2 (0.03)	0	0	2 (0.06)	2 (0.02)
Water Bugs	120 (1.99)	2 (0.04)	0	0	0	2 (0.02)	0	18 (0.20)
Alderflies	4 (0.07)	0	0	0	0	0	0	0.6 (0.01)
Caddisflies	56 (0.92)	0	0	2 (0.03)	32 (0.36)	0	266 (8.76)	51 (0.58)
Beetles	57 (0.95)	46 (0.79)	0	0	0	0	13 (0.42)	17 (0.19)
Mosquitos	0	0	0	0	0	3 (0.04)	0	0.5 (0.01)
Midgeflies	2,317 (38.37)	530 (9.01)	186 (0.79)	204 (3.62)	318 (3.64)	418 (5.10)	351 (11.56)	618 (7.09)
Biting Midges	80 (1.33)	36 (0.61)	0	0	0 2	0	4 (0.12)	17 (0.20)

TABLE 10 (Continued)

AVERAGE NUMBER OF BENTHIC INVERTEBRATE ORGANISMS PER SQUARE METER COLLECTED FROM THE DES PLAINES RIVER DURING 1992 AND 1993, AND THE PERCENTAGE (IN PARENTHESES) THAT EACH TAXONOMIC GROUP REPRESENTED OF THE TOTAL NUMBER OF ALL TAXA, AT EACH OF SEVEN STATIONS AND FOR ALL STATIONS COMBINED

		Des Plaines River Sample Station							
Taxonomic Group	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Willow Springs Road	Stephen Street	Average All Stations	
Snails	4 (0.07)	15 (0.25)	380 (1.62)	5 (0.08)	209 (2.39)	4 (0.04)	127 (4.17)	106 (1.22)	
Clams	4 (0.07)	27 (0.47)	1,276 (5.43)	32 (0.56)	117 (1.34)	6 (0.08)	5 (0.18)	210 (2.41)	
Sum All Taxa	6,038	5,880	23,474	5,631	8,741	8,189	3,036	8,713	

The average numbers of benthic invertebrates found in Des Plaines River sediment during the spring and summer of 1992 and 1993 were 8,381 and $8,906/m^2$, respectively.

Overall, oligochaete worms and chironomid midge larvae accounted for 87.2 and 7.1 percent, respectively, of the total benthos collected from the Des Plaines River sediment during the 1992-1993 surveys.

LAKE-COOK ROAD

A total of 33 benthic taxa, most identified to species, were collected at the Lake-Cook Road station (<u>Table AII-1</u>). As shown in <u>Table 10</u>, overall, oligochaete worms and chironomid larvae accounted for 55.7 and 38.3 percent, respectively, of the total number of benthic organisms. The remaining 6.0 percent of the benthic fauna was composed of leeches, mayflies, caddis flies, beetles, bugs, snails, and fingernail clams. The estimated average number of benthic invertebrates found at the Lake-Cook Road station during the 1992-93 surveys was 6,038/m².

OAKTON STREET

A total of 17 benthic taxa, most identified to species, were collected at the Oakton Street station (<u>Table AII-2</u>).

Overall, oligochaete worms and chironomid larvae accounted for 88.8 and 9.0 percent, respectively, of the total number of

benthic organisms (<u>Table 10</u>). The remaining 2.2 percent of the benthic fauna was composed of isopods, beetles, bugs, snails, and fingernail clams. The estimated average number of benthic invertebrates found at the Oakton Street station during the 1992-93 surveys was 5,880/m².

BELMONT AVENUE

A total of 18 benthic taxa, most identified to species, were collected at the Belmont Avenue station (<u>Table AII-3</u>). Overall, oligochaete worms, chironomid larvae, and fingernail clams accounted for 90.7, 0.8, and 5.4 percent, respectively, of the total number of benthic organisms (<u>Table 10</u>). The remaining 3.1 percent of the benthic fauna was composed of leeches, isopods, snails, and fingernail clams. The estimated average number of benthic invertebrates found at the Belmont Avenue station during the 1992-93 surveys was 23,474/m².

ROOSEVELT ROAD

A total of 21 benthic taxa, most identified to species, were collected at the Roosevelt Road station (<u>Table AII-4</u>). Overall, oligochaete worms and chironomid larvae accounted for 95.0 and 3.6 percent, respectively, of the total number of benthic organisms (<u>Table 10</u>). The remaining 1.4 percent of the benthic fauna was composed of leeches, isopods, mayflies, caddis flies, snails, and fingernail clams. The estimated average

number of benthic invertebrates at the Roosevelt Road station during the 1992-93 surveys was $5,631/m^2$.

OGDEN AVENUE

A total of 22 benthic taxa, most identified to species, were collected at the Ogden Avenue station (Table AII-5). Overall, oligochaete worms, chironomid larvae, and snails accounted for 91.4, 3.6, and 2.4 percent, respectively, of the total number of benthic organisms (Table 10). The remaining 2.6 percent of the benthic fauna was composed of flatworms, leeches, isopods, caddis flies, snails, and fingernail clams. The estimated average number of benthic invertebrates at the Ogden Avenue station during the 1992-93 surveys was 8,741/m².

WILLOW SPRINGS ROAD

A total of 14 benthic taxa, most identified to species, were collected at the Willow Springs Road station (<u>Table AII-6</u>) Overall, oligochaete worms and chironomid larvae accounted for 94.7 and 5.1 percent, respectively, of the total number of benthic organisms (<u>Table 10</u>). The remaining 0.2 percent of the benthic fauna was composed of leeches, isopods, beetles, snails, and fingernail clams. The estimated average number of benthic invertebrates at the Willow Springs Road station during the 1992-93 surveys was 8,189/m².

STEPHEN STREET

A total of 32 benthic taxa, most identified to species, were collected from the Stephen Street station (<u>Table AII-7</u>). Overall, oligochaete worms, chironomid larvae, and caddis fly larvae accounted for 72.9, 11.6, and 8.8 percent, respectively, of the total number of benthic organisms (<u>Table 10</u>). The remaining 6.7 percent of the benthic fauna was composed of hydra, flatworms, leeches, isopods, amphipods, mayflies, beetles, snails, and fingernail clams. The average number of benthic invertebrates at the Stephen Street station during the 1992-93 surveys was 3,036/m².

Fish

ABUNDANCE AND SPECIES COMPOSITION

During 1992 and 1993, 30 species of fish, plus the carp x goldfish hybrid and two sunfish hybrids, from nine families, were collected from seven locations on the Des Plaines River (Table 11). A combined total of 4,422 fish were collected, (Table 12). Results of fish collections for each sampling event are presented in Tables AIII-1 through AIII-7.

As shown in <u>Table 12</u>, 90.6 percent of the total fish collection was composed of seven species, including 2,294 blunt-nose minnows (51.8 percent), 415 spotfin shiners (9.4)

TABLE 11

COMMON AND SCIENTIFIC NAMES OF THE FISHES COLLECTED IN THE DES PLAINES RIVER DURING 1992 AND 1993

Common Name¹

Scientific Name1

HERRING FAMILY Gizzard shad⁵

PIKE FAMILY

Northern pike^{2,9}

MINNOW FAMILY
Goldfish^{4,5}
Common carp^{4,5}
Carp x
Goldfish Hybrid
Spotfin shiner^{2,7}
Golden shiner^{4,5}
Emerald shiner⁷
Ozark minnow^{2,3}
Sand shiner⁷
Mimic shiner^{2,5}
Bluntnose minnow^{4,5}
Fathead minnow^{4,5}
Creek chub^{4,7}

SUCKER FAMILY
White sucker4,6

CATFISH FAMILY
Black bullhead⁸
Yellow bullhead^{4,8}
Channel catfish⁹
Tadpole madtom⁸

KILLIFISH FAMILY
Blackstripe topminnow⁸

CLUPEIDAE

Dorosoma cepedianum

ESOCIDAE

Esox lucius

CYPRINIDAE

Carassius auratus
Cyprinus carpio
Cyprinus carpio x
Carassius auratus
Cyprinella spiloptera
Notemigonus crysoleucas
Notropis atherinoides
Notropis nubilus
Notropis stramineus
Notropis volucellus
Pimephales notatus
Pimephales promelas
Semotilus atromaculatus

CATOSTOMIDAE

Catostomus commersoni

ICTALURIDAE

Ameiurus melas Ameiurus natalis Ictalurus punctatus Noturus gyrinus

CYPRINODONTIDAE
Fundulus notatus

TABLE 11 (Continued)

COMMON AND SCIENTIFIC NAMES OF THE FISHES COLLECTED IN THE DES PLAINES RIVER DURING 1992 AND 1993

Common Name¹

Scientific Name1

LIVEBEARER FAMILY
Western mosquitofish

SUNFISH FAMILY
Green sunfish^{4,8}
Pumpkinseed⁸
Orangespotted sunfish⁸
Bluegill⁸
Green sunfish x
Pumpkinseed Hybrid
Green sunfish x
Bluegill Hybrid
Smallmouth bass^{2,3,9}
Largemouth bass⁹
White crappie⁹
Black crappie⁹

PERCH FAMILY
Johnny darter⁸
Blackside darter⁸

POECILIIDAE

Gambusia affinis

CENTRARCHIDAE

Lepomis cyanellus

Lepomis gibbosus

Lepomis humilis

Lepomis macrochirus

L. cyanellus x

L. gibbosus

L. cyanellus x

L. macrochirus

Micropterus dolomieu

Micropterus salmoides

Pomoxis annularis

Pomoxis igromaculatus

PERCIDAE

Etheostoma nigrum

Percina maculata

¹Common and scientific names based upon reference 13.

²Intolerant of siltation (9).

³Intolerant of environmental degradation and severe environmental conditions (15)

⁴Tolerant of environmental degradation and severe environmental conditions (15)

⁵Omnivore (9).

⁶Omnivore (15).

⁷Insectivorous cyprinid (9).

⁸Insectivore (15).

⁹Top carnivore (9).

TABLE 12

TOTAL NUMBER OF EACH FISH SPECIES COLLECTED DURING 1992 AND 1993, AND THE PERCENTAGE (IN PARENTHESES) THAT EACH SPECIES REPRESENTED OF THE TOTAL NUMBER OF ALL FISHES, AT EACH OF SEVEN STATIONS ON THE DES PLAINES RIVER AND FOR ALL STATIONS COMBINED

	Des Plaines River Sample Station								
Fish Species	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Willow Springs Road	Stephen Street	All Stations	
Gizzard shad	0	0	0	0	0	6 (0.4)	3 (0.3)	9 (0.2)	
Northern pike	4 (1.1)	1 (0.4)	1 (0.4)	0	0	0	0	6 (0.1)	
Goldfish	0	0	1 (0.4)	21 (3.2)	1 (0.3)	0	4 (0.4)	27 (0.6)	
Carp	9 (2.6)	1 (0.4)	0	4 (0.6)	5 (1.6)	0	3 (0.3)	22 (0.5)	
Carp x goldfish hybrids	0	0	0	3 (0.5)	0	0	0	3 (0.1)	
Ozark minnow	0	0	0	0	0	0	1 (0.1)	1 (0.02)	
Golden shiner	0	0	0	0	1 (0.3)	1 (0.1)	2 (0.2)	4 (0.1)	

TABLE 12 (Continued)

	Des Plaines River Sample Station							
Fish Species	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogđen Avenue	Willow Springs Road	Stephen Street	All Stations
Emerald shiner	0	0	0	0	0	0	4 (0.4)	4 (0.1)
Spotfin shiner	162 (45.9)	58 (22.1)	66 (29.1)	92 (13.9)	19 (6.2)	7 (0.5)	11 (1.0)	415 (9.4)
Sand shiner	5 (1.4)	25 (9.5)	25 (11.0)	36 (5.4)	48 (15.7)	6 (0.4)	36 (3.4)	181 (4.1)
Mimic shiner	1 (0.3)	0	0	0	0	0	0	1 (0.02)
Bluntnose minnow	7 (2.0)	29 (11.1)	62 (27.3)	227 (34.3)	66 (21.6)	1,064 (69.1)	839 (78.3)	2,294 (51.9)
Fathead minnow	6 (1.7)	10 (3.8)	25 (11.0)	187 (28.3)	0	20 (1.3)	0	248 (5.6)
Creek chub	0	0	1 (0.4)	0	1 (0.3)	0	4 (0.4)	6 (0.1)

TABLE 12 (Continued)

		Des	Plaines Ri	ver Sample	Station	·		
Fish Species	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Willow Springs Road	Stephen Street	All Stations
White sucker	0	10 (3.8)	1(0.4)	2 (0.3)	10 (3.3)	1 (0.1)	7 (0.7)	31 (0.7)
Black bullhead	1 (0.3)	0	0	0	2 (0.7)	0	0	3 (0.1)
Yellow bullhead	0	0	4 (1.8)	0	1	0 (0.3)	0	5 (0.1)
Channel catfish	4 (1.1)	1 (0.4)	0	0	0	0	1 (0.1)	6 (0.1)
Tadpole madtom	0	1 (0.4)	0	1 (0.2)	2 (0.7)	2 (0.1)	0	6 (0.1)
Blackstripe topminnow	18 (5.1)	13 (5.0)	15 (6.6)	37 (5.6)	1(0.3)	10 (0.7)	18 (1.7)	112 (2.5)

TABLE 12 (Continued)

	**************************************	Des	Plaines Ri	ver Sample	Station			
Fish Species	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Willow Springs Road	Stephen Street	All Stations
Western Mosquitofish	1	0	0	0	15 (4.9)	48 (3.1)	30 (2.8)	93 (0.1)
Green sunfish	60 (17.0)	62 (23.7)	18 (7.9)	4 (0.6)	77 (25.2)	81 (5.3)	83 (7.7)	385 (8.7)
Pumpkinseed	1 (0.3)	11 (4.2)	3 (1.3)	0	5 (1.6)	13 (0.8)	2 (0.2)	35 (0.8)
Orangespotted sunfish	0	3 (1.2)	0	0	3 (1.0)	13 (0.8)	10 (0.9)	29 (0.7)
Bluegill	46 (13.0)	5 (1.9)	2 (0.9)	21 (3.2)	41 (13.4)	253 (16.4)	1 (0.1)	369 (8.3)
Smallmouth bass	0	0	0	0	0	0	1 (0.1)	1 (0.02)

TABLE 12 (Continued)

		Des	Plaines Ri	iver Sample	Station			
Fish Species	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Willow Springs Road	Stephen Street	All Stations
Largemouth bass	6 (1.7)	1 (0.4)	0	0	4 (1.3)	13 (0.8)	11 (1.0)	35 (0.8)
White crappie	0	0	0	0	0	1(0.1)	0	1 (0.02)
Black crappie	6 (1.7)	0	0	1 (0.2)	2 (0.7)	0	0	9 (0.2)
Green sunfish x pumpkinseed hybrid	0	0	0	0	1 (0.3)	0	0	1 (0.02)
Bluegill x green sunfish hybrids	1 (0.3)	0	0	0	0	0	0	1 (0.02)
Johnny darter	14 (4.0)	25 (9.5)	3 (1.3)	22 (3.3)	0	0	0	64 (1.5)

TABLE 12 (Continued)

	Des Plaines River Sample Station Willow							
Fish Species	Lake-Cook Road	Oakton Street	Belmont Avenue	Roosevelt Road	Ogden Avenue	Springs Road	Stephen Street	All Stations
Blackside darter	2 (0.6)	6 (2.3)	0	4 (0.6)	1 (0.3)	1 (0.1)	1 (0.1)	15 (0.3)
Total Fish	353	262	227	662	306	1,540	1,072	4,422
Total Species	18	17	14	14	20	17	21	30

percent), 385 green sunfish (8.9 percent), 369 bluegill (8.3 percent), 248 fathead minnows (5.6 percent), 181 sand shiners (4.1 percent), and 112 blackstripe topminnows (2.5 percent). Of these seven species, only the fathead minnow was not collected at all seven of the Des Plaines River stations.

The common carp made up less than 1 percent of the total Des Plaines River collection, but comprised 67 percent of the total catch by weight.

Game fish present in the Des Plaines River in Cook County included: northern pike, black bullhead, yellow bullhead, channel catfish, green sunfish, pumpkinseed sunfish, orangespotted sunfish, bluegill, smallmouth bass, largemouth bass, white crappie, black crappie, and hybrid sunfish.

Lake-Cook Road. Eighteen fish species were collected from Lake-Cook Road in the Des Plaines River (<u>Table 12</u>). Spotfin shiners (45.9 percent), green sunfish (17.0 percent), bluegill (13 percent), and blackstripe topminnows accounted for 81.0 percent of the total catch of 353 fish.

Oakton Street. Seventeen fish species were collected from Oakton Street in the Des Plaines River (<u>Table 12</u>). Green sunfish (23.7 percent), spotfin shiners (22.1 percent), bluntnose minnows (11.1 percent), sand shiners (9.5 percent), johnny darters (9.5 percent) and blackstripe topminnows (5.0

percent) accounted for 80.9 percent of the total catch of 262 fish.

Belmont Avenue. Fourteen fish species were collected from Belmont Avenue in the Des Plaines River (Table 12). Spotfin shiners (29.1 percent), bluntnose minnows (27.3 percent), sand shiners (11.0 percent), fathead minnows (11.0 percent), green sunfish (7.9 percent) and blackstripe topminnows (6.6 percent) accounted for 92.9 percent of the total catch of 227 fish.

Roosevelt Road. Fourteen fish species were collected from Roosevelt Road in the Des Plaines River (Table 12). Bluntnose minnows (34.3 percent), fathead minnows (28.3 percent), spotfin shiners (13.9 percent), green sunfish (7.9 percent), blackstripe topminnows (5.6 percent) and sand shiners (5.4 percent) accounted for 87.5 percent of the total catch of 662 fish.

Ogden Avenue. Twenty fish species were collected from Ogden Avenue in the Des Plaines River (Table 12). Green sunfish (25.2 percent), bluntnose minnows (21.6 percent), sand shiners (15.7 percent), bluegill (13.4 percent), spotfin shiners (6.2 percent) and mosquitofish (4.9 percent) accounted for 86.9 percent of the total catch of 306 fish.

