

First-year Monitoring Report for the MWRDGC - North Side, Lemont, & LASMA

Priaire Landscape Conversion Sites

Prepared for:

Metropolitan Water Reclamation District of Greater Chicago 100 Erie Street Chicago, Illinois 60611

December 2004

Prepared by:

Conservation Design Forum
Landscape Architecture & Community Planning
Ecological Restoration
Water Resource and Ecological Engineering

FIRST-YEAR MONITORING REPORT FOR THE MWRDGC – NORTH SIDE, LEMONT, & LASMA PRAIRIE LANDSCAPE CONVERSION SITES

Prepared for:

Metropolitan Water Reclamation District of Greater Chicago 100 Erie Street Chicago, Illinois 60611

December 2004

FIRST-YEAR MONITORING REPORT

FOR THE

MWRDGC - NORTH SIDE, LEMONT, & LASMA

PRAIRIE LANDSCAPE CONVERSION SITES

Prepared for:

Metropolitan Water Reclamation District of Greater Chicago 100 Erie Street Chicago, Illinois 60611

December 2004

CONSERVATION DESIGN FORUM Project No. 03063.00

Prepared by:		Date:	
	Kenneth C. Johnson		

Project Manager Principal of Ecological Services

TABLE OF CONTENTS

F١	(FCI	JTIVE	SH	1111	ARY
_/	ヽレしし) II V L	JU	1 V 1 I V I	\neg ı

Introduction	1
Project Site Locations and Purpose	1
MAINTENANCE ACTIVITIES CONDUCTED IN 2004	
Monitoring Methods	2
Results and Discussion	4
GENERAL PLANT INVENTORIES AND FQA DATA	4
Transect Sampling and FQA Data	5
SEEDED SPECIES RECRUITMENT.	
Summary and Management Recommendations	1C
General References	11

APPENDICES

APPENDIX I VEGETATION INVENTORIES AND FLORISTIC QUALITY ASSESSMENT
APPENDIX III TRANSECT SAMPLING AND FLORISTIC QUALITY ASSESSMENT
APPENDIX III SEEDED SPECIES RECRUITMENT

EXHIBITS

EXHIBIT A NORTH SIDE WRP NATIVE LANDSCAPE AREAS (SHEETS A-1; A-2)
EXHIBIT B LEMONT WRP NATIVE LANDSCAPE AREAS
EXHIBIT C LASMA BERM NATIVE LANDSCAPE AREA

PHOTOGRAPHS

EXECUTIVE SUMMARY

- This report documents restoration activities that occurred during the 2004-growing season at three Metropolitan Water Reclamation District of Greater Chicago facilities, including: North Side Water Reclamation Plant (WRP), Lemont WRP, and LASMA Berm prairie conversion sites. In addition, the methods and results of the first year vegetation monitoring are presented.
- Maintenance activities included weed control via mowing and select herbicide applications. These actions were completed by two different maintenance contractors (Natural Resource Management for North Side WRP and Lemont WRP; Conservation Land Stewardship for LASMA Berm). Conservation Design Forum, Inc. worked with the contractors and the site engineers at each facility to coordinate these maintenance activities.
- The results of the vegetation monitoring are typical of native landscape creations that are in their early stages of establishment.
- On-going maintenance of these prairie landscapes in the 2005 growing season will include continued weed control via mowing and select herbicide applications.

INTRODUCTION

PROJECT SITE LOCATIONS AND PURPOSE

In June of 2003, Conservation Design Forum (CDF) was retained by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) to facilitate the conversion of existing turf to native prairie landscape at three facilities. The three facilities include: North Side Water Reclamation Plant (WRP), located at 3500 West Howard Street, Skokie; Lemont WRP, located at 13 Stephen Street, Lemont; LASMA Berm, located at 7601 South LaGrange Road, Willow Springs. All three project sites are located in Cook County, Illinois, and are owned and operated by the MWRDGC. A plan view of each project site is included on EXHIBITS A thru C.

The purpose of prairie landscape monitoring is to assess vegetation development from year to year in order to make recommendations as to proper land management. The information presented in this report represents the first growing year of the prairie landscape at each of these three sites. Specific monitoring methods and the locations of vegetation monitoring transects are discussed in the Methods section of this report; the monitoring results are presented in the Results and Discussion section.

MAINTENANCE ACTIVITIES CONDUCTED IN 2004

The following is a chronological list of native landscape maintenance activities that were conducted at each project site in the summer and fall of 2004. [These maintenance activities were documented in several field reports that were submitted to MWRDGC Staff throughout the growing season.] The landscape maintenance contractor for North Side and Lemont WRPs was Natural Resource Management (Beecher, IL), and the contractor for LASMA Berm was Conservation Land Stewardship (Elmhurst, IL). Note that a report prepared by CDF (dated April 2004) summarized the initial site preparation and prairie landscape installation at each site, and that that information is not repeated herein.

North Side WRP

- July 8th: select application of a broadleaf herbicide (Garlon 3A) on Black Medic and various clover species.
- August 16th: vegetation across the entire prairie landscape was mowed via a tractor-mounted brush hog.
- October 26th: select application of a broadleaf herbicide (*Garlon 4*) on Field Thistle and various clover species.

Lemont WRP

- June 24th: vegetation across the entire prairie landscape was mowed via a tractor-mounted brush hog (including coarse weeds such as Cut-leaved Teasel located adjacent to prairie).
- July 29th: select application of a broadleaf herbicide (*Garlon 3A*) on Field Thistle and Cut-leaved Teasel.
- September 2nd: vegetation across the entire prairie landscape was mowed via a tractor-mounted brush hoa.
- October 12th: select application of a broadleaf herbicide (Garlon 4) on Field Thistle and Cut-leaved Teasel.
- November 11th: vegetation across the entire prairie landscape was mowed via a tractor-mounted brush hog.

LASMA Berm

- June 9th, 16th: with the exception of 3 biosolids test plots, the vegetation across the prairie landscape was mowed via a tractor-mounted brush hog; steeper slopes were mowed via weed-whackers.
- August 2nd: select application of a broadleaf herbicide (*Garlon 3A*) on Musk Thistle and Field Thistle, and some miscellaneous hand weeding of biennial species.
- September 2nd, 7th, 8th: with the exception of the 3 biosolids test plots, the vegetation across the prairie landscape was mowed via a tractor-mounted brush hog; steeper slopes were mowed via weed-whackers.

Overall, the maintenance activities were performed in a timely and professional manner by the staff of Natural Resource Management and Conservation Land Stewardship. The photographs included at the back of the report depict many of these activities.

MONITORING METHODS

Although there are many ways to monitor de novo ("from scratch") restorations and measure their performance, the approach utilized in this project emphasizes vegetation development and floristic quality assessment (FQA) methods. In summary, the vegetation is sampled along transect lines established within representative portions of each project site; a qualitative inventory of the vegetation across the entire landscape is recorded as well. These vegetation sampling protocols are repeated every year so that trends in floristic development can be monitored over time.

A critical component in the evaluation of a restoration is to determine the extent of native species recruitment and establishment across the landscape. A useful method in the determination of floristic quality is through an analysis of the conservatism and diversity of species that are recorded during the monitoring event. Conservatism represents the degree to which an experienced field botanist has confidence that a given species is representative of a high-quality, remnant habitat (i.e., those natural areas with intact presettlement structure, composition, and processes). Native plant species display varying degrees of tolerance to disturbance, as well as varying degrees of fidelity to specific habitat integrity. Native plants of a given region exhibit an observable range of conservatism, and each native species can be assigned a coefficient of conservatism (C value) ranging from 0 to 10, "weedy to conservative," that reflects its disposition.