<u>Willow Springs Road</u>. Seventeen fish species were collected from Willow Springs Road in the Des Plaines River (<u>Ta-</u>

ble 12). Bluntnose minnows (69.1 percent), bluegill (16.4 percent), and green sunfish (5.3 percent) accounted for 86.9 percent of the total catch of 1,540 fish.

Stephen Street. Twenty-one fish species were collected from Stephen Street in the Des Plaines River (<u>Table 12</u>). Bluntnose minnows (78.3 percent) and green sunfish (7.7 percent) accounted for 86.0 percent of the total catch of 1,072 fish.

INDEX OF BIOTIC INTEGRITY

Calculated IBI values for individual collections from the Des Plaines River ranged from 16 to 40, indicating poor to fair stream quality for fish (Tables AIV-1 to AIV-7).

As shown in <u>Table 13</u>, average IBIs for individual monitoring stations ranged from 25 to 30, indicating that the Des Plaines River in Cook County is a Class D stream, with fair stream quality for fish, and is a limited aquatic resource.

BLUEGILL TOXICITY INDEX

The BTI was calculated from results of chemical analysis for water samples collected at the time of fish collections in the Des Plaines River. Water quality constituents and BTIs for each sample in the Des Plaines River during 1992-93 are presented in <u>Tables AV-1</u> through <u>AV-7</u>. Average BTI for each Des Plaines River station was 0.1 BGTUs (<u>Table 14</u>). This was

TABLE 13

STREAM QUALITY DESCRIPTIONS BASED ON THE AVERAGE INDEX OF BIOTIC INTEGRITY (IBI) FOR THE DES PLAINES RIVER DURING 1992 AND 1993

Station	IBI	Stream Class	Stream Quality	\mathtt{BSC}^1
Lake-Cook Road	30	D^2	Fair ²	Limited Aquatic Resource
Oakton Street	28	D	Fair	Limited Aquatic Resource
Belmont Avenue	26	D	Fair	Limited Aquatic Resource
Roosevelt Road	26	D	Fair	Limited Aquatic Resource
Ogden Avenue	26	D	Fair	Limited Aquatic Resource
Willow Springs Road	30	D	Fair	Limited Aquatic Resource
Stephen Street	25	D	Fair	Limited Aquatic Resource

¹Biological Stream Characterization, based on IBI range listed in reference 10.

²IBI of 21 to 30, carp or other less desirable species support fishery.

TABLE 14

WATER QUALITY DESCRIPTIONS BASED ON THE AVERAGE BLUEGILL
TOXICITY INDEX (BTI) FOR THE DES PLAINES RIVER DURING 1992
AND 1993

Station	BTI	Water Quality
Lake-Cook Road	0.1	${\sf Good}^1$
Oakton Street	0.1	Good
Belmont Avenue	0.1	Good
Roosevelt Road	0.1	Good
Ogden Avenue	0.1	Good
Willow Springs Road	0.1	Good
Stephen Street	0.1	Good

¹Acceptable toxicant concentrations such that balanced fish populations are maintained in the stream.

indicative of good water quality with acceptable toxicant concentrations such that balanced fish populations could be maintained in the Des Plaines River at each of these stations.

DISCUSSION

Bacteria

The Des Plaines River cuts across Cook County as it travels southward. The fecal coliform density increases as the river flows from Lake into Cook County, peaks at Roosevelt Road or Ogden Avenue, and then decreases to a level similar to Lake-Cook Road as the river leaves Cook County.

Bacterial densities were lowest at the upper (Lake-Cook Road) and lower (Stephen Street) Des Plaines River stations, and highest at the mid-river stations of Belmont Avenue, Roosevelt Road and Ogden Avenue. Possible sources for the temporary increase in bacteria in the Des Plaines River south of Lake-Cook Road to Ogden Avenue are the intrusion of Silver Creek, Salt Creek flood control structures, combined sewer overflows, and the confluence of the river with Salt Creek. Silver Creek joins the Des Plaines River north of Roosevelt Road and south of the Belmont Avenue sampling station. Various structures built to control flooding along Salt Creek deliver portions of its flow, permanently in some cases, to the Des Plaines River between Belmont Avenue and Ogden Avenue. Salt Creek flows into the Des Plaines River just north of Ogden Avenue, and is the receiving stream for treated wastewater and their bacterial loads, from the John E. Egan Water Reclamation Plant, the Wood Dale wastewater treatment facility, the Addison wastewater treatment facility, and the Salt Creek Drainage Basin Treatment Plant.

Benthic Invertebrates

A diverse community of benthic invertebrates in aquatic systems is one of the critical factors in the stabilization of organic wastes, a process known as self-purification. The efficiency with which this process proceeds depends to a large extent upon the diversity of the community, the more diverse the benthic community, the quicker and more complete will be the self-purification process, all other factors in the stream being equal. Overloading rivers or streams with organic enrichment or the introduction of toxic substances will tend to decrease the benthic community diversity, and thus reduce the overall efficiency of the purification process.

Organically enriched sediments in rivers and streams usually support benthic populations which are predominately or entirely composed of tolerant species of oligochaete worms, chironomid midge larvae, isopods, leeches, and air breathing pulmonate snails. As the self-purification process continues, these benthic organisms, especially the worms and midges, may succeed or replace each other with resultant changes in the major benthic groups and overall community abundance (18).

Tolerant oligochaete worms dominated the benthic community at Oakton, Belmont, Roosevelt, Ogden, and Willow Springs, comprising more than 88 percent of the benthic fauna (Table 15). A benthic community composed almost entirely of aquatic worms (less diversity) denotes excessive organic/nutrient enrichment and sedimentation, and a subsequent reduction in the self-purification process. Even though the oligochaetes dominated the benthic fauna, the abundance of worms at Oakton, Belmont, Roosevelt, Ogden, and Willow Springs was generally less than 15,000/m², indicating mild nutrient/organic enrichment rather than excessive nutrient/organic enrichment.

It should be noted, however, that the benthic communities at the Lake-Cook Road (most upstream) and Stephen Street (most downstream) stations, which are directly above and below sampling stations at Oakton, Belmont, Roosevelt, Ogden, and Willow Springs, were not dominated entirely by pollution tolerant oligochaetes, but were composed of other intolerant benthic organisms, midges and caddis fly larvae, suggesting a more balanced benthic community (Table 15). At Lake-Cook Road and Stephen Street, 55.7 and 73.0 percent, respectively, of the benthic invertebrates were worms. In addition, the number of benthic taxa found at Lake-Cook Road (33) and Stephen Street (32) were substantially greater than collected at Oakton (17),

Station	Number of Taxa	Estimated Average Number of Individuals (numbers/m²)	Oligochaete Worms (% of total community)	Chironomid Midges (% of total community)	Dominant Benthic Group(s)
Lake-Cook Road	33	6,038	55.7	38.4	worms, midges
Oakton Street	17	5,880	88.8	9.0	worms
Belmont Avenue	18	23,474	90.7	0.8	worms
Roosevelt Road	21	5,631	95.0	3.6	worms
Ogden Avenue	22	8,741	91.4	3.6	worms
Willow Springs Road	14	8,189	94.7	5.1	worms
Stephen Street	32	3,036	72.9	11.6	worms, midges, caddis flies

Belmont (18), Roosevelt (21), Ogden (22), and Willow Springs Road (14).

Compared to monitoring stations upstream in the Des Plaines River at Oakton, Belmont, Roosevelt, Ogden, and Willow Springs, a recovery from nutrient/organic enrichment at Stephens Street is apparent as shown by an increase in species richness (32), a decrease in the dominance of aquatic worms (73%), and a corresponding increase in the abundance of intolerant benthic organisms (mayflies, caddis flies, beetles, and midge larvae), denoting a more balanced benthic invertebrate community.

<u>Fish</u>

A summary of fish community characteristics for the seven stations monitored during 1992-1993 in the Des Plaines River (Table 16) shows that fish tolerant of environmental degradation (Table 11) increased in percent composition as the Des Plaines River flowed through Cook County from Lake-Cook Road to Stephen Street in Lemont. Conversely, those species intolerant of siltation or intolerant of environmental degradation (Table 11) decreased in percent composition as the river traveled through the same reach. These data indicate that water quality conditions were best at Lake-Cook Road and decreased as the Des Plaines River flowed through Cook County.

TABLE 16

FISH COMMUNITY CHARACTERISTICS
FOR SAMPLING STATIONS IN THE DES PLAINES RIVER, 1992 AND 1993

Station	Number of Fish Species		Tolerant Fish (% of total community)	Intolerant Fish (% of total community)	Major Fish Families ¹
Lake-Cook Road	18	353	23.2	47.3	Minnows ² , Sunfish, Darters
Oakton Street	17	262	42.8	22.5	Minnows ² , Sunfish Darters
Belmont Avenue	14	227	49.3	29.5	Minnows ² , Sunfish
Roosevelt Road	14	662	67.2	13.9	Minnows ²
Ogden Avenue	20	306	53.0	6.2	Minnows ³ , Sunfish
Willow Springs Road	đ 17	1,540	75.8	0.5	Minnows, Sunfish
Stephen Street	21	1,072	87.9	1.2	Minnows, Sunfish

¹Making up 5% or more of the total catch.

²Including blackstripe topminnows (Killifish family).

³Including mosquitofish (Livebearer family).

Stream quality, as measured by the IBI, is based on an estimation of biological integrity. Biological integrity is the ability to support a balanced, integrated, adaptive community having a species composition, diversity and functional organization comparable to a reference condition where perturbation is relatively minimal. Stream quality is collectively the combination of chemical, biological, and physical features that characterize stream ecosystems. Chemical attributes include nutrients and toxics in both the water and sediments; biological attributes include the fauna and flora; and physical features include stream hydrology (e.g., flow, discharge, and velocity), and habitat (substrate composition and instream cover) (19).

The IBIs calculated from data collected during the subject study indicate that the Des Plaines River in Cook County is a Class D stream with fair stream quality. It is classified as a limited aquatic resource. Average IBI scores ranged from 25 to 30. Since differences among IBI scores of 10 percent or less are considered to be not significant (15), there were minimal differences in stream quality among the seven Des Plaines River sample locations.

The water quality measured at the time fish were collected was good. Water and sediment quality and impaired physical habitat are almost always the causes of reduced bi-

otic integrity (15). As determined by the BTI, the Des Plaines River water samples were of a good chemical water quality for fish, and would be expected to support a balanced fish population. However, water quality alone does not take into account habitat, flow or other factors. Evidently, other environmental factors were limiting the fish populations of the Des Plaines River in Cook County. For example:

- 1. The natural sluggish flow of the Des Plaines River, as well as modifications to its channel, banks, and flood plain have resulted in a lack of diverse physical habitat for fish. Diverse fish habitat (such as substrate, cover, channel features, and velocity) has been correlated with the IBI (20).
- 2. Periodic discharges from combined sewers may have contributed to residual toxicity or sediment oxygen demand in sediments at the seven sampling stations in the Des Plaines River.
- 3. Carp populations are known to uproot and consume aquatic plants and may interfere with the spawning of fishes such as the northern pike. Carp may also cause nesting fishes to leave their nests, exposing eggs and fry to predation. A lack of aquatic vegetation disrupts habitat, de-

creases cover, and increases predation on young fish, such as catfishes and sunfishes (21).

REFERENCES

- Zenz, D. R. "Water Quality Ecosystematic Study of the Major Waterways within the Boundaries of the MSDGC," Interoffice memorandum to R. Lanyon, Subject: "Waterways Study," The Metropolitan Sanitary District of Greater Chicago, April 28, 1975.
- Schmeelk, W. G., S. G. Dennison, and P. O'Brien, "1979 Annual Report, Water Quality within the Waterway System of the Metropolitan Sanitary District of Greater Chicago, Volume II, Biological," Research and Development Department, The Metropolitan Sanitary District of Greater Chicago, Chicago, Illinois, April 1983.
- 3 Smith, P. S., "Illinois Streams: A Classification Based on their Fishes and an Analysis of Factors Responsible for Disappearance of Native Species," Biological Notes No. 76, Illinois Natural History Survey, Urbana, Illinois, 1971.
- 4. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 15th Ed., American Public Health Association, Washington, D.C., 1980.
- 5. Kenner, B.A., and Clark, H.F., "Detection and enumeration of Salmonella and Pseudomonas aeruginosa", Journal of the Water Pollution Control Federation Vol. 46 No. 9 pp 2163-2171, 1974.
- 6. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 14th Ed., American Public Health Association, Washington, D.C., 1975.
- 7. Dufour, A.P., "A 24-hour Membrane filter Procedure for Enumerating Enterococci," Presented at the American Society for Microbiology Annual Meeting, Miami Beach Florida, May 1980.

REFERENCES (Continued)

- 8. Dufour, A.P., Strickland, E.R., and Cabelli, V.R. "Membrane Filter Method for Enumerating Escherichia coli."

 Journal of Applied Environmental Microbiology Vol.41 No.5 pp 1152-1158, 1981.
- 9. Hite, R. L. and B. A. Bertrand, "Biological Stream Categorization (BSC): A Biological Assessment of Illinois Stream Quality," Special Report No. 13 of the Illinois State Water Plan Task Force, Illinois Environmental Protection Agency Report No. IEPA/WPC/89-275, September 1989.
- 10. Illinois Environmental Protection Agency, "Illinois Water Quality Report 1994-1995, Volume I" Illinois Environmental Protection Agency Report No. IEPA/BOW/96-060a, September 1996.
- 11. Lubinski, K. S. and R. E. Sparks, "Use of Bluegill Toxicity Indexes in Illinois" In: D. R. Branson and K. L. Dickson, Eds., Aquatic Toxicology and Hazard Assessment:

 Fourth Conference, American Society for Testing and Materials, pages 324-337, 1981.
- 12 Rao, K. C., K. Kozlowski, T. Prakasam, B. Sawyer, and D. R. Zenz, 1991 Annual Summary Report, Water Quality Within the Waterways of the Metropolitan Water Reclamation District of Greater Chicago, Report No. 93-10, Research and Development Department, Metropolitan Water Reclamation District of Greater Chicago, Chicago, IL, 1993.
- 13. Robins, C. R., Common and Scientific Names of Fishes from the United States and Canada, Special Publication 20, American Fisheries Society, Bethesda, Maryland, 183 pp., 1991.
- 14. Page, L. M. and B. M. Burr, A Field Guide to Freshwater Fishes, Houghton Mifflin Company, Boston, 432 pages, 1991.
- 15. Lyons, J., "Using the Index of Biotic Integrity (IBI) to Measure Environmental Quality in Warmwater Streams of Wisconsin," U. S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, General Technical Report NC-149, 54 pages, 1992.

REFERENCES (Continued)

- 16. Smith, P. W., The Fishes of Illinois, University of Illinois Press, Urbana, Illinois, 314 pp., 1979.
- 17. Pflieger, W. L., The Fishes of Missouri, Missouri Department of Conservation, 343 pp., 1975.
- 18. Hynes, H.B.N., The Biology of Polluted Water, Liverpool, 1960.
- 19. Biocriteria Workgroup, "Glossary of Terms Concerning Biological Water Quality Standards," Illinois Environmental Protection Agency, Springfield, Illinois, April 16, 1997, 3 pages, 1997
- 20. Simonson, T. D., J. Lyons, and P. D. Kanehl, "Guidelines for Evaluating Fish Habitat in Wisconsin Streams," U. S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, General Technical Report NC-164, 36 pages, 199
- 21. Panek, F. "Biology and Ecology of Carp," In: E. L. Cooper, Ed., Carp in North America, American Fisheries Society, Bethesda, Maryland, 1987.

APPENDIX AI

BACTERIAL INDICATOR DENSITIES FOR THE DES PLAINES RIVER DURING 1992 AND 1993

TABLE AI-1

BACTERIAL INDICATOR DENSITIES¹ FOR THE DES PLAINES RIVER AT LAKE-COOK ROAD

DURING 1992 AND 1993

	Bacterial Group ²								
Date	TC	FC	FS	EC	ENT	SPC	PA	SAL	
04/27/92	1,400	30	10	50	30	3,200	10	0.15	
05/18/92	2,000	150	140	50	5	4,200	190	0.15	
08/17/92	6,400	200	1,400	50	500	42,000	500	0.15	
10/26/92	5,000	150	60	180	120	11,000	220	0.15	
03/22/93	5,300	1,400	380	1,600	420	2,900	30	0.35	
05/17/93	500	100	28	130	23	3,700	80	0.15	
08/16/93	8,000	1,300	560	500	240	5,000	300	0.2	
10/18/93	42,000	990	2,800	1,700	3,000	51,000	100	0.77	

¹All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard Plate Count; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

TABLE AI-2

BACTERIAL INDICATOR DENSITIES¹ FOR THE DES PLAINES RIVER AT OAKTON STREET DURING 1992 AND 1993

	Bacterial Group ²							
Date	TC	FC	FS	EC	ENT	SPC	PA	SAL
04/27/92	1,100	150	20	110	40	3,400	10	0.15
05/18/92	900	80	10	20	30	2,700	10	0.15
08/17/92	2,100	400	160	110	39	4,800	50	0.2
10/26/92	2,100	170	60	120	130	8,000	130	0.15
03/22/93	140,000	6,000	9,800	8,000	6,000	12,000	32	0.75
05/17/93	2,100	140	38	91	32	6,000	5	0.15
08/16/93	50,000	5,800	3,400	3,700	3,100	83,000	1	0.45
10/18/93	23,000	2,100	1,500	1,900	1,400	31,000	100	1.05

¹All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard Plate Count; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

TABLE AI-3

BACTERIAL INDICATOR DENSITIES¹ FOR THE DES PLAINES RIVER AT BELMONT AVENUE
DURING 1992 AND 1993

	Bacterial Group ²								
Date	TC	FC	FS	EC	ENT	SPC	PA	SAL	
04/27/92	20,000	1,000	3,500	1,600	3,200	5,400	10	0.15	
05/18/92	6,900	1,000	70	430	110	6,100	60	0.15	
08/17/92	14,000	1,000	490	1,600	290	17,000	30	0.2	
10/26/92	4,000	240	150	240	170	$N.A.^3$	50	0.15	
03/22/93	5,200	600	4,000	3 0 0	120	1,400	130	0.45	
05/17/93	3,000	290	120	200	70	8,000	10	0.2	
08/16/93	100,000	23,000	7,000	10,000	5,200	120,000	2,500	1.15	
LO/18/93	48,000	2,000	1,800	2,000	1,000	37,000	120	0.35	

¹All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard Plate Count; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

 $^{^{3}}N.A. = No analysis.$

TABLE AI-4

BACTERIAL INDICATOR DENSITIES¹ FOR THE DES PLAINES RIVER AT ROOSEVELT ROAD

DURING 1992 AND 1993

	Bacterial Group ²								
Date	TC	FC	FS	EC	ENT	SPC	PA	SAL	
04/27/92	17,000	1,600	580	1,500	800	6,700	20	0.15	
05/18/92	2,700	240	690	160	20	4,900	10	0.15	
08/17/92	69,000	4,500	270	1,500	230	12,000	60	0.15	
10/26/92	49,000	2,100	320	1,500	250	4,700	90	0.15	
03/22/93	8,000	1,200	250	800	250	1,300	80	0.2	
05/17/93	4,000	140	60	120	43	4,700	3	0.15	
08/16/93	480,000	56,000	15,000	21,000	210	290,000	2,300	2.15	
10/18/93	55,000	2,200	2,100	1,100	600	35,000	70	0.15	

¹All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard Plate Count; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

TABLE AI-5

BACTERIAL INDICATOR DENSITIES¹ FOR THE DES PLAINES RIVER AT OGDEN AVENUE
DURING 1992 AND 1993

	Bacterial Group ²									
Date	TC	FC	FS	EC	ENT	SPC	PA	SAL		
04/27/92	12,000	900	280	500	200	4,200	10	0.15		
05/18/92	2,500	240	80	60	30	3,700	50	0.15		
08/17/92	52,000	2,400	2,600	500	310	12,000	10	0.2		
10/26/92	7,000	310	130	140	160	4,600	50	0.15		
03/22/93	6,800	800	260	360	210	390	11	0.15		
05/17/93	2,800	240	34	150	32	4,700	2	0.15		
08/16/93	740,000	130,000	28,000	38,000	23,000	300,000	3,700	0.55		
10/18/93	150,000	6,000	2,500	3,700	1,800	64,000	12	1.15		

¹All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard Plate Count; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

TABLE AI-6

BACTERIAL INDICATOR DENSITIES¹ FOR THE DES PLAINES RIVER AT WILLOW SPRINGS ROAD
DURING 1992 AND 1993

	Bacterial Group ²									
Date	TC	FC	FS	EC	ENT	SPC	PA	SAL		
04/27/92	5,000	540	30	340	100	5,000	10	0.15		
05/18/92	4,800	110	20	90	10	3,000	30	0.15		
08/17/92	22,000	600	32	340	17	8,300	20	0.45		
10/26/92	11,000	250	46	270	49	5,400	60	0.15		
03/22/93	4,400	300	65	210	130	760	80	0.15		
05/17/93	1,000	60	19	29	14	1,800	3	0.15		
08/16/93	380,000	130,000	5,500	28,000	4,900	260,000	1,700	0.35		
10/18/93	54,000	3,600	460	3,000	460	36,000	70	0.15		

¹All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard Plate Count; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

TABLE AI-7

BACTERIAL INDICATOR DENSITIES¹ FOR THE DES PLAINES RIVER AT STEPHEN STREET

DURING 1992 AND 1993

	Bacterial Group ²									
Date	TC	FC	FS	EC	ENT	SPC	PA	SAL		
04/27/92	3,600	130	10	60	10	2,300	10	0.45		
05/18/92	2,100	10	20	18	9	4,700	30	0.2		
08/17/92	5,700	120	500	60	5	5,600	20	0.15		
10/26/92	7,000	200	35	100	25	7,400	30	0.15		
03/22/93	6,300	1,200	90	380	100	950	110	0.2		
05/17/93	1,400	20	13	20	6	1,900	2	0.15		
08/16/93	30,000	6,000	1,500	3,700	1,100	59,000	190	3.75		
10/18/93	46,000	1,800	430	2,100	110	37,000	50	0.15		

¹All densities are given in colony forming units (cfu)/100 mL except SPC which is in cfu/mL and SAL which is in most probable number (MPN)/per 100 mL.

²TC = Total Coliform; FC = Fecal Coliform; FS = Fecal Streptococcus; ENT = Enterococcus; SPC = Standard Plate Count; EC = Esherichia coli; PA = Pseudomonas aeruginosa; SAL = Salmonella.

APPENDIX AII

BENTHIC INVERTEBRATES
IN THE DES PLAINES RIVER
DURING 1992 AND 1993

TABLE AII-1

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER
AT LAKE-COOK ROAD DURING 1992 AND 1993

	Numbe	er of Benthic O: (Numbers/m²)	rganisms
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
July 1992, Right Bank ¹			
ANNELIDA			45.5
Oligochaeta	1,254	1,140	456
INSECTA			
Ephemeroptera			
Caenis sp.			38
Hemiptera			
Corixidae	38	76	76
Megaloptera		•	
Sialis sp.		38	
Coleoptera	76	114	
Diptera			
Chironomidae	44.0	756	250
Tanypodinae	410	756 89	359
Orthocladinae	95		1,275
Chiroominae	2,649	3,601	1,275
July 1992, Center of Channel			
ANNELIDA			
Oligochaeta	532	1,330	532
Hirudinea			
Mooreobdella microstoma		38	228
CRUSTACEA			
Isopoda			
Caecidotea intermedius		38	
INSECTA			
Ephemeroptera			
Caenis sp.		76	114
Hemiptera			
Corixidae	1,862	114	
Tricoptera			
Hydropsyche sp.	190		
Oecetis sp.			114
Coleoptera			
Stenelmis sp.	190	76	114
Scenermis sp.	190 .	, ,	

TABLE AII-1 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT LAKE-COOK ROAD DURING 1992 AND 1993

	Numbe	r of Benthic O (Numbers/m²)	rganisms
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
July 1992, Center of Channel	(Continued)		
Insecta (Continued)			
Diptera			•
Chironomidae			
Tanypodinae	168	40	202
Chironominae	820	948	2,040
MOLLUSCA			
Gastropoda			
Gyraulus parvus			38
April 1993, Right Bank ¹			
ANNELIDA			
Oligochaeta	13,961	5,168	16,340
INSECTA			
Ephemeroptera			
Caenis sp.	64		
Coleoptera	400	9.6	
Dubiraphia sp.	127	76	
Diptera	F 405	4 700	7 060
Chironomidae	7,425	4,788	7,068
Heleidae	381	152	304
MOLLUSCA		•	
Gastropoda			
Gyraulus parvus		38	
CATGRIES Parves		20	

TABLE AII-1 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT LAKE-COOK ROAD DURING 1992 AND 1993

	Numbe	er of Benthic O: (Numbers/m²)	rganisms
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
Taxonomic Group		2 -	•
April 1993, Center of Channel			
ANNELIDA			
Oligochaeta			1,596
TMCDCH3			
INSECTA			
Tricoptera Cheumatopsyche sp.			76
Coleoptera			
Stenelmis sp.			76
Diptera			
Chironomidae	266	152	3,192
June 1993, Right Bank ¹			
ANNELIDA			
Oligochaeta	5,738	3,800	5,814
Hirudinea			
Mooreobdella fervida	38		
INSECTA			
Ephemeroptera			
Caenis sp.		38	
Megaloptera			
Sialis sp.		38	
Coleoptera	76	114	
Dubiraphia sp.	28	38	76
Diptera			
Chironomidae			مدسونون
Tanypodinae		756	359
Chironominae	67	643	2,546
Heleidae			201
Ceratopogon sp.	152	114	304

TABLE AII-1 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT LAKE-COOK ROAD DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)		
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
June 1993, Center of Channel	***		
ANNELIDA			
Oligochaeta	114	1,976	722
CRUSTACEA			
Isopoda			
Caecidotea intermedius			76
INSECTA			
Ephemeroptera			
Caenis sp.	38	38	38
Tricoptera			
Cheumatopsyche sp.	114	76	432
Coleoptera			
<i>Dubiraphia</i> sp.		38	
Diptera			
Chironomidae			
Chironominae	456	425	1,178
Heleidae		38	
MOLLUSCA			
Pelecypoda			
Pisidium sp.	38		38

¹Facing upstream in the waterway.

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER
AT OAKTON STREET DURING 1992 AND 1993

Grab	(Numbers/m²) Grab	
Sample 1	Sample 2	Grab Sample 3
1,520	4,408	2,622
		38
	38	
495 37	866 274	498 376
	38	
7,068	8,512	3,268
		38
38		76
568	205	217 201
	495 37 7,068	38 495 37 274 38 7,068 8,512

TABLE AII-2 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT OAKTON STREET DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)		
	Grab	. Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
July 1992, Center of Channel Co	ntinued)		
MOLLUSCA			
Gastropoda			
Pleurocera acuta	38		
Pelecypoda			
Pisidium sp.	38		
Sphaerium sp.	114	38	152
April 1993, Left Bank ¹			
ANNELIDA			
Oligochaeta	5,548	9,310	8,644
INSECTA			
Coleoptera			
Dubiraphia sp.	228	114	228
Diptera	200		44.0
Chironomidae	380	304	418
Heleidae	152	152	266
April 1993, Center of Channel			
ANNELIDA			
Oligochaeta	8,816	6,422	1,482
INSECTA			
Diptera			
Chironomidae	76		
CIII. OILOMA GOC	,		
MOLLUSCA			
Gastropoda			
Pleurocera acuta		152	

TABLE AII-2 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT OAKTON STREET DURING 1992 AND 1993

Taxonomic Group	Numbe	r of Benthic O (Numbers/m²)	rganisms
	Grab Sample 1	Grab Sample 2	Grab Sample 3
June 1993, Left Bank ¹			
ANNELIDA			
Oligochaeta	14,212	1,520	9,956
CRUSTACEA			
Isopoda			
Caecidotea intermedius			38
INSECTA			
Coleoptera			
Dubiraphia sp.			114
Diptera			
Chironomidae Tanypodinae	159	74	168
Chironominae	981	192	2,226
Heleidae	701	172	2,22,0
Ceratopogon sp.	38	38	
MOLLUSCA			
Gastropoda			
Pleurocera acuta			76
Pelecypoda			
Musculium sp.			38
Pisidium sp.		38	38
June 1993, Center of Channel			
ANNELIDA			
Oligochaeta	38	304	304
Diptera			
Chironomidae			
Chironominae		38	114

¹Facing upstream in the waterway.

TABLE AII-3

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER
AT BELMONT AVENUE DURING 1992 AND 1993

	Numbe	er of Benthic Or (Numbers/m²)	ganisms
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
April, 1992, Left Bank ¹			
ANNELIDA			
Oligochaeta	3,078	16,378	13,338
Hirudinea			
Helobdella stagnalis		152	
INSECTA			,
Diptera			
Chironomidae			
Tanypodinae	38	38	38
MOLLUSCA			
Gastropoda			
Amnicola limosa	152	532	190
Pelecypoda			
Pisidium sp.	190	190	38
April, 1992, Center of Channel			
ANNELIDA			
Oligochaeta	19,950	6,308	2,850
Hirudinea			
Mooreobdella microstoma	684		228
INSECTA			
Diptera			
Chironomidae			
Orthocladinae			38
Chironominae		228	
MOLLUSCA			
Gastropoda			
Amnicola limosa		76	38
Pleurocera acuta	608	114	114
Pelecypoda	2.0		
Musculium sp.	38	111	050
Pisidium sp.	1,482	114 1,786	950 532
Sphaerium sp.		1,/86	552

TABLE AII-3 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT BELMONT AVENUE DURING 1992 AND 1993

	Numbe	er of Benthic O: (Numbers/m²)	rganisms
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample :
July, 1992, Left Bank ¹	***************************************		
ANNELIDA			
Oligochaeta	27,792	24,852	25,460
Hirudinea			
Helobdella stagnalis	72	38	
Mooreobdella microstoma	688	190	285
CRUSTACEA			
Decapoda			
Cambarus sp.		76	
INSECTA			
Odonata			*
Gomphus sp.		76	95
Diptera			
Chironomidae			
Tanypodinae	304	456	94
Chironominae			191
MOLLUSCA			
Gastropoda			
Amnicola limosa	760	114	114
Pleurocera acuta	76	570	356
Pelecypoda			
Musculium sp.		114	38
Pisidium sp.	380	608	
Sphaerium sp.	2,128	594	1,102
July 1992, Center of Channel			
ANNELIDA			
Oligochaeta	25,878	6,270	19,152
Hirudinea	23,070	0,270	يكافسند والاستد
Helobdella stagnalis			38
Mooreobdella microstoma	570	228	560
MODIEODGETIA MICTOSTOMA	570	220	200
CRUSTACEA			
Isopoda			
Caecidotea intermedius			76

TABLE AII-3 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT BELMONT AVENUE DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)		
Taxonomic Group	Grab Sample 1	Grab Sample 2	Grab Sample 3
July 1992, Center of Channel (Con	tinued)		
INSECTA			
Diptera			
Chironomidae			
Tanypodinae	38		
Chironominae	152	76	
MOLLUSCA			
Gastropoda			
Amnicola limosa	38	190	266
Ferrissia parallela			38
Pleurocera acuta	152	152	684
Pelecypoda			
Musculium sp.	950	114	950
Pisidium sp.	1,527	2,850	560
Sphaerium sp.	625	38	442
April 1993, Left Bank ¹			
No organisms in bottom sediment sa	amples		
April 1993, Center of Channel			
No organisms in bottom sediment sa	amples		
July 1993, Left Bank ¹		•	
ANNELIDA			
Oligochaeta	113,253	14,022	722
Hirudinea			
Helobdella stagnalis	678	114	
Mooreobdella microstoma	334		
INSECTA			
INSECTA Diptera			
INSECTA Diptera Chironomidae			

TABLE AII-3 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT BELMONT AVENUE DURING 1992 AND 1993

	Number of Benthic Organi (Numbers/m²)		
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
July 1993, Left Bank ¹ (Continued)			
MOLLUSCA			
Gastropoda			
Amnicola limosa	253		
Pleurocera acuta	76	38	
Pelecypoda			
Musculium sp.			38
Sphaerium sp.	759		
August 1993, Center of Channel			
No organisms in bottom sediment sa	ample.		

¹Facing upstream in the waterway.

TABLE AII-4

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT ROOSEVELT ROAD DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)		
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
April 1992, Left Bank ¹			
ANNELIDA			
Oligochaeta	760	608	3,724
INSECTA			
Odonata			
Plathemis sp.	38		
Diptera			
Chironomidae			
Tanypodinae		114	
MOLLUSCA			
Pelecypoda			
Sphaerium sp.	114		
April 1992, Center of Channel			
ANNELIDA			
Oligochaeta	11,780	7,106	15,884
Hirudinea			
Mooreobdella microstoma	38		
Helobdella stagnalis			76
CRUSTACEA			
Isopoda			
Caecidotea intermedius			38
INSECTA			
Diptera			
Chironomidae			
Orthocladinae	114	110	114
Chironominae		152	
MOLLUSCA			
Gastropoda			
Ferrissia parallela		38	
Pelecypoda			
Pisidium sp.	76	152	
Sphaerium sp.	38		

TABLE AII-4 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT ROOSEVELT ROAD DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)		
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample
August 1992, Left Bank ¹			
ANNELIDA			
Oligochaeta Hirudinea	2,546	4,560	8,360
Mooreobdella microstoma	38	342	114
Plaobdella ornata	38		
INSECTA			
Diptera			
Chironomidae		2.0	
Tanypodinae	38	38	
MOLLUSCA			
Gastropoda			
Physella integra	38		
August 1992, Center of Channel			
ANNELIDA			
Oligochaeta	4,864	10,336	6,080
Hirudinea Mooreobdella microstoma		38	
mooreobdella microstoma		50	
INSECTA			
Diptera			
Chironomidae		153	5.7
Tanypodinae Chironominae	76	75	57 57
CHITOHOMINAE	70	, 3	
MOLLUSCA			
Pelecypoda			
Musculium sp.		38 76	
Pisidium sp.		76 76	
Sphaerium sp.		70	

TABLE AII-4 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT ROOSEVELT ROAD DURING 1992 AND 1993

	Numbe	r of Benthic On (Numbers/m²)	rganisms
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
May 1993, Left Bank ¹			
ANNELIDA			
Oligochaeta	1,748	1,254	1,306
INSECTA			
Diptera			
Chironomidae	76	38	
May 1993, Center of Channel			
ANNELIDA			
Oligochaeta	760	4,712	3,420
INSECTA			
Diptera			
Chironomidae		114	152
MOLLUSCA			
Pelecypoda			
Muculium sp.	114		38
August 1993, Left Bank ¹			
ANNELIDA			
Oligochaeta	6,916	2,774	8,132
INSECTA			
Ephemeroptera			
<i>Hexagenia</i> sp.		38	
Diptera			
Chironomidae			
Tanypodinae	38	114	
Chironominae		38	76
MOLLUSCA			
Pelecypoda			
Sphaerium sp.		38	

TABLE AII-4 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT ROOSEVELT ROAD DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)		
	Grab	Grab	Grab
Taxonomic Group	Sample 1	Sample 2	Sample 3
August 1993, Center of Channel			
ANNELIDA			
Oligochaeta Hirudinea	13,224	4,750	2,812
Mooreobdella microstoma	76		
CRUSTACEA			
Isopoda			
Caecidotea intermedius			38
INSECTA			
Trichoptera			
Cheumatopsyche sp.	38		
Diptera			
Chironomidae			
Tanypodinae		41	202
Chironominae	1,748	985	380
MOLLUSCA			
Gastropoda			
Ferrissia parallela			38