The Mean C is the average coefficient of conservatism for a site. The floristic quality index (FQI) is a statistic derived by multiplying Mean C by the square root of the number of species inventoried; thus, the FQI is a function of conservatism and diversity. In general, site inventories with FQI values less than 20 are degraded or derelict plant communities, or are very small habitat remnants. Site inventories with FQI values in the twenties through low thirties suffer from various kinds of disturbance, but generally have potential for habitat restoration and recovery. When site inventories have FQI values in the middle thirties or higher, and/or have Mean C values of 3.4 or higher, one can be confident that there is sufficient native character present for the area to be at least regionally noteworthy. Site inventories with indices in the middle forties and higher are undoubtedly significant natural area remnants of statewide importance.

As management and time cause changes to take place, Mean C and FQI values will reflect the extent to which conservative species are being recruited and the floristic quality is improving. If an inventoried site has a large proportion of conservative plants, the Mean C is higher; in a degraded site, the Mean C is lower. The presence of a large proportion of adventive species and non-conservative native species suggest that an area is degraded. The Mean C and FQI values for a sampling transect are calculated for the transect as a whole and for the average quadrat; a comparison of floristic values between the transect and quadrat level is useful to understand the uniformity of native species establishment.

Another useful measurement that is important in the evaluation of a de novo landscape restoration is that of the wetness value (W). Each plant species has been assigned a wetness category that indicates its probability of occurrence in a wetland. Plants are designated as Obligate Wetland (OBL=-5), Facultative Wetland (FACW=-3), Facultative (FAC=0), Facultative Upland (FACU=3), and Obligate Upland (UPL=5). For about 20% of our flora, a "+" or "-" sign has been attached to the three Facultative categories to express the exaggerated tendencies of those species. The "+" sign denotes that the species generally has a greater estimated probability of occurrence in wetlands; the "-" sign denotes that it generally has a lesser estimated probability of occurrence in wetlands. Mean wetness values can be compared from year to year to gain an understanding on what type of plant species have become established across the restoration site.

Transect locations at each of the three project sites are described below and their approximate locations are depicted on EXHIBITS A thru C.

North Side WRP

Transect 1 is located in the northeastern corner of the WRP (see EXHIBIT A, Sheet A-2). The transect begins at the southeastern end of the prairie and is oriented 315° NW. The first quadrat is placed 10 paces in from the prairie/lawn boarder; subsequent quadrats are placed at 5-pace intervals along the transect line. A total of 10 quadrats are sampled along the transect.

Transect 2 is located in the southwestern portion of the WRP (see EXHIBIT A, Sheet A-1). The transect begins at the southeastern end of the prairie and is oriented 315° NW. The first quadrat is placed 10 paces in from the prairie/lawn boarder; subsequent quadrats are placed at 20-pace intervals along the transect line. A total of 10 quadrats are sampled along the transect.

Lemont WPR

Transect 1 is located in the western portion of the WRP (see EXHIBIT B). The transect begins at the northwestern corner of the prairie and is oriented 135° SE. The first quadrat is placed at the prairie/lawn boarder; subsequent quadrats are placed at 10-pace intervals along the transect line. A total of 10 quadrats are sampled along the transect.

Transect 2 is located in the southern portion of the WRP (see EXHIBIT B). The transect begins at the southwestern corner of the prairie and is oriented 30° NE. The first quadrat is placed at the prairie/lawn boarder; subsequent quadrats are placed at 10-pace intervals along the transect line. A total of 10 quadrats are sampled along the transect.

LASMA Berm

A grid transect was deployed at the LASMA Berm so that quadrats were sampled on the north-facing slope, top of berm, and the south-facing slope (see EXHIBIT C). Starting at the northern end of the berm, quadrats were placed randomly on each

berm habitat (i.e., north face, top, south face). One quadrat was placed in each habitat at 100-pace intervals along the berm; three (3) in each habitat north of the gravel access road and four (4) in each habitat south of the access road (see EXHIBIT C). **Transect 1** includes 7 quadrats that comprise the north-facing slope; **Transect 2** includes 7 quadrats that comprise the top of berm; **Transect 3** includes 7 quadrats that comprise the south-facing slope. [It should be noted that although the placement of all quadrats was random, there was a conscious attempt to exclude sampling within the three biosolids test plots. These test plots have yet to be finish graded and seeded with a prairie matrix.]

All vegetation is sampled using a 0.25m² quadrat. The vegetation within each quadrat is identified and given a relative cover/abundance number from 1 to 5 as shown in Table 1 below. A compass is used to stay on the correct orientation, and photographs are taken at the start of each transect in order to document the current site conditions.

COVER/ ABUNDANCE NO.	Approximate Cover
1	1 to few stems present; species occupies only 1 quarter of quadrat
2	Few to several stems or clumps; species occupies 1 to 2 quarters of quadrat
3	Species occupies 2 to 3 quarters of quadrat with notable coverage in each occupied quarter
4	Species occupies 3 to 4 quarters of quadrat with regular cover throughout
5	Species dominates the entire quadrat

TABLE 1. COVER/ABUNDANCE NUMBERS

The cover/abundance data is used to determine the relative importance value (RIV) for each species recorded along a transect. The RIV of each species is calculated by summing relative frequency and relative cover and dividing by 2. This and other information gathered via transect sampling offers important quantitative data that is used to interpret the development of the native landscape.

RESULTS AND DISCUSSION

The results of the plant inventories and transect sampling are presented below. The field work occurred on September 23rd (Lemont and LASMA) and 28th (North Side), 2004, and was performed by Kenneth Johnson. Overall, the weather conditions during the monitoring events were sunny, with air temperatures around 80° Fahrenheit, so sampling conditions were optimum. Photographs taken during the field work are included at the back of the report. Refer to EXHIBITS A thru C for plan views of the three project sites.

GENERAL PLANT INVENTORIES AND FQA DATA

The results of the plant inventories and associated FQA data for each of the three project sites are presented in APPENDIX I. Table 2 below summarizes the total number of native species recorded during the inventory (NS), along with the percent that these native species comprise of all plants recorded (%TS) at each site. The last two columns are the native Mean C and FQI values.

TABLE 2. GENERAL PLANT INVENTORIES & FQA SUMMARY

Plant Inventory & FQA Data Summary						
PROJECT SITE NS (%TS) MEAN C FQI						
North Side WRP	33 (44%)	1.7	10			
Lemont WRP	46 (50%)	1.7	12			
LASMA Berm	22 (46%)	2.3	11			

Overall, the most frequently encountered species noted during the meander/inventory at all three project sites included Annual Rye Grass (cover crop) along with common annual weeds such as Barnyard Grass, Knee Grass, Giant Foxtail, Lamb's quarters, Horseweed, and Pinkweed to name a few. The most frequently encountered seeded prairie species was Black-eyed Susan, although several other prairie species were recorded as well. In addition, Burning Bush formed a dense, almost ubiquitous vegetative cover over the three biosolids test plots on the LASMA Berm. As mentioned above, these test plots have not been finish graded and, therefore, have yet to be seeded with the prairie matrix.

Based upon these data and general site observations during the 2004 calendar year, the prairie landscape at all three sites appears to be developing as expected. The FQA values are typical of native landscape creations in their early stages of establishment.