TABLE AII-5

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT OGDEN AVENUE DURING 1992 AND 1993

Taxonomic Group	Number of Benthic Organisms(Numbers/m²)		
	Grab	Grab	Grab
	Sample 1	Sample 2	Sample 3
May 1992, Left Bank ¹			
ANNELIDA			
Oligochaeta Hirudinea	26,904	9,234	15,808
Helobdella stagnalis Mooreobdella microstoma			76 76
CRUSTACEA			
Isopoda			
Caecidotea intermedius			38
INSECTA			
Diptera			
Chironomidae	- 4		
Orthocladinae Chironominae	76 76		38
Chironominae	76	76	
MOLLUSCA			
Gastropoda			
Amnicola limosa	38		38
Pleurocera acuta	418	380	76
Pelecypoda <i>Musculium</i> sp.		20	
Muscullum sp. Pisidium sp.	76	38	
Sphaerium sp.	76		
May 1992, Center of Channel			
ANNELIDA			
Oligochaeta	9,804	4,978	16,112
CRUSTACEA			
Isopoda			
Caecidotea intermedius	38		

TABLE AII-5 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT OGDEN AVENUE DURING 1992 AND 1993

	Number of Benthic Organisms			
Taxonomic Group	(Numbers/m²)			
	Grab	Grab	Grab	
	Sample 1	Sample 2	Sample 3	
May 1992, Center of Channel (Con-	tinued)			
	,			
INSECTA Diptera				
Chironomidae				
Orthocladinae	38		38	
Chironominae	76		38	
MOLLUSCA				
Gastropoda				
Amnicola limosa		304		
August 1992, Left Bank ¹				
ANNELIDA				
Oligochaeta	4,636	14,440	15,656	
Hirudinea				
Helobdella stagnalis	38	76	228	
INSECTA				
Trichoptera				
Oecetis sp.			76	
Diptera				
Chironomidae				
Tanypodinae	113			
Chironominae	113	722	380	
MOLLUSCA				
Gastropoda				
Pleurocera acuta	266	380	456	
Pelecypoda				
Corbicula fluminea	38			
Musculium sp.	38			
Pisidium sp.	114	38		

TABLE AII-5 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT OGDEN AVENUE DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)			
	Grab	Grab	Grab	
Taxonomic Group	Sample 1	Sample 2	Sample 3	
August 1992, Center of Channel				
TURBELLARIA		304	342	
ANNELIDA				
Oligochaeta	1,862	684	1,482	
CRUSTACEA				
Isopoda		2.0		
Caecidotea intermedius		38		
INSECTA				
Trichoptera				
Cheumatopsyche sp.	228	76	266	
Diptera				
Chironomidae				
Chironominae	190	114	114	
MOLLUSCA				
Gastropoda				
Amnicola limosa			38	
Pleurocera acuta	532	228	608	
Pelecypoda				
Corbicula fluminea	38	38		
Musculium sp.	38			
Pisidium sp.	38			
Sphaerium sp.	38			
May 1993, Left Bank ¹				
ANNELIDA				
Oligochaeta	22,800	22,116	16,664	
CRUSTACEA				
Isopoda				
Caecidotea intermedius		38		
INSECTA				
Diptera				
Chironomidae	304	190	228	

TABLE AII-5 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT OGDEN AVENUE DURING 1992 AND 1993

	Numbe	Number of Benthic Organisms (Numbers/m²)			
	Grab	Grab	Grab		
Taxonomic Group	Sample 1	Sample 2	Sample 3		
May 1993, Center of Channel					
ANNELIDA Oligochaeta	38		388		
Oligochiaeta	38		,J Q O .		
CRUSTACEA					
Amphipoda					
Hyallela azteca			38		
INSECTA					
Diptera					
Chironomidae		304			
•					
MOLLUSCA					
Gastropoda					
Amnicola limosa	38	2.0	~ ^		
Pleurocera acuta	152	38	38		
August 1993, Left Bank ¹					
TURBELLARIA					
Tricladida sp.		38			
ANNELIDA Oligochaeta	528	2,432	4,978		
Hirudinea	320	2,452	-,,,,,		
Mooreobdella microstoma		38			
· .					
INSECTA					
Diptera Chironomidae					
Tanypodinae			96		
Chironominae	1,254	2,166	702		
MOLLUSCA					
Gastropoda	152	38	114		
Pleurocera acuta Pelecypoda	152	30	±. ± ±*		
Pisidium sp.		380			
risialum sp.		200			

TABLE AII-5 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT OGDEN AVENUE DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)				
	Grab	Grab	Grab		
Taxonomic Group	Sample 1	Sample 2	Sample 3		
August 1993, Center of Channel					
TURBELLARIA					
Tricladida sp.	114	38	304		
ANNELIDA					
Oligochaeta	38		114		
INSECTA					
Trichoptera					
Cheumatopsyche sp.		38	76		
Diptera					
Chironomidae					
Tanypodinae		38	38		
Chironominae	38		76		
MOLLUSCA					
Gastropoda					
Pleurocera acuta	152	228	304		
Pelecypoda					
Musculium sp.	152	228	154		
Pisidium sp.	192	160	301		
Sphaerium sp.	264	106	39		

¹Facing upstream in the waterway.

TABLE AII-6

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER
AT WILLOW SPRINGS ROAD DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)			
	Grab	Grab	Grab	
Taxonomic Group	Sample 1	Sample 2	Sample 3	
May 1992, Left Bank ¹				
ANNELIDA				
Oligochaeta	10,070	4,712	2,546	
INSECTA				
Diptera				
Chironomidae				
Tanypodinae	38	38	114	
MOLLUSCA				
Gastropoda				
Amnicola limosa	48	304		
May 1992, Center of Channel				
ANNELIDA				
Oligochaeta	11,286	17,860	17,528	
INSECTA				
Diptera Chironomidae				
Tanypodinae	38		143	
ranypodrnae	30		143	
August 1992, Left Bank ¹				
ANNELIDA				
Oligochaeta	2,356	1,748	874.	
Hirudinea				
Moorbdella microstoma		38		
INSECTA				
Hemiptera				
Corixidae	38			
Diptera				
Chironomidae				
Tanypodinae	2,280	2,394	2,432	

TABLE AII-6 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT WILLOW SPRINGS ROAD DURING 1992 AND 1993

	Number of Benthic Organisms(Numbers/m²)			
	Grab	Grab	Grab	
Taxonomic Group	Sample 1	Sample 2	Sample 3	
August 1992, Left Bank ¹ (Continued)	_		and the second s	
MOLLUSCA Gastropoda Pleurocera acuta Pelecyoda Pisidium sp.	38	76		
August 1992, Center of Channel				
ANNELIDA				
Oligochaeta	5,814	3,990	3,420	
INSECTA Diptera Chironomidae Tanypodinae	418	114	228	
May 1993, Left Bank ¹				
ANNELIDA Oligochaeta	7,296	2,128	4,674	
INSECTA Diptera Chironomidae	266			
May 1993, Center of Channel				
ANNELIDA Oligochaeta	15,314	15,884	18,050	
INSECTA Diptera Chironomidae	114	152	304	

TABLE AII-6 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT WILLOW SPRINGS ROAD DURING 1992 AND 1993

	Numbe	r of Benthic On (Numbers/m²)	enthic Organisms pers/m²)			
	Grab	Grab	Grab			
Taxonomic Group	Sample 1	Sample 2	Sample 3			
August 1993, Left Bank ¹						
ANNELIDA						
Oligochaeta	4,522	646	7,486			
INSECTA						
Diptera						
Chironomidae						
Tanypodinae	38		38			
Chironominae	38					
August 1993, Center of Channel						
ANNELIDA						
Oligochaeta	7,714	9,538	10,678			
INSECTA						
Diptera						
Culcidae						
Aedes sp.	76					
Chironomidae						
Tanypodinae	342	152	228			
Chironominae		38	76			
MOLLUSCA						
Pelecypoda						
Corbicula fluminea			38			
Sphaerium sp.	38	,				

¹Facing upstream in the waterway.

TABLE AII-7

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER
AT STEPHEN STREET DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)			
	Grab	Grab	Grab	
Taxonomic Group	Sample 1	Sample 2	Sample 3	
May 1992, Left Bank ¹				
ANNELIDA				
Oligochaeta	7,600	6,802	6,802	
CRUSTACEA				
Isopoda				
Caecidotea intermedius	38			
Amphipoda				
Hyaella azteca	38			
INSECTA				
Diptera				
Chironomidae				
Tanypodinae	1,026	722		
Orthocladinae	76	38	76	
Chironominae	152	38	152	
Heleidae	76			
May 1992, Center of Channel				
ANNELIDA				
Oligochaeta	836	760	1,102	
INSECTA				
Ephemeroptera				
Ephemerella sp.		38	38	
Tricoptera				
Cheumatopsyche sp.	1,064		1,102	
Glossosoma sp.		646		
Diptera				
Chironomidae				
Orthocladinae	152	190	114	
Chironominae	266	152	114	
MOLLUSCA				
Gastropoda				
Pleurocera acuta	76	228		

TABLE AII-7 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT STEPHEN STREET DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)			
	Grab	Grab	Grab	
Taxonomic Group	Sample 1	Sample 2	Sample 3	
August 1992, Left Bank ¹				
TURBELLARIA		76		
ANNELIDA				
Oligochaeta	152	1,292	2,812	
Hirudinea				
Helobdella stagnalis			76	
Mooreobdella microstoma		76	114	
CRUSTACEA				
Decapeda				
Orconectes virilis	38			
INSECTA				
Ephemeroptera				
Caenis sp.		228	152	
Coleoptera				
Narpus sp.			38	
Diptera				
Chironomidae			and and	
Tanypodinae		123	68	
Chironominae	38	333	274	
MOLLUSCA				
Gastropoda		77.0		
Amnicola limosa	450	76		
Pleurocera acuta	152			
Pelecypoda		76		
Pisidium sp.		76		
August 1992, Center of Channel				
ANNELIDA		150	Ein	
Oligochaeta		152	532	
CRUSTACEA				
Decopoda				
Orconectes virilis			38	

TABLE AII-7 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT STEPHEN STREET DURING 1992 AND 1993

	Numbe	Number of Benthic Organisms (Numbers/m²)				
	Grab	Grab	Grab			
Taxonomic Group	Sample 1	Sample 2	Sample 3			
August 1992, Center of Channel	(Continued)					
INSECTA						
Ephemeroptera						
Caenis sp.		38				
Odonata		38				
Tricoptera						
Cheumatopsyche sp.	646	1,368	760			
Coleoptera						
Elmidae			76			
Diptera						
Chironomidae						
Tanypodinae	45	138				
Orthocladinae	176	197	45			
Chironominae	45	197	221			
MOLLUSCA						
Gastropoda						
Amnicola limosa			38			
Pleurocera acuta	570	76	836			
Pelecypoda	0.0		550			
Musculium sp.		38				
May 1993, Left Bank ¹						
COELENTERATA						
Hydra sp.	38					
ANNELIDA						
Oligochaeta	5,244	2,356	1,102			
INSECTA						
Ephemeroptera						
Caenis sp.			38			
Coleoptera						
Stenelmis sp.	38					
Diptera						
Chironomidae	646	38	342			

TABLE AII-7 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT STEPHEN STREET DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)			
	Grab	Grab	Grab	
Taxonomic Group	Sample 1	Sample 2	Sample 3	
May 1993, Left Bank ¹ (Continued)				
MOLLUSCA				
Gastropoda				
Amnicola limosa	51			
Pleurocera acuta	101	190		
May 1993, Center of Channel				
ANNELIDA				
Oligochaeta	2,622	1,710	1,064	
INSECTA				
Coleoptera				
Stenelmis sp.	76		38	
Diptera	70		⊅ 0.	
Chironomidae	228	418	76	
MOLLUSCA				
Gastropoda				
Pleurocera acuta	190	38		
August 1993, Left Bank ¹				
No organisms present in grab samp	les.			
August 1993, Center of Channel				
ANNELIDA				
Oligochaeta	2,432	1,026	76	
Hirudinea				
Mooreobdella sp.			38	
CRUSTACEA				
Isopoda				
Caecidotea intermedius	38			

TABLE AII-7 (Continued)

NUMBER OF BENTHIC INVERTEBRATES IN THE DES PLAINES RIVER AT STEPHEN STREET DURING 1992 AND 1993

	Number of Benthic Organisms (Numbers/m²)				
	Grab	Grab	Grab		
Taxonomic Group	Sample 1	Sample 2	Sample 3		
August 1993, Center of Channel	(Continued)				
August 1993, Center of Chammer	(Concinued)				
INSECTA					
Ephemeroptera					
Caenis sp.	38				
Diptera					
Chironomidae					
Tanypodinae	114		152		
Chironominae	76	76	38		
MOLLUSCA					
Gastropoda					
Pleurocera acuta		38			

¹Facing upstream in the waterway.

APPENDIX AIII

FISH CATCH STATISTICS FOR THE DES PLAINES RIVER DURING 1992 AND 1993

TABLE AIII-1

FISH CATCH STATISTICS FOR ELECTROFISHING AND MINNOW SEINE COLLECTIONS AT LAKE-COOK ROAD, DES PLAINES RIVER, DURING 1992 AND 1993

	Number	Weight						
	of	of Catch		l Length			Weight (
Fish Species	Fish	(grams)	Average	e Minimum	Maximum	Average	Minimum	Maximum
8/4/92 Collection								
Carp	4	5699.00	468	437	500	1424.75	1036.00	1619.00
Spotfin shiner	66	112.19	55	37	77	1.70	0.37	3.97
Sand shiner	3	3.97	53	48	56	1.32	0.78	1.68
Bluntnose minnow	1	0.20	31	31	31	0.20	0.20	0.20
Fathead minnow	1	0.22	29	29	29	0.22	0.22	0.22
Green sunfish	9	98.94	74	24	110	10.99	0.23	28.49
Bluegill	4	45.57	85	69	112	11.39	5.79	23.00
Blackside darter	1	1.07	50	50	50	1.07	1.07	1.07
8/4/92 Totals	89	5961.16						
10/21/92 Collection	on							
Spotfin shiner	68	179.33	62	22	75	2.64	0.08	4.50
Sand shiner	2	2.37	48	35	60	1.19	0.42	1.95
Bluntnose minnow	3	6.04	54	44	70	2.01	0.90	4.00
Black bullhead	1	150.00	224	224	224	150.00	150.00	150.00
Blackstripe								
topminnow	4	1.82	37	35	40	0.46	0.34	0.62
Green sunfish	6	106.60	95	73	128	17.77	7.30	41.10
Bluegill	10	60.48	47	28	128	6.05	0.34	41.80

TABLE AIII-1(Continued)

	Number of	Weight of Catch		Length		Body	Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
10/21/92 Collection	on (Cont:	inued)	**************************************					***************************************
Black crappie	1	2.30	61	61	61	2.30	2.30	2.30
Johnny darter	5	9.00	57	53	62	1.80	1.41	2.26
Blackside darter	1	2.95	66	66	66	2.95	2.95	2.95
10/21/92 Totals	101	520.89						
8/11/93 Collection	l							
Northern pike	4	162.50	200	184	215	40.63	34.00	49.00
Carp	1	1431.00	467	467	467	1431.00	1431.00	1431.00
Spotfin shiner	25	46.11	57	26	75	1.84	0.12	4.12
Mimic shiner	1	0.71	45	45	45	0.71	0.71	0.71
Bluntnose minnow	2	0.17	25	23	27	0.09	0.07	0.10
Fathead minnow	5	2.11	33	23	52	0.42	0.07	1.34
Channel catfish	4	1.53	36	32	39	0.38	0.32	0.44
Blackstripe								
topminnow	5	6.15	50	31	58	1.23	0.23	1.77
Green sunfish	24	166.13	59	28	112	6.92	0.32	32.50
Pumpkinseed	1	45.50	123	123	123	45.50	45.50	45.50
Bluegill	17	49.22	35	21	124	2.90	0.11	40.50
Largemouth bass	5	5.98	46	41	51	1.20	0.87	1.63

TABLE AIII-1(Continued)

	Number	Weight	m · 1 · 3	-	()		.v: 1 - 1- 1 - 7	
	of	of Catch_		Length			Weight (
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
8/11/93 Collection	(Conti	nued)						
Black crappie	2	38.50	95	52	137	19.25	1.50	37.00
Bluegill x green								
sunfish hybrid	1	17.50	95	95	95	17.50	17.50	17.50
Johnny darter	8	2.37	35	32	38	0.30	0.20	0.40
8/11/93 Totals	105	1975.48						
10/1/93 Collection								
Carp	4	6910.00	469	400	565	1727.50	1040.00	3000.00
Spotfin shiner	3	2.81	43	29	64	0.94	0.18	2.30
Bluntnose minnow	1	0.38	38	38	38	0.38	0.38	0.38
Blackstripe								
topminnow	9	10.76	48	34	66	1.20	0.31	2.54
Green sunfish	21	236.11	74	30	138	11.24	0.42	59.00
Bluegill	15	10.45	36	27	4 5	0.70	0.20	1.39
Largemouth bass	1	4.00	66	66	66	4.00	4.00	4.00
Black crappie	3	54.21	83	45	156	18.07	0.98	52.00
Johnny darter	1	1.21	56	56	56	1.21	1.21	1.21
10/1/93 Totals	58	7229.93						

TABLE AIII-2

FISH CATCH STATISTICS FOR ELECTROFISHING AND MINNOW SEINE COLLECTIONS AT OAKTON STREET, DES PLAINES RIVER, DURING 1992 AND 1993

	Number	Weight						
	of	of Catch	Total	Length	(mm)	Body	Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
8/5/92 Collection								
Carp	1	2752.00	544	544	544	2752.00	2752.00	2752.00
Spotfin shiner	36	91.81	62	45	70	2.55	0.70	3.69
Sand shiner	20	32.79	55	48	59	1.64	0.90	2.06
Bluntnose minnow	9	14.64	52	33	66	1.63	0.25	3.06
Fathead minnow	7	4.95	41	35	53	0.71	0.38	1.77
White sucker	5	382.11	128	63	335	76.42	2.03	363.00
Blackstripe								
topminnow	2	4.79	61	60	62	2.40	2.16	2.63
Green sunfish	30	294.15	69	30	127	9.81	0.49	50.00
Pumpkinseed	7	68.48	78	70	81	9.78	6.48	12.00
Orangespotted								
sunfish	3	23.59	72	66	75	7.86	6.19	8.91
Johnny darter	16	12.36	44	38	48	0.77	0.47	1.01
Blackside darter	4	2.92	44	37	51	0.73	0.42	1.09
8/5/92 Totals	140	3684.59						

TABLE AIII-2 (Continued)

	Number of	Weight of Catch	Total	Length	(mm)	Body (Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
10/22/92 Collectio	n							
Spotfin shiner	 5	6.01	43	23	72	1.20	0.12	3.67
Bluntnose minnow	3	1.59	39	26	47	0.53	0.13	0.84
Fathead minnow	2	5.42	62	59	64	2.71	2.31	3.11
White sucker	5	299.07	141	83	268	59.81	6.75	224.00
Tadpole madtom	1	7.92	79	79	79	7.92	7.92	7.92
Blackstripe								
topminnow	5	9.56	56	45	66	1.91	0.83	3.42
Green sunfish	5	41.84	74	55	85	8.37	3.44	12.00
Pumpkinseed	2	27.90	88	85	90	13.95	13.20	14.70
Bluegill	1	5.70	71	71	71	5.70	5.70	5.70
Johnny darter	3	3.93	53	45	59	1.31	0.77	1.70
Blackside darter	1	2.16	63	63	63	2.16	2.16	2.16
10/22/92 Totals	33	411.10						
8/16/93 Collection								
Northern pike	1	49.00	208	208	208	49.00	49.00	49.00
Spotfin shiner	9	11.43	51	41	62	1.27	0.54	2.37
Sand shiner	2	2.54	44	25	62	1.27	0.13	2.41
Bluntnose minnow	5	6.73	52	36	63	1.35	0.30	2.45

TABLE AIII-2 (Continued)

Fish Species	Number of Fish	Weight of Catch (grams)		Length Minimum	(mm) Maximum		Veight (g Minimum	grams) Maximum
8/16/93 Collection	(Conti	nued)						
Blackstripe								
topminnow	1	0.14	26	26	26	0.14	0.14	0.14
Green sunfish	20	111.52	56	24	108	5.58	0.22	28.00
Pumpkinseed	1	29.50	108	108	108	29.50	29.50	29.50
Bluegill	3	1.72	33	26	37	0.57	0.21	0.81
Largemouth bass	1	2.00	54	54	54	2.00	2.00	2.00
Blackside darter	1	2.81	69	69	69	2.81	2.81	2.81
8/16/93 Totals	44	217.39						
10/5/93 Collection								
Spotfin shiner	8	2.47	30	21	51	0.31	0.06	1.18
Sand shiner	3	6.23	62	61	63	2.08	2.01	2.12
Bluntnose minnow	12	5.39	37	23	49	0.45	0.08	0.94
Fathead minnow	1	0.11	25	25	25	0.11	0.11	0.11
Channel catfish	1	1.43	55	55	55	1.43	1.43	1.43
Blackstripe								
topminnow	5	2.39	39	36	40	0.48	0.41	0.55
Green sunfish	7	26.46	53	31	75	3.78	0.58	9.00
Pumpkinseed	1	27.00	110	110	110	27.00	27.00	27.00

AIII-7

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

TABLE AIII-2 (Continued)

	Number of	Weight of Catch	Total	Length	(mm)	Body I	Weight (g	grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
10/5/93 Collection	n(Contin	ued)						
10/5/93 Collection	n(Contin	ued) 0.92	41	41	41	0.92	0.92	0.92
	n(Contin 1 6		41 46	41 37	41 53	0.92 0.77	0.92 0.34	0.92 1.17

TABLE AIII-3

FISH CATCH STATISTICS FOR ELECTROFISHING AND MINNOW SEINE COLLECTIONS AT BELMONT AVENUE, DES PLAINES RIVER, DURING 1992 AND 1993

	Number of	Weight of Catch	Total	Length	(mm)	Body 1	Weight (grams)
Fish Species	Fish	(grams)		**************************************	Maximum		Minimum	
8/6/92 Collection								
Goldfish	1	277.00	227	227	227	277.00	277.00	277.00
Spotfin shiner	8	31.00	66	50	82	3.88	1.47	6.70
Sand shiner	18	44.50	60	53	69	2.47	1.39	3.94
Bluntnose minnow	5	19.00	63	31	84	3.80	0.19	7.92
Fathead minnow	11	7.47	35	25	63	0.68	0.13	3.47
White sucker	1	1.02	50	50	50	1.02	1.02	1.02
Yellow bullhead	1	36.00	135	135	135	36.00	36.00	36.00
Blackstripe topmir	now 2	5.15	63	63	63	2.58	2.34	2.81
Green sunfish	2	27.00	84	81	87	13.50	13.00	14.00
Pumpkinseed	3	31.00	77	70	87	10.33	7.00	14.00
8/6/92 Totals	52	479.14						
10/23/92 Collection	on							
Spotfin shiner	10	2.16	24	17	33	0.22	0.09	0.40
Sand shiner	3	2.16	31	13	60	0.72	0.06	1.98
Bluntnose minnow	6	8.99	43	19	71	1.50	0.06	3.92
Fathead minnow	14	26.42	54	39	65	1.89	0.41	3.63
Yellow bullhead	1	29.20	132	132	132	29.20	29.20	29.20
Blackstripe topmin	now 5	7.05	47	31	65	1.41	0.32	3.18

TABLE AIII-3 (Continued)

			· · · · · · · · · · · · · · · · · · ·	rangjes, ya yene mejeren dije ya dejaka a kisa semurus. Bahirasi birin birinki basa kenakan meter dijeksida	and the strong of the anti-transfer and the section of the section	ere enconcentracione de la companya	- Self- Al Terroritor	
	Number	Weight						
	of	of Catch	Tota:	l Length	(mm)	Body W	<i>l</i> eight (c	grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
10/23/92 Collection	on (Cont	inued)						
Green sunfish	2	10.00	66	63	68	5.00	4.70	5.30
10/23/92 Totals	41	85.98						
8/17/93 Collection	1							
Spotfin shiner	9	15.57	49	20	73	1.73	0.04	4.38
Bluntnose minnow	13	4.97	32	25	65	0.38	0.10	2.56
Creek chub	1	1.05	47	47	47	1.05	1.05	1.05
Yellow bullhead	2	2.27	38	23	52	1.14	0.16	2.11
Blackstripe topmin	now 4	1.52	34	30	42	0.38	0.24	0.62
Green sunfish	7	37.80	58	26	77	5.40	0.27	10.00
Bluegill	2	0.77	30	28	31	0.39	0.34	0.43
Johnny darter	2	1.05	39	33	45	0.53	0.26	0.79
8/17/93 Totals	40	65.00						
10/11/93 Collection	on							
Northern pike	1	90.00	264	264	264	90.00	90.00	90.00
Spotfin shiner	39	13.80	33	19	58	0.35	0.04	1.89
Sand shiner	4	3.10	49	34	67	0.78	0.28	1.63
Bluntnose minnow	38	14.69	36	25	49	0.39	0.08	0.98

TABLE AIII-3 (Continued)

	Number of	Weight of Catch		Length		Body W	eight (g	rams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average 1	Minimum	Maximum
10/11/93 Collecti	on (Cont.	inued)						
10/11/93 Collecti Blackstripe	ion (Cont	inued)						
10/11/93 Collecti Blackstripe topminnow	ion (Cont	<u>inued)</u> 2.02	39	30	45	0.51	0.25	0.72
Blackstripe			39 61	30 37	45 92	0.51 7.23	0.25 1.00	0.72 16.90
Blackstripe topminnow	4	2.02						

TABLE AIII-4

FISH CATCH STATISTICS FOR ELECTROFISHING AND MINNOW SEINE COLLECTIONS AT ROOSEVELT ROAD, DES PLAINES RIVER, DURING 1992 AND 1993

	Number	Weight	an kangangan ang ang ang ang ang ang ang ang			THE ROYAL CONTROL OF THE CONTROL OF	ni - maren e de d	in (ann an 1804), go mga mpaganiyatan anna dababan kusa an na anna na anna an anna an anna an an
	of	of Catch	Total	l Length	(mm)	Body W	leight (g	grams)
Fish Species	Fish	(grams)			Maximum	Average		
8/12/92 Collection	1							
Goldfish	9	103.97	67	35	130	11.55	0.67	43.00
Carp	3	5.13	47	43	50	1.71	1.22	2.04
Carp x goldfish								
hybrid	3	8.73	53	42	69	2.91	1.42	5.65
Bluntnose minnow	1	0.52	39	39	39	0.52	0.52	0.52
Fathead minnow	6	6.11	44	40	52	1.02	0.62	1.89
White sucker	1	1.90	53	53	53	1.90	1.90	1.90
Green sunfish	3	25.40	74	65	83	8.47	5.00	12.10
Bluegill	1	2.70	56	56	56	2.70	2.70	2.70
8/12/92 Totals	27	154.46						
8/31/92 Collection	<u>1</u>							
Goldfish	11	16.57	45	38	57	1.51	0.78	3.14
Carp	1	2.98	5 4	54	54	2.98	2.98	2.98
Sand shiner	1	0.54	40	40	40	0.54	0.54	0.54
Bluntnose minnow	25	17.58	44	39	52	0.70	0.52	1.27
Fathead minnow	143	123.66	44	20	58	0.86	0.07	1.96
White sucker	1	7.21	85	85	85	7.21	7.21	7.21

TABLE AIII-4 (Continued)

	Number of	Weight of Catch	Total	Length	(mm)	Body 1	Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
8/31/92 Collection	(Continu	ıed)				7.		
Blackstripe								
topminnow	22	13.96	36	22	60	0.63	0.10	2.20
8/31/92 Totals	204	182.50						
10/30/92 Collectic	n							
Goldfish	1	317.00	243	243	243	317.00	317.00	317.00
Sand shiner	1	0.31	33	33	33	0.31	0.31	0.31
Bluntnose minnow	32	8.54	29	19	56	0.27	0.04	1.69
Fathead minnow	34	36.44	44	17	59	1.07	0.03	2.41
Blackstripe								
topminnow	3	2.51	37	23	55	0.84	0.17	1.97
10/30/92 Totals	71	364.80						
8/20/93 Collection	L					• •		
Sand shiner	1	0.14	28	28	28	0.14	0.14	0.14
Bluntnose minnow	24	3.95	28	22	35	0.16	0.07	0.32
Tadpole madtom	1	0.53	38	38	38	0.53	0.53	0.53
Blackstripe								
topminnow	5	1.16	30	21	35	0.23	0.07	0.38

TABLE AIII-4 (Continued)

	Number	Weight					~	
	of	of Catch		Length			Weight (
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
8/20/93 Collection	ı (Conti	nued)						
Green sunfish	1	0.42	29	29	29	0.42	0.42	0.42
Bluegill	19	12.68	35	23	42	0.67	0.17	1.09
Black crappie	1	2.19	57	57	57	2.19	2.19	2.19
Johnny darter	22	7.11	33	25	43	0.32	0.12	0.66
Blackside darter	4	1.91	40	31	50	0.48	0.23	0.87
8/20/93 Totals	78	30.09						
10/13/93 Collection	on							
Spotfin shiner	92	13.29	26	17	39	0.14	0.03	0.51
Sand shiner	33	5.97	29	20	37	0.18	0.04	0.38
Bluntnose minnow	145	42.82	33	19	47	0.30	0.03	0.88
Fathead minnow	4	0.49	25	18	30	0.12	0.05	0.19
Blackstripe								
topminnow	7	6.54	44	35	67	0.93	0.34	3.17
Bluegill	1	1.04	40	40	40	1.04	1.04	1.04
10/13/93 Totals	282	70.15						

TABLE AIII-5

FISH CATCH STATISTICS FOR ELECTROFISHING AND MINNOW SEINE COLLECTIONS
AT OGDEN AVENUE, DES PLAINES RIVER, DURING 1992 AND 1993

	Number	Weight						
	of	of Catch		Length				grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
8/11/92 Collection	ıs							
Goldfish	1	8.59	89	89	89	8.59	8.59	8.59
Carp	1	1.64	48	48	48	1.64	1.64	1.64
Golden shiner	1	0.22	31	31	31	0.22	0.22	0.22
Spotfin shiner	2	5.45	62	60	64	2.73	2.56	2.89
Sand shiner	38	63.40	56	40	69	1.67	0.47	3.34
Bluntnose minnow	47	83.73	55	28	72	1.78	0.10	3.93
Creek chub	1	0.55	41	41	41	0.55	0.55	0.55
White sucker	5	19.29	70	62	76	3.86	2.53	4.88
Black bullhead	1	28.00	130	130	130	28.00	28.00	28.00
Tadpole madtom	1	4.46	66	66	66	4.46	4.46	4.46
Green sunfish	6	35.57	64	46	82	5.93	1.99	10.70
Pumpkinseed	2	12.10	70	66	73	6.05	5.40	6.70
Orangespotted suni	fish 1	3.93	60	60	60	3.93	3.93	3.93
8/11/92 Totals	107	266.93						
10/28/92 Collection	on							
Spotfin shiner	4	13.40	66	62	73	3.35	2.48	4.82
Sand shiner	3	9.30	66	62	69	3.10	2.47	3.51
Bluntnose minnow	11	24.19	53	26	77	2.20	0.18	4.83

TABLE AIII-5 (Continued)

						در د	egyanyan angan di disama di kananan kananan di Andrewa, pepanan da anga	
	Number	Weight						
	of	of Catch	Tota]	Length	(mm)	Body	Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
10/28/92 Collection	n (Cont:	inued)						
White sucker	3	975.00	321	301	348	325.00	260.00	410.00
Tadpole madtom	1	3.94	64	64	64	3.94	3.94	3.94
Blackstripe topmin	now 1	0.32	31	31	31	0.32	0.32	0.32
Mosquitofish	14	4.40	26	20	41	0.31	0.13	1.02
Green sunfish	8	45.20	67	58	80	5.65	3.50	9.20
Pumpkinseed	3	28.40	80	77	86	9.47	8.30	11.70
Orangespotted sunf	ish 2	13.80	75	70	80	6.90	5.50	8.30
Black crappie	1	169.00	211	211	211	169.00	169.00	169.00
10/28/92 Totals	51	1286.95				•		
8/13/93 Collection	<u> </u>							
Carp	3	5231.50	487	470	499	1743.83	1520.50	
Sand shiner	6	10.10	56	39	62	1.68	0.52	2.26
Bluntnose minnow	7	10.08	51	27	62	1.44	0.10	2.13
White sucker	2	158.50	196	183	209	79.25	60.50	98.00
Black bullhead	1	36.50	148	148	148	36.50	36.50	36.50
Green sunfish	34	277.63	68	30	115	8.17	0.45	31.50
Bluegill	13	94.08	52	20	135	7.24	0.22	56.00
Largemouth bass	2	3.44	51	47	55	1.72	1.39	2.05

TABLE AIII-5 (Continued)

	Number of	Weight of Catch	Total	Length	(mm)	Body	Weight (aramg)
Fish Species	Fish	(grams)			Maximum		Minimum	
8/13/93 Collection	ı (Conti	nued)		· · · · · · · · · · · · · · · · · · ·		:		
Black crappie	1	34.00	135	135	135	34.00	34.00	34.00
Green sunfish x								
pumpkinseed								
hybrid	1	26.50	107	107	107	26.50	26.50	26.50
8/13/93 Totals	70	5882.33						
10/8/93 Collection	1							
Carp	1	1439.00	478	478	478	1439.00	1439.00	1439.00
Spotfin shiner	13	19.09	51	26	65	1.47	0.12	2.89
Sand shiner	1	2.61	67	67	67	2.61	2.61	2.61
Bluntnose minnow	1	0.16	29	29	29	0.16	0.16	0.16
Yellow bullhead	1	130.50	205	205	205	130.50	130.50	130.50
Mosquitofish	1	0.24	29	29	29	0.24	0.24	0.24
Green sunfish	29	187.89	66	35	100	6.48	0.70	17.80
Bluegill	28	79.11	51	32	95	2.83	0.38	15.40
Largemouth bass	2	17.40	85	63	106	8.70	3.10	14.30
Blackside darter	1	0.92	50	50	50	0.92	0.92	0.92
10/8/93 Totals	78	1876.92						

TABLE AIII-6

FISH CATCH STATISTICS FOR ELECTROFISHING AND MINNOW SEINE COLLECTIONS AT WILLOW SPRINGS ROAD, DES PLAINES RIVER, DURING 1992 AND 1993