TRANSECT SAMPLING AND FQA DATA

The results of the straight-line transects are presented in APPENDIX II. As stated above, each transect runs through a representative portion of the prairie landscape at each project site (see EXHIBITS A thru C). Transect sampling helps to quantify the vegetation changes and native landscape development. A comparison of floristic values between the transect and the quadrat level data is useful to understand the uniformity of native species establishment. The data are presented separately for each of the three project sites. A photograph was taken to document the landscape appearance at the beginning of each transect line (see Photographs section at the back of report).

North Side WRP

Table 3 below presents a summary of the data collected for each transect at the North Side WRP project site. The aggregate transect data are presented separately from the average quadrat data. The number of native taxa (NT) is given, along with the native Mean C, and the native FQI.

TABLE 3. NORTH SIDE WRP – TRANSECT SUMMARY

Transect	Transect Data Summary			AVE QUAI	drat Data	Summary
	NT MEAN C FQI			NT	MEAN C	FQI
TI	14	2.1	8	3.3	1.6	2.8
T2	11	2.2	7.2	2.3	1.3	2.2

Tables 4 and 5 below summarize the relative importance values (RIV) for the top 50% of species from each transect. Following each native species is its assigned C value (in parenthesis). Adventive species are in ALL CAPS. Species followed by an asterisk (*) were introduced to the site as part of the initial prairie seed installation.

TABLE 4. NORTH SIDE WRP - TRANSECT 1 RELATIVE IMPORTANCE VALUES (RIV)

Species (C value)	RIV 2004	RIV 2005
TRIFOLIUM HYBRIDUM	15.0	
LOLIUM MULTIFLORUM	14.8	
Rudbeckia hirta (1)*	8.6	
Panicum dichotomiflorum (0)	5.7	
Echinochloa crusgalli (0)	5.3	
HIBISCUS TRIONUM	5.1	

TABLE 5. NORTH SIDE WRP – TRANSECT 2 RELATIVE IMPORTANCE VALUES (RIV)

Species (C value)	RIV 2004	RIV 2005
TRIFOLIUM HYBRIDUM	26.5	
LOLIUM MULTIFLORUM	21.5	
Rudbeckia hirta (1)*	9.6	

Alsike Clover (*Trifolium hybridum*) is very common across the prairie conversion landscape at this site. Other species recorded along the two monitoring transects are listed in APPENDIX II. These data represent baseline information to which future monitoring can be compared.

Lemont WRP

Table 6 below presents a summary of the data collected for each transect at the Lemont WRP project site. The aggregate transect data are presented separately from the average quadrat data. The number of native taxa (NT) is given, along with the native Mean C, and the native FQI.

TABLE 6. LEMONT WRP – TRANSECT SUMMARY

Transect	Transect Data Summary			AVE QUAI	drat Data	Summary
	NT	MEAN C	FQI	NT	MEAN C	FQI
TI	15	1.2	5	4.7	1.0	2.3
T2	21	1.5	7	3.9	1.3	2.6

Tables 7 and 8 below summarize the relative importance values (RIV) for the top 50% of species from each transect. Following each native species is its assigned C value (in parenthesis). Adventive species are in ALL CAPS. Species followed by an asterisk (*) were introduced to the site as part of the initial prairie seed installation.

TABLE 7. LEMONT WRP - TRANSECT 1 RELATIVE IMPORTANCE VALUES (RIV)

Species (C value)	RIV 2004	RIV 2005
Rudbeckia hirta (1)*	15.2	
Solanum americanum (0)	11.1	
Oxalis stricta (0)	8.4	
Polygonum pensylvanicum (0)	5.7	
CHENOPODIUM ALBUM	5.3	
Heliopsis helianthoides (5)*	5.3	

TABLE 8. LEMONT WRP – TRANSECT 2 RELATIVE IMPORTANCE VALUES (RIV)

SPECIES (C VALUE)	RIV 2004	RIV 2005
CIRSIUM ARVENSE	8.3	
TARAXACUM OFFICINALE	8.2	
Oxalis stricta (0)	7.5	
Rudbeckia hirta (1)*	6.8	
POLYGONUM PERSICARIA	6.6	
Solanum americanum (0)	5.0	
Eupatorium altissimum (0)	3.9	
Panicum dichotomiflorum (0)	3.9	

Even with herbicide applications during the growing season, Field Thistle (*Cirsium arvense*), a perennial weed, was relatively common in the prairie landscape at the Lemont WRP. Over time and with continued management, this species (and other weeds) should wane from the prairie landscape. Other species recorded along the two monitoring transects are listed in APPENDIX II. It is interesting to note that at North Side WRP (see Tables 4 and 5 above) and the LASMA Berm (see Tables 10—12 below) the cover crop of Annual Rye (*Lolium multiflorum*) was a dominant species sampled along each transect, whereas it was not recorded along either of the two transects at Lemont WRP. These data represent baseline information to which future monitoring can be compared.

LASMA Berm

Table 9 below presents a summary of the data collected for each transect at the LASMA Berm project site. The aggregate transect data are presented separately from the average quadrat data. The number of native taxa (NT) is given, along with the native Mean C, and the native FQI.

TABLE 9. LASMA BERM - TRANSECT DATA SUMMARY

Transect	Transect Data Summary			AVE QUA	drat Data	Summary
	NT	MEAN C	FQI	NT	MEAN C	FQI
T1	5	0.4	1	2.0	0.3	0.4
T2	6	2.3	6	1.3	1.5	1.7
Т3	7	1.7	5	1.4	1.3	1.5

Tables 10, 11, and 12 below summarize the relative importance values (RIV) for the top 50% of species from each transect. Following each native species is its assigned C value (in parenthesis). Adventive species are in ALL CAPS. Species followed by an asterisk (*) were introduced to the site as part of the initial prairie seed installation.

TABLE 10. LASMA BERM – TRANSECT 1 RELATIVE IMPORTANCE VALUES (RIV)

Species (C value)	RIV 2004	RIV 2005
Echinochloa crusgalli (0)	27.1	
LOLIUM MULTIFLORUM	18.3	
Panicum dichotomiflorum (0)	10.0	

TABLE 11. LASMA BERM – TRANSECT 2 RELATIVE IMPORTANCE VALUES (RIV)

Species (C value)	RIV 2004	RIV 2005
LOLIUM MULTIFLORUM	46.7	
Echinochloa crusgalli (0)	14.4	

TABLE 12. LASMA BERM – TRANSECT 3 RELATIVE IMPORTANCE VALUES (RIV)

Species (C value)	RIV 2004	RIV 2005
[SOIL]	31.0	
Echinochloa crusgalli (0)	18.7	
LOLIUM MULTIFLORUM	14.5	

Barnyard Grass (Echinochloa crusgalli) and the primary cover crop (Lolium multiflorum) are very common across the prairie conversion landscape at this site. Other species recorded along the two monitoring transects are listed in APPENDIX II. In addition, portions of the south-facing slope (as sampled by Transect 3) are relatively barren of vegetative cover and erosion rills have developed. And, as mentioned earlier, Burning Bush formed a dense, almost ubiquitous vegetative cover over the three biosolids test plots on the LASMA Berm. These test plots have not been finish graded and, therefore, have yet to be seeded with the prairie matrix. These data represent baseline information to which future monitoring can be compared.

SEEDED SPECIES RECRUITMENT

Alphabetical lists of the native species seeded as part of the initial prairie installation at each of the three project sites are presented in APPENDIX III. Each species is listed along with its C value (in parenthesis). If the species was recorded from the site during the 2004-monitoring event it is indicated with a "Y", and if not it is indicated with a "N". The columns to the right summarize the RIV of each species if recorded during the transect sampling. A summary of these data are presented in Table 13.