	· · · · · · · · · · · · · · · · · · ·					and the second s	and the state of the form the second second sections are second
Number of	Weight of Catch				***************************************		ams)
Fish	(grams)	Average	Mınımu	m Maximum	Average M	iinimum r	axımum
<u>l</u>							
10	7.53	24	13	73	0.75	0.06	6.60
176	69.92	37	21	58	0.40	0.08	1.87
8	3.50	34	19	42	0.44	0.06	0.83
2	11.95	83	83	83			6.06
							10.40
							6.80
							0.69
3	14.09	62	55	68	4.70	3.24	5.60
6	35.25	55	14	87	5.87	0.10	13.60
226	185.76						
l							
72	51.51	42	26	68	0.72	0.12	3.49
1	0.31	31	31	31	0.31	0.31	0.31
16	30.16	36	19	78	1.89	0.14	10.30
	5.9	69	69	69	5.90	5.90	5.90
		79	79	79	4.74	4.74	4.74
91	92.62						
	of Fish 10 176 8 2 10 2 9 3 6 226	of of Catch Fish (grams) 10 7.53 176 69.92 8 3.50 2 11.95 10 28.61 2 12.10 9 2.81 3 14.09 6 35.25 226 185.76 72 51.51 1 0.31 16 30.16 1 5.9 1 4.74	of of Catch Total Fish (grams) Average 10 7.53 24 176 69.92 37 8 3.50 34 2 11.95 83 10 28.61 41 2 12.10 80 9 2.81 27 3 14.09 62 6 35.25 55 226 185.76 72 51.51 42 1 0.31 31 16 30.16 36 1 5.9 69 1 4.74 79	of of Catch Total Length Fish (grams) Average Minimum 10 7.53 24 13 176 69.92 37 21 8 3.50 34 19 2 11.95 83 83 10 28.61 41 11 2 12.10 80 76 9 2.81 27 21 3 14.09 62 55 6 35.25 55 14 226 185.76 72 51.51 42 26 1 0.31 31 31 16 30.16 36 19 1 5.9 69 69 1 4.74 79 79	of catch Total Length (mm) Fish (grams) Average Minimum Maximum 10 7.53 24 13 73 176 69.92 37 21 58 8 3.50 34 19 42 2 11.95 83 83 83 10 28.61 41 11 80 2 12.10 80 76 83 9 2.81 27 21 34 3 14.09 62 55 68 6 35.25 55 14 87 226 185.76 72 51.51 42 26 68 1 0.31 31 31 31 16 30.16 36 19 78 1 5.9 69 69 69 1 4.74 79 79 79	of of Catch Total Length (mm) Body We Fish (grams) Average Minimum Maximum Maximum Average Minimum Max	of Catch Total Length (mm) Body Weight (grams) 10 7.53 24 13 73 0.75 0.06 176 69.92 37 21 58 0.40 0.08 8 3.50 34 19 42 0.44 0.06 2 11.95 83 83 83 5.98 5.89 10 28.61 41 11 80 2.86 0.10 2 12.10 80 76 83 6.05 5.30 9 2.81 27 21 34 0.31 0.20 3 14.09 62 55 68 4.70 3.24 6 35.25 55 14 87 5.87 0.10 72 51.51 42 26 68 0.72 0.12 1 0.31 31 31 31 0.31 0.31 16 30.16 36 19 78 1.89 0.14 1 5.9 69 69 69 69 5.90 5.90 1 4.74 79 79 79 79 4.74 4.74

TABLE AIII-6 (Continued)

Fish Species	Number of Fish	Weight of Catch (grams)		Length Minimum	(mm) Maximum		Weight (g Minimum	grams) Maximum
10/29/92 Collection	on							
Golden shiner	1	0.98	52	52	52	0.98	0.98	0.98
Spotfin shiner	4	0.82	24	22	31	0.21	0.16	0.29
Sand shiner	6	2.77	36	28	57	0.46	0.17	1.58
Bluntnose minnow	772	649.00	43	21	74	0.84	0.09	4.26
Fathead minnow	10	6.11	39	28	53	0.61	0.20	1.10
Tadpole madtom	2	6.11	54	33	75	3.06	0.50	5.61
Blackstripe								
topminnow	3	1.99	40	37	43	0.66	0.48	0.87
Mosquitofish	33	6.82	25	19	42	0.21	0.06	0.93
Green sunfish	20	34.42	39	21	87	1.72	0.16	11.00
Pumpkinseed	6	39.60	68	29	82	6.60	0.40	11.00
Orangespotted								
sunfish	7	12.03	41	30	62	1.72	0.55	4.50
Bluegill	15	63.54	46	15	109	4.24	0.14	22.00
Largemouth bass	3	93.47	103	52	182	31.16	2.17	86.00
10/29/92 Totals	882	917.66						

TABLE AIII-6 (Continued)

	Number of	Weight of Catch	Total	Length	(mm)	Body I	Weight (arams)
Fish Species	Fish	(grams)			Maximum		Minimum	
8/18/93 Collection	n.					2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (
Bluntnose minnow	19	3.25	27	17	47	0.17	0.03	0.79
Blackstripe topmin	now 4	1.45	35	25	40	0.36	0.12	0.51
Mosquitofish	3	1.23	30	24	41	0.41	0.10	0.98
Green sunfish	16	12.66	31	25	68	0.79	0.22	6.00
Orangespotted sunf	fish 3	12.50	60	55	67	4.17	3.00	6.00
Bluegill	145	90.99	32	17	92	0.63	0.03	13.00
Largemouth bass	4	10.68	57	46	70	2.67	1.30	4.50
White crappie	1	0.38	36	36	36	0.38	0.38	0.38
Blackside darter	1	0.29	35	35	35	0.29	0.29	0.29
8/18/93 Totals	196	133.43						
10/12/93 Collection	on							
Gizzard shad	4	206.10	159	94	284	51.53	8.10	155.00
Spotfin shiner	3	0.36	26	24	28	0.12	0.10	0.14
Bluntnose minnow	25	8.48	35	25	46	0.34	0.10	0.80
Fathead minnow	1	0.18	29	29	29	0.18	0.18	0.18
Blackstripe								
topminnow	3	3.91	50	41	65	1.30	0.58	2.62
Mosquitofish	3	0.68	27	24	32	0.23	0.11	0.42

TABLE AIII-6 (Continued)

	Number of	Weight of Catch			(mm)			rams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
10/12/93 Collection	n (Cont	inued)						
10/12/93 Collection	on (Cont	inued)						
	on (Cont	inued) 77.20	52	20	109 [.]	4.06	0.11	23.10
Green sunfish			52 39	20 21	109 [.] 88	4.06 1.07	0.11 0.13	
10/12/93 Collection Green sunfish Bluegill Largemouth bass	19	77.20						23.10 11.80 4.40

	Number	Weight			anagana Antana Managang mga papan an ini mini mini mang ya mama ya mangan manan ini mini mini mini mini mini m	им вышения выполнения в продуссий в предоставления в подоставления в подост	астом в при том поможения на 16 м до 16	
	of	of Catch	Total	Length	(mm)	Body I	Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximum
8/17/92 Collection	<u>1</u>							
Gizzard shad	1	0.17	29	29	29	0.17	0.17	0.17
Golden shiner	2	20.35	81	42	120	10.18	0.58	19.77
Sand shiner	7	14.18	58	50	65	2.03	1.32	3.15
Bluntnose minnow	157	202.65	49	21	78	1.29	0.07	4.88
White sucker	4	20.04	75	65	89	5.01	2.95	8.16
Blackstripe								
topminnow	1	2.45	63	63	63	2.45	2.45	2.45
Mosquitofish	9	4.27	32	23	39	0.47	0.11	0.95
Green sunfish	16	158.46	71	23	109	9.90	0.23	30.00
8/17/92 Totals	197	422.57						
10/27/92 Collection	on							
Gizzard shad	 1	3.62	72	72	72	3.62	3.62	3.62
Goldfish	2	3.15	44	36	51	1.58	0.78	2.37
Carp	3	11.72	62	5 8	65	3.91	2.84	4.78
Sand shiner	10	8.95	44	33	64	0.90	0.26	2.50
Bluntnose minnow	279	302.28	45	27	82	1.08	0.18	6.69
White sucker	1	23.00	134	134	134	23.00	23.00	23.00

TABLE AIII-7 (Continued)

	Number of	Weight of Catch	Total	Length	(mm)	Body 1	Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum		Minimum	
10/27/92 Collectio	n (Cont:	inued)						
Blackstripe								
topminnow	1	0.60	40	40	40	0.60	0.60	0.60
Mosquitofish	13	7.12	33	26	45	0.55	0.23	1.28
Green sunfish	14	108.72	68	35	114	7.77	0.84	25.40
Orangespotted								
sunfish	4	5.15	40	35	50	1.29	0.82	2.42
10/27/92 Totals	328	474.31						
8/12/93 Collection	· •							
Goldfish	2	3.66	50	49	50	1.83	1.72	1.94
Ozark minnow	1	0.44	38	38	38	0.44	0.44	0.44
Spotfin shiner	3	4.37	53	4 5	60	1.46	0.91	1.77
Sand shiner	4	6.22	55	50	61	1.56	1.18	2.15
Bluntnose minnow	199	273.23	53	25	7.3	1.37	0.09	4.23
Creek chub	1	0.91	45	45	45	0.91	0.91	0.91
White sucker	2	256.99	171	62	279	128.50	2.49	254.50
Channel catfish Blackstripe	1	0.38	36	36	36	0.38	0.38	0.38
topminnow	2	1.83	45	36	54	0.92	0.40	1.43

TABLE AIII-7 (Continued)

The second secon	Captures white they are not be refer to the services and the services are thinked to the property depth of the	Managery (1995) - ar industrial of historial street and are considered a share				entrick and a second rate. The health of the high receipt on the second	7 TO 1 THE OWN	***************************************
	Number	Weight						
	of	of Catch	Tota.	l Length	(mm)	Body W	Veight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximur
8/12/93 Collection	n (Conti	nued)						
Mosquitofish	7	3.08	32	24	38	0.44	0.12	0.78
Green sunfish	8	32.05	58	42	68	4.01	2.46	6.50
Pumpkinseed	2	1.61	36	35	37	0.81	0.69	0.92
Bluegill	1	22.50	107	107	107	22.50	22.50	22.50
Smallmouth bass	1	3.74	66	66	66	3.74	3.74	3.74
Largemouth bass	8	334.18	90	37	265	41.77	0.68	305.00
8/12/93 Totals	242	945.19						
10/7/93 Collection	<u>n</u>							
Gizzard shad	1	7.17	94	94	94	7.17	7.17	7.17
Emerald shiner	4	16.79	84	82	85	4.20	3.53	4.64
Spotfin shiner	8	4.33	36	28	65	0.54	0.17	2.36
Sand shiner	15	16.44	48	32	62	1.10	0.25	2.35
Bluntnose minnow	204	229.37	49	27	73	1.12	0.12	4.02
Creek chub	3	5.05	55	51	61	1.68	1.30	2.30
Blackstripe								
topminnow	14	12.61	44	35	63	0.90	0.36	2.59
Mosquitofish	1	0.54	36	36	36	0.54	0.54	0.54
Green sunfish	4 5	212.10	55	27	106	4.71	0.36	28.50

TABLE AIII-7 (Continued)

	Number of	Weight of Catch	Tota1	Length	(mm)	Body I	Weight (grams)
Fish Species	Fish	(grams)	Average	Minimum	Maximum	Average	Minimum	Maximu
10/7/02 0-11	a (Conti	d\						
10/7/93 Collection	T (COULT)	nuea)						
Orangespotted	I (COLLET	nuea)						
	6	6.50	41	36	48	1.08	0.70	1.77
Orangespotted sunfish			41 89	3 <u>6</u> 72	48 102	1.08 9.67	0.70 4.50	1.77 14.00
Orangespotted	6	6.50					·	

APPENDIX AIV

INDEX OF BIOTIC INTEGRITY FOR FISH COLLECTIONS FROM THE DES PLAINES RIVER DURING 1992 AND 1993

TABLE AIV-1

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR LAKE COOK ROAD ON THE DES PLAINES RIVER DURING 1992 AND 1993

	8/	4/92	10,	/21/92	8/:	11/93	10,	/1/93
IBI Metric	BP	SEINE	BP	SEINE	BP	SEINE	BP	SEINE
Species Per Sample	4	7	5	10	6	12	8	2
Sucker Species	0	0	0	0	0	0	0	0
Sunfish Species	2	2	2	3	3	4	3	1
Darter Species	0	1	1	2	0	1	1	0
Intolerant Species	1	1	0	1	0	2	1	0
% Green Sunfish	42	2	31	1	58	4	38	·, 0
% Hybrids	0	0	0	0	3	0	0	0
% Diseased	0	0	0	0	3	1	4	0
% Omnivores	21	3	6	. 2	3	12	7	50
% Insectivorous								
Cyprinids	32	88	0	82	0	36	5	0
% Carnivores	0	0	0	1	17	13	7	0
Total Fish	19	60	16	85	36	69	56	2
Shock time (min)	17	-	21	-	18	_	20	
Stream Order	5	5	5	5	5	5	5	5
Stream Basin	2	2	2	2	2	2	2	2
Metric Factors								
Species Per Sample	1	1	1	3	1	3	1	1
Sucker Species	1	1	1	1	1	1	1	1
Sunfish Species	3	3	3	3	3	5	3	1
Darter Secies	1	1	1	1	1	1	1	1
Intolerant Species	1	1	1	1	1	3	1	1
% Green Sunfish	1	5	1	5	1	5	1	5
% Hybrid	5	5	5	5	1	5	5	5
% Diseased	5	5	5	5	1	1	1	5
% Omnivores	3	5	5	5	5	5	5	1
% Insectivorous								
Cyprinids	3	5	1	5	1	3	1	1
% Carnivores	1	1	1	3	5	5	5	1
Abundance	1	3	1	3	1	1	1	1
IBI	26	36	26	40	22	38	26	24

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR OAKTON STREET ON THE DES PLAINES RIVER DURING 1992 AND 1993

	8/	/5/92	10.	/22/92	8/	16/93	10,	/5/93
IBI Metric	BP	SEINE	BP	SEINE	BP	SEINE	BP	SEINE
Species Per Sample	5	11	7	9	6	4	6	6
Sucker Species	0	1	1	1	0	0	0.	0
Sunfish Species	2	3	3	1	3	0	3	1
Darter Species	0	2	0	2	1	0	0	1
Intolerant Species	0	1	1	1	0	1	1	. 0
% Green Sunfish	78	8	24	6	74	0	19	7
% Hybrids	0	0	0	0	0	0	0	0
% Diseased	0	1	0	6	7	0	0	0
% Omnivores	7	13	6	25	0	29	32	21
% Insectivorous		•						
Cyprinids	0	50	24	6	0	65	26	21
% Carnivores	0	0	0	Ö	4	6	0	7
Total Fish	27	113	17	16	27	17	31	14
Shock time (min)	14		14	-	10	- <i>'</i>	13	
Stream Order	5	5	5	5	5	5	5	. 5
Stream Basin	2	2	2	2	2	2	2	2
Metric Factors								
Species Per Sample	1	3	1	3	1	1	1	1
Sucker Species	1	1	1	1	1	1	1	ī
Sunfish Species	3	3	3	ī	3	1	3	1
Darter Secies	1	1	1	1	1	1	1	1
Intolerant Species	1	1	ī	1	1	1	1	1
% Green Sunfish	1	3	1	3	1	5	3	3
% Hybrid	5	5	5	5	5	5	5	. 5
% Diseased	5	3	5	1	1	5	5 5	5
% Omnivores	5	5	5	3	5	3	3	3
% Insectivorous	J	J	5	J	5	۵,	3	3
Cyprinids	1	5	3	1	1		. 3	7
% Carnivores	1	1	3 1	1		5	3	3
Abundance	1	⊥ 3	1	1	3	5	1	5
ADUNGANCE	Ŧ	3	1	Τ	1	1	1	1
IBI	26	34	28	22	24	34	28	30

TABLE AIV-3

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR BELMONT AVENUE ON THE DES PLAINES RIVER DURING 1992 AND 1993

IBI Metric	8/ BP	6/92 SEINE	10, BP	/23/92 SEINE	8/: BP	17/93 SEINE	_10, BP	/11/93 SEINE
Species Dev Cample	8	10	5	3	8	4	7	2
Species Per Sample Sucker Species	1	1	0	0	0	0	ó	. 0
Sunfish Species	2	2	1	0	2	1	1	0
Darter Species	0	0	Ō	0	1	1	1	. 0
Intolerant Species	0	1	Ô	0	1	1	1	1
% Green Sunfish	13	4	14	Ô	11	33	8	0
% Hybrids	0	0	0	0	0	0	0	ō
% Diseased	Ö	0	4	Ö	0	8	1	. 0
% Omnivores	40	33	43	93	46	0	40	50
% Insectivorous		33		,,,		•		
Cyprinids	0	50	0	7	14	50	46	50
% Carnivores	Ō	0	Ō	0	0	0	1	0
Total Fish	15	52	14	15	28	12	92	92
Shock time (min)	14		14		13		15	
Stream Order	5	5	5	5	5	5	5	5
Stream Basin	2	2	2	2	2	2	2	2
Metric Factors								
Species Per Sample	1	3	1	1	1	1	1	1
Sucker Species	1	1	1	1	1	1	1	1
Sunfish Species	3	3	1	1	3	1	1	1
Darter Secies	1	1	1	1	1	1	1	1
Intolerant Species	1	1	1	1	1	1	1	1
% Green Sunfish	3	5	3	5	3	1	3	5
% Hybrid	5	5	5	5	5	5	5	5
% Diseased	5	5	3	5	5	1	1	5
% Omnivores	3	3	3	1	1	5	3	1
% Insectivorous								
Cyprinids	1	5	1	1	1	5	5	5
% Carnivores	1	1	1	1	1	1	3	1
Abundance	1	1	1	1	1	1	3	1
IBI	26	34	22	24	24	24	28	28

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR ROOSEVELT ROAD ON THE DES PLAINES RIVER DURING 1992 AND 1993

	· · · · · · · · · · · · · · · · · · ·	·				
IBI Metric	8/12/92 SEINE	8/: BP	31/92 SEINE		10 BP	/30/92 SEINE
					·	
Species Per Sample	7	1	7		2	4
Sucker Species	1	0	1	•	0	0
Sunfish Species	2	0	0		0	0
Darter Species	0	0	0		0	0
Intolerant Species	0	0	0		0	0
% Green Sunfish	11	0	0		- 0	0
% Hybrids	11	0	0		0	0
% Diseased	0	0	0		0	1
% Omnivores	70	100	88		100	94
% Insectivorous						
Cyprinids	0	.0	0.5		0	2
% Carnivores	0	0	0		0	0
Total Fish	27	1	203		3	66
Shock time (min)	15	-5	_		12	-
Stream Order	5	5	5		5	5
Stream Basin	2	2	2		2	2
Metric Factors						
Species Per Sample	1	1	1		1	1
Sucker Species	1	1	1		1	1
Sunfish Species	3	1	1		1	1
Darter Species	1	1	1		1	1
Intolerant Species	1	1	1		1	1
% Green Sunfish	3	5	5		5	5
% Hybrid	1	5	5		5	5
% Diseased	5	5	5		5	1
% Omnivores	1	1	1		1	1
% Insectivorous						
Cyprinids	1	1	1		1	1
% Carnivores	1	1	_ 1		1	1
Abundance	ī	ī	ī		1	1
IBI	20	24	24		24	20