NORTH SIDE WRP LASMA BERM LEMONT WRP No. Species MEAN C No. Species MEAN C No. Species MEAN C YEAR Initial 23 5.3 23 5.3 17 4.7 Seeding 2004 11 4.4 9 4.2 10 4.5

TABLE 13. SEEDED SPECIES RECRUITMENT

At North Side WRP, eleven (11) of the 23 seeded species were recorded during the monitoring event in September of 2004. Black-eyed Susan was in the top 50% RIV in both transects as well. At Lemont WRP, nine (9) of the 23 seeded species were recorded during the monitoring event in September of 2004. Black-eyed Susan was in the top 50% RIV in both transects as well; False Sunflower was in the 50% RIV in Transect 1. At LASMA Berm, ten (10) of the 17 seeded species were recorded during the monitoring event in September 2004; none of these were in the top 50% RIV in the transect sampling.

Future restoration monitoring should be compared to these data in order to show trends in the establishment of the intended native landscape. With time and proper land management there should be an increase in native species recruitment and quality across all areas of the restoration site. In general, after four (4) full-growing seasons approximately 40% of the seeded species should be recorded in a site inventory—and if so, then the initial seeding should be considered satisfactory.

The native Mean W of each project site is summarized in Table 14 below and includes the Mean W of the initial seeding. This information can be used to inform native plant selection in future species enhancement efforts.

 NORTH SIDE
 LEMONT
 LASMA

 WRP
 WRP
 BERM

 YEAR
 MEAN W
 MEAN W
 MEAN W

2.0

2.6

2.5

2.1

TABLE 14. MEAN W VALUES

2.0

2.7

Initial

Seeding 2004

SUMMARY AND MANAGEMENT RECOMMENDATIONS

As presented above, land management activities conducted across these three *de novo* prairie creation landscapes during the summer and fall of 2004 included weed control via mowing events and spot herbicide applications. The results of the vegetation monitoring are typical of prairie landscapes that are in their early establishment phase. A number of seeded prairie plants were recorded from all three sites during the September monitoring event, including Black-eyed Susan, Yellow Coneflower, and Wild Canada Rye to name a few species.

Though relatively minor in scope, there are four issues of note in regards to the initial prairie vegetation establishment at these sites.

- 1) There is a small disturbed area within the prairie landscape at the North Side WRP that resulted from excavation to repair an underground water pipe. Based upon a conversation with the facility engineer, MWRDGC personnel re-graded this area in the fall of 2004. It is recommended that seed of common prairie species be broadcast across this area prior to the 2005 growing season; note that this re-seeding effort is not within the landscape contractor's scope of work.
- 2) Field Thistle and Cut-leaved Teasel weeds are present in some of the adjacent peripheral areas at the Lemont WRP. It is recommended that these areas be mowed and treated with herbicide in order to prevent unwanted seed dispersal into the prairie landscape; note that this action is not within the landscape contractor's scope of work.
- 3) The slopes at the LASMA Berm should be monitored for soil erosion. It may be necessary to re-grade and re-seed some areas in 2005 if soil erosion is a problem; if so, note that this action is not within the landscape contractor's scope of work.
- 4) It is recommended that the three biosolids test plots on the LASMA Berm be finish-graded so that these areas can be seeded with a cover crop and the prairie seed matrix. Seeding is the responsibility of the landscape contractor; however, grading and final soil preparation is to be completed by the MWRDGC.

With proper management, there is reason to expect that prairie vegetation will be more conspicuous next year than in this first year of landscape establishment. On-going management activities for the 2005 growing season that will be conducted by the landscape contractors under their current contracts include continued weed control via mowing and spot herbicide applications. Staff from CDF will coordinate these on-going management activities and will perform annual vegetation monitoring.

GENERAL REFERENCES

The following documents were reviewed and referenced in the preparation of this report.

Conservation Design Forum. 2004. Native Landscape Installation Summary Report MWRDGC North Side, Lemont and LASMA Berm Sites. Elmhurst, IL.

Conservation Design Forum. 2003. MWRDGC Natural Landscape Assessment Report. Elmhurst, IL.

Swink, F. and G. Wilhelm. 1994. Plants of the Chicago Region, 4th edition. Indiana Academy of Science. Indianapolis, Indiana.

Taft, J., G. Wilhelm, D. Ladd, and L. Masters. 1997. Floristic Quality Assessment for Vegetation in Illinois: A Method for Assessing Vegetation Integrity. Erigenia 14, pp. 3-95.

Wilhelm, G. and L. Masters. 1999. Floristic Quality Assessment and Computer Applications. Conservation Research Institute. Elmhurst, IL.

APPENDIX I

VEGETATION INVENTORIES & FLORISTIC QUALITY ASSESSMENT

The following is a summary of the inventory data generated using Wilhelm and Masters' Floristic Quality Assessment and Computer Applications, 1999. Plant nomenclature follows Swink and Wilhelm's Plants of the Chicago Region, 1994. More information on floristic quality assessment methodology can be found in *Erigenia*, number 15, November, 1997. Each plant inventory and assessment is divided into 2 sections as follows.

Section 1 includes three tables that summarize the inventory assessment data. The table to the left is an analysis of the floristic quality of the project area. In addition to listing the number of native species and total number of species, the mean coefficient of conservatism (MEAN C), floristic quality index (FQI), and mean wetness (MEAN W) values are presented. These are calculated once for native species only, and a second time including adventive species (W/Adventives). The two other tables summarize the number and percent of species in each physiognomic group (A=annual, B=biennial, P=perennial, W=woody, H=herbaceous).

Section 2 includes the plant inventory arranged alphabetically, with each species preceded by its database acronym and coefficient of conservatism (C=0 to 10, weedy to conservative); and followed by its wetness coefficient (W=-5 to +5, wet to dry), corresponding national wetland indicator status (OBL=obligate wetland species, FAC=facultative species, UPL=upland species), physiognomic group, and common name. Adventive species are written in ALL CAPS and have an asterisk (*) for their C value.

The Mean C is the average coefficient of conservatism for the site. The FQI is derived by multiplying Mean C by the square root of the number of species present. In general, sites with FQI values less than twenty are degraded or derelict plant communities, or are very small habitat remnants. Sites with FQI values in the twenties through low thirties suffer from various kinds of disturbance, but generally have potential for habitat restoration and recovery. When sites have FQI values in the middle thirties or higher, one can be confident that there is sufficient native character present for the area to be at least regionally noteworthy. Sites with indices in the middle forties and higher are often also statewide significant natural areas.

Site: North Side WRP - Prairie Landscapes

Locale: Skokie, IL

Date: September 28, 2004

By: Conservation Design Forum (K Johnson)

SECTION 1. SUMMARY TABLES

FLORISTIC QUALITY DATA	Native	33	44.0%	Adventive	42	56.0%
33 NATIVE SPECIES	Tree	2	2.7%	Tree	1	1.3%
75 Total Species	Shrub	0	0.0%	Shrub	0	0.0%
1.7 NATIVE MEAN C	W-Vine	0	0.0%	W-Vine	0	0.0%
0.7 W/Adventives	H-Vine	0	0.0%	H-Vine	0	0.0%
9.6 NATIVE FQI	P-Forb	12	16.0%	P-Forb	12	16.0%
6.4 W/Adventives	B-Forb	1	1.3%	B-Forb	6	8.0%
1.7 NATIVE MEAN W	A-Forb	10	13.3%	A-Forb	14	18.7%
2.3 W/Adventives	P-Grass	5	6.7%	P-Grass	4	5.3%
AVG: Fac. Upland (+)	A-Grass	3	4.0%	A-Grass	5	6.7%
	P-Sedge	0	0.0%	P-Sedge	0	0.0%
	A-Sedge	0	0.0%	A-Sedge	0	0.0%
	Cryptogam	0	0.0%			

SECTION 2. SPECIES INVENTORY

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY COMMON	NAME
ABUTHE	0 ABUTILON THEOPHRASTI	4 FACU- Ad A-Forb VELVETI	
ACARHO	0 Acalypha rhomboidea		SEEDED MERCURY
ACENEG	0 Acer negundo	-2 FACW- Nt Tree BOX ELI	
ACESAI	0 Acer saccharinum	-3 FACW Nt Tree SILVER	
AMARET	0 AMARANTHUS RETROFLEXUS		MARANTH
AMBARE	0 Ambrosia artemisiifolia elatior		RAGWEED
ANDGER	5 Andropogon gerardii		JESTEM GRASS
ARCMIN	0 ARCTIUM MINUS		BURDOCK
ASTNOV	4 Aster novae-angliae		GLAND ASTER
ASTPIL	0 Aster pilosus	2 FACU+ Nt P-Forb HAIRY A	
ASTSUB	0 ASTER SUBULATUS		SWAY ASTER
ATRPAT	O ATRIPLEX PATULA	-2 FACW- Ad A-Forb COMMON	
AVESAT	0 AVENA SATIVA	5 UPL Ad A-Grass OATS	
BOUCUR	8 Bouteloua curtipendula	5 UPL Nt P-Grass SIDE-OA	ATS GRAMA
BRANIG	O BRASSICA NIGRA	5 UPL Ad A-Forb BLACK N	MUSTARD
CHEALB	0 CHENOPODIUM ALBUM	1 FAC- Ad A-Forb LAMB'S	QUARTERS
CICINT	0 CICHORIUM INTYBUS	5 UPL Ad P-Forb CHICORY	
CIRARV	0 CIRSIUM ARVENSE	5 UPL Ad P-Forb FIELD 3	THISTLE
CIRVUL	0 CIRSIUM VULGARE	4 FACU- Ad B-Forb BULL TH	HISTLE
CONARV	0 CONVOLVULUS ARVENSIS	5 UPL Ad P-Forb FIELD F	BINDWEED
CORLAN	5 Coreopsis lanceolata	3 FACU Nt P-Forb SAND CO	DREOPSIS
DACGLO	0 DACTYLIS GLOMERATA	3 FACU Ad P-Grass ORCHARI	GRASS
DAUCAR	0 DAUCUS CAROTA	5 UPL Ad B-Forb QUEEN A	ANNE'S LACE
ECHPUR	3 Echinacea purpurea	5 UPL Nt P-Forb BROAD-I	LEAVED PURPLE CONEFLOWER
ECHCRU	0 Echinochloa crusgalli	-3 FACW Nt A-Grass BARNYA	RD GRASS
ELYCAN	4 Elymus canadensis	1 FAC- Nt P-Grass CANADA	WILD RYE
ERAPOA	0 ERAGROSTIS POAEOIDES	5 UPL Ad A-Grass LOW LOV	E GRASS
ERASPE	3 Eragrostis spectabilis	5 UPL Nt P-Grass PURPLE	LOVE GRASS
EREHIE	2 Erechtites hieracifolia	3 FACU Nt A-Forb FIREWER	ED
ERIANS	O Erigeron annuus	1 FAC- Nt B-Forb ANNUAL	FLEABANE
ERICAN	0 Erigeron canadensis	1 FAC- Nt A-Forb HORSEW	EED
EUPSEM	0 Eupatorium serotinum	-1 FAC+ Nt P-Forb LATE BO	DNESET
EUPSUP	O Euphorbia supina	4 FACU- Nt A-Forb SPOTTE	CREEPING SPURGE
FESELA	0 FESTUCA ELATIOR	2 FACU+ Ad P-Grass TALL FI	ESCUE
HELHEL	5 Heliopsis helianthoides	5 UPL Nt P-Forb FALSE S	SUNFLOWER
HIBTRI	0 HIBISCUS TRIONUM	5 UPL Ad A-Forb FLOWER-	-OF-AN-HOUR
JUNTEN	0 Juncus tenuis	2 [FACU+] Nt P-Forb PATH RU	JSH
LACSER	0 LACTUCA SERRIOLA		/ LETTUCE
LEPCAM	0 LEPIDIUM CAMPESTRE	5 UPL Ad B-Forb FIELD (
LEPVIR	0 Lepidium virginicum		PEPPERCRESS
LOLMUL	0 LOLIUM MULTIFLORUM		1 RYE GRASS
LOLPER	0 LOLIUM PERENNE		IAL RYE GRASS
MATMAT	0 MATRICARIA MATRICARIOIDES	3 FACU Ad A-Forb PINEAPI	PLE WEED

MEDLUP	0 MEDICAGO LUPULINA	1 FAC-	Ad A-Forb	BLACK MEDICK
-				
MEDSAT	0 MEDICAGO SATIVA	5 UPL	Ad P-Forb	ALFALFA
MELALB	0 MELILOTUS ALBA	3 FACU	Ad B-Forb	WHITE SWEET CLOVER
MONFIS	4 Monarda fistulosa	3 FACU	Nt P-Forb	WILD BERGAMOT
MORALB	0 MORUS ALBA	0 FAC	Ad Tree	WHITE MULBERRY
OXASTR	0 Oxalis stricta	5 UPL	Nt P-Forb	COMMON WOOD SORREL
PANCAP	1 Panicum capillare	0 FAC	Nt A-Grass	OLD WITCH GRASS
PANDII	0 Panicum dichotomiflorum	-2 FACW-	Nt A-Grass	KNEE GRASS
PLALAN	0 PLANTAGO LANCEOLATA	0 FAC	Ad P-Forb	ENGLISH PLANTAIN
PLAMAJ	0 PLANTAGO MAJOR	-1 FAC+	Ad P-Forb	COMMON PLANTAIN
PLARUG	O Plantago rugelii	0 FAC	Nt A-Forb	RED-STALKED PLANTAIN
POAPRA	0 POA PRATENSIS	1 FAC-	Ad P-Grass	KENTUCKY BLUE GRASS
POLAVI	0 POLYGONUM AVICULARE	1 FAC-	Ad A-Forb	COMMON KNOTWEED
POLPEN	0 Polygonum pensylvanicum	-4 FACW+	Nt A-Forb	PINKWEED
POLPER	0 POLYGONUM PERSICARIA	1 [FAC-]	Ad A-Forb	LADY'S THUMB
POTNOR	O Potentilla norvegica	0 FAC	Nt A-Forb	NORWAY CINQUEFOIL
RATPIN	4 Ratibida pinnata	5 UPL	Nt P-Forb	YELLOW CONEFLOWER
RUDHIR	1 Rudbeckia hirta	3 FACU	Nt P-Forb	BLACK-EYED SUSAN
RUMCRI	0 RUMEX CRISPUS	-1 FAC+	Ad P-Forb	CURLY DOCK
SENVUL	0 SENECIO VULGARIS	5 UPL	Ad A-Forb	COMMON GROUNDSEL
SETFAB	O SETARIA FABERI	2 FACU+	Ad A-Grass	GIANT FOXTAIL
SETVIV	O SETARIA VIRIDIS	1 [FAC-]	Ad A-Grass	GREEN FOXTAIL
SOLAME	0 Solanum americanum	4 FACU-	Nt A-Forb	BLACK NIGHTSHADE
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SONASP	0 SONCHUS ASPER	3 [FACU]	Ad A-Forb	SPINY SOW THISTLE
SONOLE	0 SONCHUS OLERACEUS	5 [UPL]	Ad A-Forb	STORE-FRONT SOW THISTLE
SONULI	0 SONCHUS ULIGINOSUS	1 FAC-	Ad P-Forb	COMMON SOW THISTLE
SORNUT	5 Sorghastrum nutans	2 FACU+	Nt P-Grass	INDIAN GRASS
TAROFF	0 TARAXACUM OFFICINALE	3 FACU	Ad P-Forb	COMMON DANDELION
TRIHYB	0 TRIFOLIUM HYBRIDUM	1 FAC-	Ad P-Forb	ALSIKE CLOVER
TRIPRA	0 TRIFOLIUM PRATENSE	5 UPL	Ad P-Forb	RED CLOVER
TRIREP	0 TRIFOLIUM REPENS	2 FACU+	Ad P-Forb	WHITE CLOVER