TABLE AIV-4 (Continued)

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR ROOSEVELT ROAD ON THE DES PLAINES RIVER DURING 1992 AND 1993

IBI Metric	8/3 BP	20/93 SEINE	Ī		/13/93 SEINE
Species Per Sample	4	8	. (5 .	5
Sucker Species	0	0	() ·	0
Sunfish Species	2	2	:	L	0
Darter Species	0	2	(C	0
Intolerant Species	0	0		1	1
% Green Sunfish	14	0	()	0
% Hybrids	0	0	()	0
% Diseased	0	0	() .	Ó
% Omnivores	14	32	70)	50
% Insectivorous					
Cyprinids	0	1	26	5	48
% Carnivores	0	1	() .	0
Total Fish	7	71	43	3	239
Shock time (min)	11	_	16	5	-,
Stream Order	5	5	ŗ	5	5
Stream Basin	2	2	2	2	2
Metric Factors					
Species Per Sample	1	1		1	1
Sucker Species	1	1	•	1	1
Sunfish Species	3	3	•	1	1
Darter Secies	1	1	•	1	1
Intolerant Species	1	1	:	1	1
% Green Sunfish	3	5		5	5
% Hybrid	5	5		5	5
% Diseased	5	5		5	5
% Omnivores	5	3		1	1
% Insectivorous					
Cyprinids	1	1		3	5
% Carnivores	1	3		1	1
Abundance	1	1		1	5
IBI	28	30	2	6	32

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR OGDEN AVENUE ON THE DES PLAINES RIVER DURING 1992 AND 1993

	8/	11/92	10,	/28/92		13/93	10,	/8/93
IBI Metric	BP	SEINE	BP	SEINE	BP	SEINE	BP	SEINE
Species Per Sample	10	7	5	7	5	5	9	2
Sucker Species	1	1	0	1	0	1	0	0
Sunfish Species	2	2	2	2	3	1	2	0
Darter Species	0	0	0	0	0	0	1	0
Intolerant Species	0	1	0	1	0	- 0	1	1
% Green Sunfish	32	0	26	0	65	0	43	0
% Hybrids	0	0	Ó	0	2	0	0	0
% Diseased	5	1	3	5	4	6	11	0
% Omnivores	42	49	16	30	6	39	3	0
% Insectivorous								
Cyprinids	11	44	0	35	0	33	- 5	100
% Carnivores	0	0	0	5	6	0	3	0
Total Fish	19	88	31	20	52	18	67	11
Shock time (min)	17		14	_	13	_	18	_
Stream Order	5	5	5	5	5	5	5	5
Stream Basin	2	2	2	2	2	2	2	2
Metric Factors								
Species Per Sample	3	1	1	1	1	1	3	1
Sucker Species	1	1	1	1	1	1	1	1
Sunfish Species	3	3	3	3	3	1	3	1
Darter Secies	1	1	1	1	1	1	1	1
Intolerant Species	1	1	1	1	1	1	1	1
% Green Sunfish	1	5	1	5	1	5	1	5
% Hybrid	5	5	5	5	1	5	5	5
% Diseased	1	1	1	1	1	1	1	5
% Omnivores	3	1	5	3	5	3	5	5
% Insectivorous				_				
Cyprinids	1	3	1	3	1	3	1	5
% Carnivores	1	1	1	3	5	1	3	1
Abundance	1	3	1	1	3	1	1	1
IBI	22	26	22	28	24	24	26	32

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR WILLOW SPRINGS ROAD ON THE DES PLAINES RIVER DURING 1992 AND 1993

IBI Metric	8/ BP	13/92 SEINE	8/: BP	19/92 SEINE	10/ BP	/29/92 SEINE
Species Per Sample	4	8	5	2	7	1.2
Sucker Species	0	0	1	0	0	0
Sunfish Species	2	3	2	1	3	4
Darter Species	0	0	0	0	0	0
Intolerant Species	0	0	0	0	0	1
% Green Sunfish	30	2	40	7	4	1
% Hybrids	0	0	0	0	0	0
% Diseased	20	0	0	0	Ó	0
% Omnivores	0	90	53	93	63	94
% Insectivorous						
Cyprinids	0	0	0	0	0	1
% Carnivores	10	0.5	0	0	4	0
Total Fish	10	207	30	61	57	798
Shock time (min)	7	-	12	-	15	-
Stream Order	5	5	5	5	5	5
Stream Basin	2	2	2	2	2	2
Metric Factors						
Species Per Sample	1	1	1	1	1	3
Sucker Species	1	1	1	1	1	1
Sunfish Species	3	3	3	1	3	5
Darter Secies	1	1	1	1	1	1
Intolerant Species	1	1	1	1	1	1
% Green Sunfish	1	5	1	3	5	5
% Hybrid	5	5	5	5	5	5
% Diseased	1	5	5	5	5	5
% Omnivores	5	1	1	1	1	1
% Insectivorous						
Cyprinids	1	1	1	1	1	1
% Carnivores	5	1	1	1	3	1
Abundance	1	5	1	3	3	5
IBI	26	30	22	24	30	34

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY (IBI) FOR WILLOW SPRINGS ROAD ON THE DES PLAINES RIVER DURING 1992 AND 1993

		·		
IBI Metric	8/1 BP	18/93 SEINE	10 BP	/12/93 SEINE
Species Per Sample	6	9	8	8
Sucker Species	0	0	0	0
Sunfish Species	3	4	2	2
Darter Species	0	1	0	0
Intolerant Species	0	0	1	1
% Green Sunfish	5	9	23	4
% Hybrids	0	0	0	0
% Diseased	5	1	0	Ö
% Omnivores	5	10	13	28
% Insectivorous				
Cyprinids	0	0	3	1
% Carnivores	9	2	4	1
Total Fish	22	174	71	$7\overline{4}$
Shock time (min)	13		22	-
Stream Order	5	5	5	5
Stream Basin	2	2	2	2
Metric Factors				
Species Per Sample	1	3	1	1
Sucker Species	1	1	1	1
Sunfish Species	3	5	3	3
Darter Secies	1	1	1	1
Intolerant Species	1	1	1	1
% Green Sunfish	5	3	1	5
% Hybrid	5	5	5	5
% Diseased	1	3	5	5
% Omnivores	5	5	5	3
% Insectivorous	•	2	J	٠ ي
Cyprinids	1	1	1	1
% Carnivores	5	3	3	. 3
Abundance	1	5	1	1
	•	_	4.	٠.
IBI	30	36	28	30
				- *

TABLE AIV-7

METRICS USED IN THE CALCULATION OF THE INDEX OF BIOTIC INTEGRITY FOR STEPHEN STREET ON THE DES PLAINES RIVER DURING 1992 AND 1993

	8/	17/92	10,	/27/92	8/:	12/93	10,	/7/93
IBI Metric	BP	SEINE	BP	SEINE	BP	SEINE	BP	SEINE
Species Per Sample	5	6	8	4	10	7	11	4
Sucker Species	0	1	0	1	0	1	0	0
Sunfish Species	1	0	2	0	2	1	2 .	0
Darter Species	0	0	0	0	0	0	1	0
Intolerant Species	0	0	0	0	1	1	1	0
% Green Sunfish	22	0	4	0	18	- 0	16	0
% Hybrids	0	0	0	0	0	0	0	0
% Diseased	3	0	0	0	0	2	2	0
% Omnivores	65	90	88	79	36	94	65	84
% Insectivorous								
Cyprinids	0	6	2	14	2	4	9	16
% Carnivores	0	0	0	0	20	1	1	-, 0
Total Fish	72	125	313	14	45	197	274	31
Shock time (min)	19	***	15	_	7	_	23	-
Stream Order	5	5	5	5	5	5	5	5
Stream Basin	2	2	2	2	2	2	2	2
Metric Factors								
Species Per Sample	1	1	1	1	3	1	3	1
Sucker Species	1	. 1	1	1	1	1	1	1
Sunfish Species	1	1	3	1	3	1	3	1
Darter Secies	1	1	1	1	1	1	1	1
Intolerant Species	1	1	1	1	1	1	1	1
% Green Sunfish	1	5	5	5	3	5	3	. 5
% Hybrid	5	5	5	5	5	5	5	.: 5
% Diseased	1	5	5	5	1	. 5	1	5
% Omnivores	1	1	1	1	3	1	1	1
% Insectivorous								
Cyprinids	1	1	1	1	1	1	1	1
% Carnivores	1	1	1	1	5	1	3 -	1
Abundance	1	3	5	1	3	5	5	1
IBI	16	26	30	24	30	28	28	24

APPENDIX AV

BLUEGILL TOXICITY INDEX FOR WATER SAMPLES FROM THE DES PLAINES RIVER TAKEN AT THE TIME OF FISH COLLECTIONS DURING 1992 AND 1993

TABLE AV-1

WATER QUALITY CONSTITUENTS AND BLUEGILL TOXICITY INDICES (BTIs) FOR LAKE-COOK ROAD ON THE DES PLAINES RIVER DURING 1992 AND 1993

	Date of Sample Collection						
Water Quality Constituent	8/4/92	10/21/92	8/11/93	10/1/93			
		Analytica	l Value	and the same and the same and			
Pemperature (°C)	20.3	9	22.5	14.0			
lardness (mg/L as CaCO3)	350	344	308	302			
pissolved Oxygen (mg/L)	8.37	9.04	6.52	8.70			
H (units)	8.18	7.89	7.25	7.78			
otal NH3-N (mg/L)	0.1	0	0.30	٥			
n-ionized NH3-N (mg/L)	0.0070	<0.02	0.0031	<0.02			
rsenic (mg/L)	<0.2	<0.2	<0.2	<0.2			
oron (mg/L)	0.1600	0.1600	0.23	0.18			
admium (mg/L)	<0.005	<0.005	<0.005	<0.00			
otal Residual Chlorine (mg/L)	<0.003	<0.005	<0.003	<0.01			
hromium (Tri) (mg/L)	<0.006	<0.006	<0.006	<0.00			
nromium (Hex) (mg/L)	<0.006	<0.006	<0.006	<0.00			
opper (mg/L)	<0.004	<0.004	0.010	<0.00			
yanide (mg/L)	0.0060	0.0070	0.007	0.00			
luoride (mg/L)	0.5400	0.6500	0.56	0.70			
ron (mg/L)	0.9000	0.3000	1.00	1.10			
BAS (mg/L)	0.0030	0.0230	0.008	0.00			
ead (mg/L)	<0.08	<0.08	<0.08	<0.08			
anganese (mg/L)	0.0300	0.0500	0.09	0.09			
ercury (ug/L)	<0.1	<0.1	<0.1	<0.1			
ickel (mg/L)	<0.05	<0.05	<0.05	<0.05			
02+N03 (mg/L)	5.3000	7.3000	5.23	4.08			
nenol (mg/L)	<0.003	0.0020	<0.003	<0.00			
ilver (mg/L)	<0.006	<0.006	<0.006	<0.00			
inc (mg/L)	<0.006	<0.006	0.400	<0.00			
	Blu	egill Toxic	Units (BGTUs	;)			
n-ionized NH3-N (mg/L)	0.0114	0.0000	0.0058	0.000			
rsenic (mg/L)	0.0000	0.0000	0.0000	0.00			
oron (mg/L)	0.0001	0.0001	0.0001	0.00			
admium (mg/L)	0.0000	0.0000	0.0000	0.00			
otal Residual Chlorine (mg/L)	0.0000	0.0000	0.0000	0.00			
hromium (Tri)(mg/L)	0.0000	0.0000	0.0000	0.00			
hromium (Hex) (mg/L)	0.0000	0.0000	0.0000	0.00			
opper (mg/L)	0.0000	0.0000	0.0011	0.00			
yanide (mg/L)	0.0509	0.0347	0.0671	0.01			
luoride (mg/L)	0.0122	0.0146	0.0126	0.01			
ron (mg/L)	0.0274	0.0091	0.0304	0.03			
BAS (mg/L)	0.0013	0.0110	0.0041	0.00			
ead (mg/L)	0.0000	0.0000	0.0000	0.00			
anganese (mg/L)	0.0008	0.0012	0.0022	0.00			
ercury (ng/L)	0.0008	0.0000					
and the second s			0.0000	0.00			
ickel (mg/L)	0.0000	0.0000	0.0000	0.00			
02+N03 (mg/L)	0.0027	0.0037	0.0026	0.00			
henol (mg/L)	0.0000	0.0001	0.0000	0.000			
ilver (mg/L)	0.0000	0.0000	0.0000	0.000			
inc (mg/L)	0.0000	0.0000	0.0275	0.00			
TI (Sum of Toxicities)	0.1066	0.0746	0.1536	0.07			

TABLE AV-2

WATER QUALITY CONSTITUENTS AND BLUEGILL TOXICITY INDICES (BTIS) FOR OAKTON STREET ON THE DES PLAINES RIVER

	Date of Sample Collection						
Water Quality Constituent	8/5/92	10/25/92	8/16/93	10/5/93			
	~~~~~	Analytica	l Value				
Temperature (°C)	19.8	8.7	23.0	12.0			
Hardness (mg/L as CaCO3)	282	353	203	317			
Dissolved Oxygen (mg/L)	9.02	9.4	4.98	9.24			
OH (units)	8.73	7.55	7.20	8.96			
Cotal NH3-N (mg/L)	0	0	0.1	0			
n-ionized NH3-N (mg/L)	<0.02	<0.02	0.0009	<0.02			
rsenic (mg/L)	<0.2	<0.2	<0.2	<0.2			
Soron (mg/L)	0.14	0.16	0.13	0.20			
Cadmium (mg/L)	<0.005	<0.005	<0.005	<0.005			
Cotal Residual Chlorine (mg/L)	<0.003	<0.003	<0.003	<0.003			
Chromium (Tri) (mg/L)	<0.006	<0.006	<0.006	0.009			
hromium (Hex)(mg/L)	<0.006	<0.006	<0.006	0.009			
Copper (mg/L)	<0.004	<0.004	0.01	0.01			
yanide (mg/L)	0.004	0.007	0.006	0.007			
Pluoride (mg/L)	0.58	0.62	0.43	0.63			
ron (mg/L)	0.60	0.40	1.30	0.80			
MBAS (mg/L)	0.0000	0.018	0.007	0.012			
Lead (mg/L)	<0.08	0.0000	<0.08	<0.08			
Manganese (mg/L)	0.08	0.05	0.11	0.08			
Mercury (µg/L)	<0.1	<0.1	<0.1	<0.1			
Tickel (mg/L)	<0.05	<0.05	<0.05	<0.05			
NO2+NO3 (mg/L)	3.40	6.40	2.42	5.14			
Phenol (mg/L)	0.001	0.002	<0.003	<0.003			
Silver (mg/L)	<0.006	<0.006	<0.006	<0.006			
inc (mg/L)	<0.006	<0.006	0.10	<0.006			
	Blu	egill Toxic	Units (BGTUs	3)			
Jn-ionized NH3-N (mg/L)	0.0000	0.0000	0.0024	0.000			
rsenic (mg/L)	0.0000	0.0000	0.0000	0.000			
Soron (mg/L)	0.0001	0.0001	0.0001	0.000			
admium (mg/L)	0.0000	0.0000	0.0000	0.000			
Cotal Residual Chlorine (mg/L)	0.0000	0.0000	0.0000	0.000			
Chromium (Tri) (mg/L)	0.0000	0.0000	0.0000	0.000			
Chromium (Hex) (mg/L)	0.0000	0.0000	0.0000	0.000			
Copper (mg/L)	0.0000	0.0000	0.0019	0.001			
yanide (mg/L)	0.0332	0.0344	0.0621	0.033			
Pluoride (mg/L)	0.0131	0.0140	0.0097	0.014			
ron (mg/L)	0.0182	0.0122	0.0395	0.024			
BAS (mg/L)	0.0000	0.0083	0.0049	0.005			
ead (mg/L)	0.0000	0.0000	0.0000	0.000			
langanese (mg/L)	0.0020	0.0012	0.0028	0.002			
lercury (µg/L)	0.0000	0.0000	0.0000	0.000			
ickel (mg/L)	0.0000	0.0000	0.0000	0.000			
102+NO3 (mg/L)	0.0017	0.0032	0.0012	0.002			
Phenol (mg/L)	0.0001	0.0001	0.0000	0.000			
Gilver (mg/L)	0.0000	0.0000	0.0000	0.000			
Zinc (mg/L)	0.0000	0.0000	0.0094	0.000			
STI (Sum of Toxicities)	0.0684	0.0734	0.1340	0.083			

TABLE AV-3

WATER QUALITY CONSTITUENTS AND BLUEGILL TOXICITY INDICES (BTIs) FOR BELMONT AVENUE ON THE DES PLAINES RIVER

	Date of Sample Collection						
Water Quality Constituent	8/6/92	10/23/92	8/17/93	10/11/9			
		Analytica	l Value				
		111417 0104					
Pemperature (°C)	20.9	13.3	23.4	10.0			
Hardness (mg/L as CaCO3)	292	333	235	242			
Dissolved Oxygen (mg/L)	8.08	7.72	4.22	7.60			
H (units)	8.39	7.95	7.37	7.34			
Otal NH3-N (mg/L)	0	0	0.10	0.10			
n-ionized NH3-N (mg/L)	0.0000	0.0000	0.0014	0.0005			
rsenic (mg/L)	<0.2	<0.2	<0.2	<0.2			
oron (mg/L)	0.17	0.18	0.16	0.24			
admium (mg/L)	<0.005	<0.005	<0.005	<0.005			
otal Residual Chlorine (mg/L)	<0.01	<0.01	<0.01	<0.01			
hromium (Tri) (mg/L)	<0.006	<0.006	<0.006	<0.006			
hromium (Hex) (mg/L)	<0.006	<0.006	<0.006	<0.006			
opper (mg/L)	<0.004	<0.004	<0.004	0.010			
yanide (mg/L)	0.006	0.007	0.006	0.005			
luoride (mg/L)	0.75	0.65	0.64	0.73			
ron (mg/L)	0.60	0.50	1.20	0.20			
BAS (mg/L)	0.000	0.032	0.017	0.019			
ead (mg/L)	<0.08	<0.08	<0.08	<0.08			
Manganese (mg/L)	0.08	0.06	0.11	0.05			
Sercury (µg/L)	<0.1	<0.1	<0.1	<0.1			
rickel (mg/L)	<0.05	<0.05	<0.05	<0.05			
IO2+NO3 (mg/L)	3.40	5.80	3.56	4.83			
Phenol (mg/L)	<0.003	<0.003	<0.003	<0.003			
ilver (mg/L)	<0.005	<0.006	<0.005	<0.006			
inc (mg/L)	<0.006	<0.006	<0.006	<0.006			
	Blu	egill Toxic	Units (BGTU	5)			
In-ionized NH3-N (mg/L)	0.0000	0.0000	0.0043	0.0012			
rsenic (mg/L)	0.0000	0.0000	0.0000	0.000			
oron (mg/L)	0.0001	0.0001	0.0001	0.0001			
admium (mg/L)	0.0000	0.0000	0.0000	0.0000			
otal Residual Chlorine (mg/L)	0.0000	0.0000	0.0000	0.0000			
hromium (Tri) (mg/L)	0.0000	0.0000	0.0000	0.0000			
hromium (Tri) (mg/L)	0.0000	0.0000	0.0000	0.0000			
opper (mg/L)	0.0000	0.0000	0.0000	0.0015			
yanide (mg/L)	0.0522	0.0352	0.0649	0.0257			
luoride (mg/L)	0.0169	0.0146	0.0144	0.0164			
ron (mg/L)	0.0182	0.0152	0.0365	0.0063			
BAS (mg/L)	0.0000	0.0165	0.0146	0.0109			
ead (mg/L)	0.0000	0.0000	0.0000	0.0000			
langanese (mg/L)	0.0020	0.0015	0.0028	0.0000			
lercury (µg/L)	0.0020	0.0000	0.0028	0.0012			
ickel (mg/L)	0.0000	0.0000	0.0000	0.0000			
O2+NO3 (mg/L)	0.0000	0.0000	0.0000	0.0000			
Phenol (mg/L)	0.0000	0.0029	0.0018	0.0024			
Silver (mg/L)	0.0000	0.0002					
inc (mg/L)	0.0000	0.0000	0.0000 0.0000	0.0000			
BTI (Sum of Toxicities)	0.0911	0.0863	0.1394	0.0656			

#### TABLE AV-4

### WATER QUALITY CONSTITUENTS AND BLUEGILL TOXICITY INDICES (BTIS) FOR ROOSEVELT ROAD ON THE DES PLAINES RIVER

	Date of Sample Collection					
Water Quality Constituent	8/12/92	8/31/92	10/30/92	8/20/93	10/13/9	
	Analytical Value					
emperature (°C)	22	20.3	10.3	24.5	10.0	
ardness (mg/L as CaCO3)	250	175	292	235	284	
pissolved Oxygen (mg/L)	5.08	4.25	6.94	2.88	8.56	
H (units)	7.69	7.52	7.76	7.44	7.63	
otal NH3-N (mg/L)	0.1	0.2	0.1	0.2	0.2	
n-ionized NH3-N (mg/L)	0.0027	0.0032	0.0013	0.0036	0.001	
rsenic (mg/L)	<0.2	<0.2	<0.2	<0.2	<0.2	
oron (mg/L)	0.19	0.19	0.33	0.28	0.24	
admium (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	
otal Residual Chlorine (mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	
nromium (Tri) (mg/L)	<0.006	<0.006	<0.006	<0.006	<0.006	
romium (Hex) (mg/L)	<0.006	<0.006	<0.006	<0.006	<0.006	
opper (mg/L)	0.0200	0.0000	0.0000	0.03	<0.004	
vanide (mg/L)	0.006	0.004	0.008	0.005	0.005	
luoride (mg/L)	0.74	0.59	0.82	0.53	0.69	
ron (mg/L)	0.90	0.70	0.70	0.90	0.30	
BAS (mg/L)	0.0100	0.0140	0.0040	0.022	0.01	
ead (mg/L)	<0.08	<0.08	<0.08	<0.08	<0.08	
anganese (mg/L)	0.10	0.06	0.05	0.10	0.05	
ercury (µg/L)	<0.1	<0,1	<0.1	0.10	< 0.1	
ickel (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	
02+N03 (mg/L)	4.10	3.70	6.60	2.90	5.29	
nenol (mg/L)	<0.003	0.0010	0.0010	<0.003	<0.003	
ilver (mg/L)	<0.006	<0.006	<0.006	<0.006	<0.006	
inc (mg/L)	<0.006	<0.006	<0.006	<0.006	<0.006	
(1119) 27			Toxic Unit			
n-ionized NH3-N (mg/L)	0.0087	0.0153	0.0038	0.0116	0.004	
rsenic (mg/L)	0.0000	0,0000	0.0000	0.0000	0.000	
oron (mg/L)	0.0001	0.0001	0.0001	0.0001	0.000	
admium (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
otal Residual Chlorine (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
eromium (Tri) (mg/L)	0.0000	0.0000	0.0000	0.0000		
hromium (Hex)(mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
opper (mg/L)	0.0030	0.0000	0.0000	0.0060	0.000	
/anide (mg/L)	0.0603	0.0399	0.0420	0.0577	0.025	
luoride (mg/L)	0.0167	0.0133	0.0185	0.0119	0.015	
ron (mg/L)	0.0274	0.0213	0.0213	0.0274	0.009	
BAS (mg/L)	0.0070	0.0128	0.0025	0.0313	0.005	
ead (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
inganese (mg/L)	0.0025	0.0015	0.0012	0.0025	0.001	
ercury (µg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
ckel (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
02+NO3 (mg/L)	0.0021	0.0019	0.0033	0.0015	0.002	
nenol (mg/L)	0.0000	0.0001	0.0001	0.0000	0.000	
ilver (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
inc (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
TI (Sum of Toxicities)	0.1277	0.1061	0.0928	0.1499	0.062	

TABLE AV-5

WATER QUALITY CONSTITUENTS AND BLUEGILL TOXICITY INDICES (BTIs) FOR OGDEN AVENUE ON THE DES PLAINES RIVER

Water Quality Constituent	Date of Sample Collection					
	8/11/92	10/28/92	8/13/93	10/8/93		
	Analytical Value					
		- MidiXcica	r varue			
emperature (°C)	24.3	11.6	25.5	17.0		
ardness (mg/L as CaCO3)	241	273	274	299		
issolved Oxygen (mg/L)	8.2	9.74	8.08	9.31		
H (units)	7.75	7.85	7.48	7.63		
otal NH3-N (mg/L)	0.1	0	0	O		
n-ionized NH3-N (mg/L)	0.0036	<0.02	<0.02	<0.02		
rsenic (mg/L)	<0.2	<0.2	<0.2	<0.2		
oron (mg/L)	0.19	0.30	0.26	0.31		
admium (mg/L)	<0.005	<0.005	<0.005	<0.005		
otal Residual Chlorine (mg/L)	<0.01	<0.01	<0.01	<0.01		
hromium (Tri)(mg/L)	<0.006	<0.006	<0.006	<0.006		
aromium (Hex) (mg/L)	<0.006	<0.006	<0.006	<0.006		
opper (mg/L)	<0.004	<0.004	0.01	<0.004		
yanide (mg/L)	0.005	0.007	0.007	0.006		
luoride (mg/L)	0.79	0.84	0.78	0.77		
ron (mg/1)	0.90	0.60	1.20	0.30		
BAS (mg/L)	0.0000	0.008	0.011	0.013		
ead (mg/L)	<0.08	<0.08	<0.08	<0.08		
anganese (mg/L)	0.08	0.04	0.08	0.04		
ercury (µg/L)	<0.1	<0.1	<0.1	0.10		
ickel (mg/L)	<0.05	<0.05	<0.05	<0.05		
02+N03 (mg/L)	4.40	7.80	5.55	6.05		
henol (mg/L)	<0.003	0.0020	<0.003	<0.003		
ilver (mg/L)	<0.006	<0.006	<0.006	<0.006		
inc (mg/L)	<0.006	<0.006	0.10	<0.006		
	Blu	egill Toxic	Units (BGTU	s)		
n-ionized NH3-N (mg/L)	0.0033	0.0000	0.0000	0.000		
rsenic (mg/L)	0.0000	0.0000	0.0000	0.000		
oron (mg/L)	0.0001	0.0001	0.0001	0.000		
admium (mg/L)	0.0000	0.0000	0.0000	0.000		
otal Residual Chlorine (mg/L)	0.0000	0.0000	0.0000	0.000		
hromium (Tri) (mg/L)	0.0000	0.0000	0.0000	0.000		
hromium (Hex) (mg/L)	0.0000	0.0000	0.0000	0.000		
opper (mg/L)	0.0000	0.0000	0.0012	0.000		
yanide (mg/L)	0.0474	0.0334	0.0689	0.028		
luoride (mg/L)	0.0178	0.0189	0.0176	0.017		
ron (mg/L)	0.0274	0.0182	0.0365	0.009		
BAS (mg/L)	0.0000	0.0035	0.0048	0.005		
ead (mg/L)	0.0000	0.0000	0.0000	0.000		
anganese (mg/L)	0.0020	0.0010	0.0000	0.000		
ercury (µg/L)	0.0000	0.0000	0.0020	0.000		
ickel (mg/L)	0.0000	0.0000	0.0000	0.000		
O2+NO3 (mg/L)	0.0022	0.0039	0.0028	0.000		
henol (mg/L)	0.0022	0.0039				
ilver (mg/L)	0.0000	0.0001	0.0000	0.000		
inc (mg/L)	0.0000	0.0000	0.0000 0.0057	0.000		
TI (Sum of Toxicities)	0.1001	0.0792	0.1396	0.064		

TABLE AV-6

WATER QUALITY CONSTITUENTS AND BLUEGILL TOXICITY INDICES (BTIs) FOR WILLOW SPRINGS ROAD ON THE DES PLAINES RIVER

	Date of Sample Collection					
Water Quality Constituent	8/13/92	8/19/92	10/29/92	8/18/93	10/12/93	
	Analytical Value					
Pemperature (°C)	20.4	22.8	11	25.0	11.0	
Mardness (mg/L as CaCO3)	266	346	283	229	276	
Dissolved Oxygen (mg/L)	6.34	10.06	9.26	5.29	8.6	
oH (units)	7.84	8.79	7.9	7.65	7.65	
Cotal NH3-N (mg/L)	0	0	0	0.1	0.2	
In-ionized NH3-N (mg/L)	0.0000	0.0000	0.0000	0.003	0.0022	
rsenic (mg/L)	<0.2	<0.2	<0.2	<0.2	<0.2	
oron (mg/L)	0.19	0.18	0.30	0.15	0.23	
admium (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	
otal Residual Chlorine (mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	
hromium (Tri) (mg/L)	<0.006	<0.006	<0.006	<0.006	<0.006	
hromium (Hex) (mg/L)	<0.006	<0.006	<0.006	<0.006	<0.006	
opper (mg/L)	<0.004	<0.004	<0.004	0.01	<0.004	
yanide (mg/L)	0.005	0.005	0.008	0.006	0.006	
luoride (mg/L)	0.68	0.77	0.87	0.52	0.62	
ron (mg/L)	0.8	0.8	1.0	1.5	0.5	
BAS (mg/L)	0.004	0.009	0.001	0.019	0.004	
ead (mg/L)	<0.08	<0.08	<0.08	<0.08	<0.08	
anganese (mg/L)	0.09	0.08	0.05	0.1	0.06	
ercury (µg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	
ickel (mg/L)	<0.05	<0.05	<0.05	<0.05		
02+NO3 (mg/L)	3.9000	5.5000	7.6000		4.55	
henol (mg/L)	<0.003	<0.003	0.0010	<0.003	<0.003	
ilver (mg/L)	<0.006	<0.006	<0.006		<0.006	
inc (mg/L)	<0.006	<0.006	<0.006	<0.006	<0.006	
		Bluegill	Toxic Unit	s (BGTUs)		
n-ionized NH3-N (mg/L)	0.0000	0.0000	0.0000	0.0044	0.0044	
rsenic (mg/L)	0.0000	0.0000	0.0000	0.0000	0.0000	
oron (mg/L)	0.0001	0.0001	0.0001	0.0001	0.000	
admium (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
otal Residual Chlorine (mg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
hromium (Tri)(mg/L)	0.0000	0.0000	0.0000	0.0000	0.0000	
hromium (Hex)(mg/L)	0.0000	0.0000	0.0000	0.0000	0.0000	
opper (mg/L)	0.0000	0.0000	0.0000	0.0016	0.0000	
yanide (mg/L)	0.0459	0.0453	0.0388	0.0648	0.0297	
luoride (mg/L)	0.0153	0.0173	0.0196	0.0117	0.0140	
ron (mg/L)	0.0243	0.0243	0.0304	0.0456	0.0152	
BAS (mg/L)	0.0022	0.0039	0.0004	0.0118	0.0019	
ead (mg/L)	0.0000	0.0000	0.0000	0.0000	0.0000	
anganese (mg/L)	0.0022	0.0020	0.0012	0.0025	0.001	
ercury (µg/L)	0.0000	0.0000	0.0000	0.0000	0.000	
ickel (mg/L)	0.0000	0.0000	0.0000	0.0000	0.0000	
02+N03 (mg/L)	0.0020	0.0028	0.0038	0.0014	0.0023	
henol (mg/L)	0.0000	0.0000	0.0001	0.0000	0.0000	
ilver (mg/L)	0.0000	0.0000	0.0000	0.0000	0.0000	
inc (mg/L)	0.0000	0.0000	0.0000	0.0000	0.0000	
TI (Sum of Toxicities)	0.0920	0.0957	0.0946	0,1439	0.0693	

TABLE AV-7

WATER QUALITY CONSTITUENTS AND BLUEGILL TOXICITY INDICES (BTIs) FOR STEPHEN STREET, LEMONT ON THE DES PLAINES RIVER DURING 1992 AND 1993

Water Quality Constituent	Date of Sample Collection					
	8/17/92	10/27/92	8/12/93	10/7/93		
	Analytical Value					
Temperature (°C)	21.7	12	25.0	16.0		
Hardness (mg/L as CaCO3)	301	278	282	325		
Dissolved Oxygen (mg/L)	10.36	8.28	8.44	9.18		
oH (units)	8.18	7.86	8.03	7.82		
Potal NH3-N (mg/L)	0	0	0	0		
Jn-ionized NH3-N (mg/L)	<0.02	<0.02	<0.02	<0.02		
Arsenic (mg/L)	<0.2	<0.2	<0.2	<0.2		
Boron (mg/L)	0.16	0.25	0.26	0.23		
Cadmium (mg/L)	<0.005	<0.005	<0.005	<0.005		
Cotal Residual Chlorine (mg/L)	<0.01	<0.01	<0.01	<0.01		
Chromium (Tri)(mg/L)	0.0000	0.0000	0.004	0.007		
Chromium (Hex) (mg/L)	0.0000	0.0000	0.004	0.007		
Copper (mg/L)	0.0000	0.0000	0.02	0.04		
Cyanide (mg/L)	0.004	0.006	0.005	0,007		
Fluoride (mg/L)	0.70	0.75	0.86	0.69		
ron (mg/L)	1.0	1.3	1.9	0.1		
MBAS (mg/L)	0.004	0.005	0.006	0.012		
Lead (mg/L)	<0.08	<0.08	<0.08	<0.08		
Manganese (mg/L)	0.10	0.06	0.11	0.02		
dercury (µg/L)	<0.1	<0.1	<0.1	0.1		
Nickel (mg/L)	<0.05	<0.05	<0.05	<0.05		
NO2+NO3 (mg/L)	4.10	6.50	4.35	5.15		
Phenol (mg/L)	0.0010	0.0010	<0.003	<0.003		
Silver (mg/L)	<0.006	<0.006	<0.006	<0.006		
Sinc (mg/L)	0.0000	0.0000	0.1	0.1		
	Blu	egill Toxic	Units (BGTU:	<b>5</b> )		
Un-ionized NH3-N (mg/L)	0.0000	0.0000	0.0000	0.000		
Arsenic (mg/L)	0.0000	0.0000	0.0000	0.000		
Boron (mg/L)	0.0001	0.0001	0.0001	0,000		
Cadmium (mg/L)	0.0000	0.0000	0.0000	0,000		
otal Residual Chlorine (mg/L)	0.0000	0.0000	0.0000	0.000		
Chromium (Tri) (mg/L)	0.0000	0.0000	0.0000	0.000		
hromium (Hex) (mg/L)	0.0000	0.0000	0.0000	0.000		
opper (mg/L)	0.0000	0.0000	0.0023	0.004		
Cyanide (mg/L)	0.0350	0.0299	0.0485	0.033		
luoride (mg/L)	0.0158	0.0169	0.0194	0.015		
ron (mg/L)	0.0304	0.0395	0.0578	0.003		
IBAS (mg/L)	0.0017	0.0025	0.0026	0.005		
ead (mg/L)	0.0000	0.0000	0.0000	0.000		
fanganese (mg/L)	0.0025	0.0015	0.0028	0.000		
lercury (µg/L)	0.0000	0.0000	0.0000	0.000		
ickel (mg/L)	0.0000	0.0000	0.0000	0.000		
102+N03 (mg/L)	0.0021	0.0033	0.0022	0.002		
Phenol (mg/L)	0.0001	0.0001	0.0000	0.000		
Silver (mg/L)	0.0000	0.0000	0.0000	0.000		
Zinc (mg/L)	0.0000	0.0000	0.0054	0.005		
BTI (Sum of Toxicities)	0.0877	0.0937	0.1410	0.069		