Site: Lemont WRP - Prairie Landscapes

Locale: Lemont, IL

Date: September 23, 2004

By: Conservation Design Forum (K Johnson)

SECTION 1. SUMMARY TABLES

FLORISTIC QUALITY DATA	Native	46	50.0%	Adventive	46	50.0%
46 NATIVE SPECIES	Tree	3	3.3%	Tree	2	2.2%
92 Total Species	Shrub	0	0.0%	Shrub	0	0.0%
1.7 NATIVE MEAN C	W-Vine	0	0.0%	W-Vine	0	0.0%
0.9 W/Adventives	H-Vine	1	1.1%	H-Vine	0	0.0%
11.6 NATIVE FQI	P-Forb	17	18.5%	P-Forb	12	13.0%
8.2 W/Adventives	B-Forb	2	2.2%	B-Forb	12	13.0%
1.0 NATIVE MEAN W	A-Forb	14	15.2%	A-Forb	11	12.0%
1.8 W/Adventives	P-Grass	4	4.3%	P-Grass	4	4.3%
AVG: Faculative (-)	A-Grass	4	4.3%	A-Grass	5	5.4%
	P-Sedge	1	1.1%	P-Sedge	0	0.0%
	A-Sedge	0	0.0%	A-Sedge	0	0.0%
	Cryptogam	0	0.0%			

SECTION 2. SPECIES INVENTORY

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY	COMMON NAME
ABUTHE	0 ABUTILON THEOPHRASTI	4 FACU- Ad A-Forb	VELVETLEAF
ACARHO	0 Acalypha rhomboidea	3 FACU Nt A-Forb	THREE-SEEDED MERCURY
ACENEG	0 Acer negundo	-2 FACW- Nt Tree	BOX ELDER
ACESAI	0 Acer saccharinum	-3 FACW Nt Tree	SILVER MAPLE
AGRALA	0 AGROSTIS ALBA	-3 FACW Ad P-Grass	REDTOP
AILALT	0 AILANTHUS ALTISSIMA	5 UPL Ad Tree	TREE OF HEAVEN
ALLPET	0 ALLIARIA PETIOLATA	0 FAC Ad B-Forb	GARLIC MUSTARD
AMAALB	0 AMARANTHUS ALBUS	3 FACU Ad A-Forb	TUMBLEWEED
AMARET	0 AMARANTHUS RETROFLEXUS	2 FACU+ Ad A-Forb	ROUGH AMARANTH
AMBARE	O Ambrosia artemisiifolia elatior	3 FACU Nt A-Forb	COMMON RAGWEED
ARCMIN	0 ARCTIUM MINUS	5 UPL Ad B-Forb	COMMON BURDOCK
ARTANN	0 ARTEMISIA ANNUA	3 FACU Ad A-Forb	SWEET WORMWOOD
ARTBIE	0 ARTEMISIA BIENNIS	-2 FACW- Ad A-Forb	BIENNIAL WORMWOOD
ASCINC	4 Asclepias incarnata	-5 OBL Nt P-Forb	SWAMP MILKWEED
ASTNOV	4 Aster novae-angliae	-3 FACW Nt P-Forb	NEW ENGLAND ASTER
ASTPIL	0 Aster pilosus	2 FACU+ Nt P-Forb	HAIRY ASTER
ATRPAT	0 ATRIPLEX PATULA	-2 FACW- Ad A-Forb	COMMON ORACH
AVESAT	0 AVENA SATIVA	5 UPL Ad A-Grass	OATS
BIDFRO	1 Bidens frondosa	-3 FACW Nt A-Forb	COMMON BEGGAR'S TICKS
BOUCUR	8 Bouteloua curtipendula	5 UPL Nt P-Grass	SIDE-OATS GRAMA
CARNUT	0 CARDUUS NUTANS	5 UPL Ad B-Forb	MUSK THISTLE
CERVUL	0 CERASTIUM VULGATUM	3 FACU Ad P-Forb	MOUSE-EAR CHICKWEED
CHEALB	0 CHENOPODIUM ALBUM	1 FAC- Ad A-Forb	LAMB'S QUARTERS
CHELEP	5 Chenopodium leptophyllum	5 [UPL] Nt A-Forb	NARROW-LEAVED GOOSEFOOT
CIRARV	0 CIRSIUM ARVENSE	5 UPL Ad P-Forb	FIELD THISTLE
CIRVUL	0 CIRSIUM VULGARE	4 FACU- Ad B-Forb	BULL THISTLE
CONARV	0 CONVOLVULUS ARVENSIS	5 UPL Ad P-Forb	FIELD BINDWEED
CYPESC	0 Cyperus esculentus	-1 [FAC+] Nt P-Sedge	FIELD NUT SEDGE
DAUCAR	0 DAUCUS CAROTA	5 UPL Ad B-Forb	QUEEN ANNE'S LACE
DIPLAC	0 DIPSACUS LACINIATUS	5 UPL Ad B-Forb	CUT-LEAVED TEASEL
ECHPUR	3 Echinacea purpurea	5 UPL Nt P-Forb	BROAD-LEAVED PURPLE CONEFLOWER
ECHCRU	O Echinochloa crusgalli	-3 FACW Nt A-Grass	BARNYARD GRASS
ELYCAN	4 Elymus canadensis	1 FAC- Nt P-Grass	CANADA WILD RYE
EPICOL	3 Epilobium coloratum	-5 OBL Nt P-Forb	CINNAMON WILLOW HERB
ERAPEC	O Eragrostis pectinacea	0 FAC Nt A-Grass	SMALL LOVE GRASS
ERASPE	3 Eragrostis spectabilis	5 UPL Nt P-Grass	PURPLE LOVE GRASS
EREHIE	2 Erechtites hieracifolia	3 FACU Nt A-Forb	FIREWEED
ERICAN	0 Erigeron canadensis	1 FAC- Nt A-Forb	HORSEWEED
EUPALT	0 Eupatorium altissimum	3 [FACU] Nt P-Forb	TALL BONESET
EUPRUG	4 Eupatorium rugosum	5 UPL Nt P-Forb	WHITE SNAKEROOT
EUPSEM	0 Eupatorium serotinum	-1 FAC+ Nt P-Forb	LATE BONESET
EUPSUP	0 Euphorbia supina	4 FACU- Nt A-Forb	SPOTTED CREEPING SPURGE
FESELA	0 FESTUCA ELATIOR	2 FACU+ Ad P-Grass	TALL FESCUE

GEUCAN	1 Geum canadense	0 FAC	Nt P-Forb	WOOD AVENS
GLEHED	0 GLECHOMA HEDERACEA	3 FACU	Ad P-Forb	CREEPING CHARLIE
HELHEL	5 Heliopsis helianthoides	5 UPL	Nt P-Forb	FALSE SUNFLOWER
HIBTRI	0 HIBISCUS TRIONUM	5 UPL	Ad A-Forb	FLOWER-OF-AN-HOUR
LACCAN	2 Lactuca canadensis	2 FACU+	Nt B-Forb	WILD LETTUCE
LACSAL	0 LACTUCA SALIGNA	3 FACU	Ad B-Forb	WILLOW LETTUCE
LACSER	0 LACTUCA SERRIOLA	0 FAC	Ad B-Forb	PRICKLY LETTUCE
LEOCAR	0 LEONURUS CARDIACA	5 UPL	Ad P-Forb	MOTHERWORT
LEPCAM	0 LEPIDIUM CAMPESTRE	5 UPL	Ad B-Forb	FIELD CRESS
LEPVIR	0 Lepidium virginicum	4 FACU-	Nt A-Forb	COMMON PEPPERCRESS
LOLMUL	0 LOLIUM MULTIFLORUM	5 UPL	Ad A-Grass	ITALIAN RYE GRASS
MALNEG	0 MALVA NEGLECTA	5 UPL	Ad B-Forb	COMMON MALLOW
MEDLUP	0 MEDICAGO LUPULINA	1 FAC-	Ad A-Forb	BLACK MEDICK
MELALB	0 MELILOTUS ALBA	3 FACU	Ad B-Forb	WHITE SWEET CLOVER
MONFIS	4 Monarda fistulosa	3 FACU	Nt P-Forb	WILD BERGAMOT
MORALB	0 MORUS ALBA	0 FAC	Ad Tree	WHITE MULBERRY
NEPCAT	O NEPETA CATARIA	1 FAC-	Ad P-Forb	CATNIP
OENBIE	0 Oenothera biennis	3 FACU	Nt B-Forb	COMMON EVENING PRIMROSE
OXASTR	0 Oxalis stricta	5 UPL	Nt P-Forb	COMMON WOOD SORREL
PANCAP	1 Panicum capillare	0 FAC	Nt A-Grass	OLD WITCH GRASS
PANDII	0 Panicum dichotomiflorum	-2 FACW-	Nt A-Grass	KNEE GRASS
PANVIR	5 Panicum virgatum	-1 FAC+	Nt P-Grass	SWITCH GRASS
PHYAME	1 Phytolacca americana	1 FAC-	Nt P-Forb	POKEWEED
PLARUG	0 Plantago rugelii	0 FAC	Nt A-Forb	RED-STALKED PLANTAIN
POAPRA	0 POA PRATENSIS	1 FAC-	Ad P-Grass	KENTUCKY BLUE GRASS
POLAVI	0 POLYGONUM AVICULARE	1 FAC-	Ad A-Forb	COMMON KNOTWEED
POLLAP	0 Polygonum lapathifolium	-4 FACW+	Nt A-Forb	HEARTSEASE
POLPEN	0 Polygonum pensylvanicum	-4 FACW+	Nt A-Forb	PINKWEED
POLPER	0 POLYGONUM PERSICARIA	1 [FAC-]	Ad A-Forb	LADY'S THUMB
POLSCN	1 Polygonum scandens	0 FAC	Nt H-Vine	CLIMBING FALSE BUCKWHEAT
POPDEL	2 Populus deltoides	-1 FAC+	Nt Tree	EASTERN COTTONWOOD
POTNOR	2 Populus delloides 0 Potentilla norvegica	0 FAC	Nt 11ee Nt A-Forb	NORWAY CINQUEFOIL
RATPIN	4 Ratibida pinnata	5 UPL	Nt A-FOID Nt P-Forb	YELLOW CONEFLOWER
	-	-5 OBL		
RORPAF	4 Rorippa palustris fernaldiana		Nt A-Forb	MARSH CRESS
RUDHIR	1 Rudbeckia hirta	3 FACU	Nt P-Forb	BLACK-EYED SUSAN
RUMCRI	0 RUMEX CRISPUS	-1 FAC+	Ad P-Forb	CURLY DOCK
SETFAB	0 SETARIA FABERI	2 FACU+	Ad A-Grass	GIANT FOXTAIL
SETVER	O SETARIA VERTICILLATA	3 FACU	Ad A-Grass	BRISTLY FOXTAIL
SETVIV	0 SETARIA VIRIDIS	1 [FAC-]	Ad A-Grass	GREEN FOXTAIL
SOLAME	0 Solanum americanum	4 FACU-	Nt A-Forb	BLACK NIGHTSHADE
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SOLSEM	0 SOLIDAGO SEMPERVIRENS	3 [FACU]	Ad P-Forb	SEASIDE GOLDENROD
SONULI	0 SONCHUS ULIGINOSUS	1 FAC-	Ad P-Forb	COMMON SOW THISTLE
TAROFF	0 TARAXACUM OFFICINALE	3 FACU	Ad P-Forb	COMMON DANDELION
TRIHYB	0 TRIFOLIUM HYBRIDUM	1 FAC-	Ad P-Forb	ALSIKE CLOVER
TRIPRA	0 TRIFOLIUM PRATENSE	5 UPL	Ad P-Forb	RED CLOVER
TRIFLA	0 TRIODIA FLAVA	5 UPL	Ad P-Grass	FALSE REDTOP
VERTHA	0 VERBASCUM THAPSUS	5 UPL	Ad B-Forb	COMMON MULLEIN
VERSIM	6 Verbena simplex	5 UPL	Nt P-Forb	NARROW-LEAVED VERVAIN

Site: LASMA Berm - Prairie Landscape

Locale: Willow Springs, IL Date: September 23, 2004

By: Conservation Design Forum (K Johnson)

SECTION 1. SUMMARY TABLES

FLORISTIC QUALITY DATA	Native	22	45.8%	Adventive	26	54.2%
22 NATIVE SPECIES	Tree	2	4.2%	Tree	1	2.1%
48 Total Species	Shrub	0	0.0%	Shrub	1	2.1%
2.3 NATIVE MEAN C	W-Vine	1	2.1%	W-Vine	1	2.1%
1.1 W/Adventives	H-Vine	0	0.0%	H-Vine	0	0.0%
10.9 NATIVE FQI	P-Forb	8	16.7%	P-Forb	4	8.3%
7.4 W/Adventives	B-Forb	0	0.0%	B-Forb	4	8.3%
0.6 NATIVE MEAN W	A-Forb	4	8.3%	A-Forb	9	18.8%
1.9 W/Adventives	P-Grass	5	10.4%	P-Grass	1	2.1%
AVG: Faculative (-)	A-Grass	2	4.2%	A-Grass	5	10.4%
	P-Sedge	0	0.0%	P-Sedge	0	0.0%
	A-Sedge	0	0.0%	A-Sedge	0	0.0%
	Cryptogam	0	0.0%			

SECTION 2. SPECIES INVENTORY

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
ABUTHE	0 ABUTILON THEOPHRASTI	4 FACU-	Ad A-Forb	VELVETLEAF
ACENEG	0 Acer negundo	-2 FACW-	Nt Tree	BOX ELDER
ACNTAM	0 ACNIDA TAMARISCINA	-3 FACW	Ad A-Forb	WESTERN WATER HEMP
AILALT	O AILANTHUS ALTISSIMA	5 UPL	Ad Tree	TREE OF HEAVEN
AMAALB	0 AMARANTHUS ALBUS	3 FACU	Ad A-Forb	TUMBLEWEED
AMARET	0 AMARANTHUS RETROFLEXUS	2 FACU+	Ad A-Forb	ROUGH AMARANTH
ANDGER	5 Andropogon gerardii	1 FAC-	Nt P-Grass	BIG BLUESTEM GRASS
ARCMIN	0 ARCTIUM MINUS	5 UPL	Ad B-Forb	COMMON BURDOCK
ASTNOV	4 Aster novae-angliae	-3 FACW	Nt P-Forb	NEW ENGLAND ASTER
ASTPIL	0 Aster pilosus	2 FACU+	Nt P-Forb	HAIRY ASTER
AVESAT	0 AVENA SATIVA	5 UPL	Ad A-Grass	OATS
BOUCUR	8 Bouteloua curtipendula	5 UPL	Nt P-Grass	SIDE-OATS GRAMA
BRANIG	0 BRASSICA NIGRA	5 UPL	Ad A-Forb	BLACK MUSTARD
CHEALB	0 CHENOPODIUM ALBUM	1 FAC-	Ad A-Forb	LAMB'S QUARTERS
CIRARV	0 CIRSIUM ARVENSE	5 UPL	Ad P-Forb	FIELD THISTLE
COSBIP	0 COSMOS BIPINNATUS	-2 FACW-	Ad A-Forb	COMMON COSMOS
DAUCAR	0 DAUCUS CAROTA	5 UPL	Ad B-Forb	OUEEN ANNE'S LACE
ECHCRU	0 Echinochloa crusqalli	-3 FACW	Nt A-Grass	BARNYARD GRASS
ELYCAN	4 Elymus canadensis	1 FAC-	Nt P-Grass	CANADA WILD RYE
ERICAN	0 Erigeron canadensis	1 FAC-	Nt A-Forb	HORSEWEED
HELHEL	5 Heliopsis helianthoides	5 UPL	Nt P-Forb	FALSE SUNFLOWER
KOCSCO	0 KOCHIA SCOPARIA	4 FACU-	Ad A-Forb	BURNING BUSH
LOLMUL	0 LOLIUM MULTIFLORUM	5 UPL	Ad A-Grass	ITALIAN RYE GRASS
MALNEG	0 MALVA NEGLECTA	5 UPL	Ad B-Forb	COMMON MALLOW
MELALB	0 MELILOTUS ALBA	3 FACU	Ad B-Forb	WHITE SWEET CLOVER
MONFIS	4 Monarda fistulosa	3 FACU	Nt P-Forb	WILD BERGAMOT
PANDII	0 Panicum dichotomiflorum	-2 FACW-	Nt A-Grass	KNEE GRASS
PANVIR	5 Panicum virgatum	-1 FAC+	Nt P-Grass	SWITCH GRASS
PHYAME	1 Phytolacca americana	1 FAC-	Nt P-Forb	POKEWEED
POLLAP	0 Polygonum lapathifolium	-4 FACW+	Nt A-Forb	HEARTSEASE
POLPEN	0 Polygonum pensylvanicum	-4 FACW+	Nt A-Forb	PINKWEED
POPDEL	2 Populus deltoides	-1 FAC+	Nt Tree	EASTERN COTTONWOOD
RATPIN	4 Ratibida pinnata	5 UPL	Nt P-Forb	YELLOW CONEFLOWER
RHACAT	0 RHAMNUS CATHARTICA	3 FACU	Ad Shrub	COMMON BUCKTHORN
RUDHIR	1 Rudbeckia hirta	3 FACU	Nt P-Forb	BLACK-EYED SUSAN
RUMCRI	0 RUMEX CRISPUS	-1 FAC+	Ad P-Forb	CURLY DOCK
SETFAB	O SETARIA FABERI	2 FACU+	Ad A-Grass	GIANT FOXTAIL
SETVIV	0 SETARIA VIRIDIS	1 [FAC-]	Ad A-Grass	GREEN FOXTAIL
SETVIV	O SETARIA VIRIDIS O SETARIA VIRIDIS MAJOR	5 UPL	Ad A-Grass	GIANT GREEN FOXTAIL
SOLAME	0 Selaria viridis mador 0 Solanum americanum	4 FACU-	Nt A-Forb	BLACK NIGHTSHADE
SOLAME	0 SOLANUM DULCAMARA	0 FAC	Ad W-Vine	BITTERSWEET NIGHTSHADE
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SOLALI	0 SONCHUS ASPER	3 [FACU]	Ad A-Forb	SPINY SOW THISTLE
SUNASP	U SUNCTUS ASPEK	3 [FACU]	AG A-FORD	SPINI SOM THISILE

SORNUT	5 Sorghastrum nutans	2 FACU+	Nt P-Grass	INDIAN GRASS
SORHAL	0 SORGHUM HALEPENSE	3 FACU	Ad P-Grass	JOHNSON GRASS
TAROFF	0 TARAXACUM OFFICINALE	3 FACU	Ad P-Forb	COMMON DANDELION
TRIPRA	0 TRIFOLIUM PRATENSE	5 UPL	Ad P-Forb	RED CLOVER
VITRIP	2 Vitis riparia	-2 FACW-	Nt W-Vine	RIVERBANK GRAPE

APPENDIX II

TRANSECT SAMPLING & FLORISTIC QUALITY ASSESSMENT

The following is a summary of the transect data generated using Wilhelm and Masters' Floristic Quality Assessment and Computer Applications, 1999. Plant nomenclature follows Swink and Wilhelm's Plants of the Chicago Region, 1994. More information on floristic quality assessment methodology can be found in *Erigenia*, number 15, November, 1997. The results of each transect are presented in four sections as described below.

Section 1 is a summary of the quadrat data for the transect. The data listed for each quadrat includes the mean coefficient of conservatism (MC), floristic quality index (FQI), and mean wetness (MW). These values are calculated once for native species only, and a second time including adventive species (W/Ad). Also presented for each quadrat are the number of native species (NS), and number of total species (TS). Shown below each of these columns are their values averaged per quadrat (AVG), and standard deviation (STD). The columns to the far right are sequential averages of the wetness coefficients ([(x+n+y)/3]), data that can be useful in the evaluation of plants along a slope or topographical catena.

Section 2 is a summary these same values for the entire transect. First, there is a tabulation of the species in each conservatism category (0 to 10) and the percentage of species in three conservatism classes (0 to 3, 4 to 6, 7 to 10). The two columns below summarize the number and percent of species in each physiognomic group (A=annual, B=biennial, P=perennial, W=woody, H= herbaceous). Next, there is a summary of the relative importance values (RIV) of each physiognomic group. These values are calculated by summing the frequency (FRQ) and the cover class (COV) of each group found in the transect then dividing by two.

Section 3 is a table that lists the relative importance values for each species found in the transect sampling, calculated in the same manner described above. Each scientific name is followed by its coefficient of conservatism and wetland indicator status.

Section 4 is the transect inventory arranged alphabetically to scientific name. This is followed by a list of the quadrats along the transect string that includes the cover class value determined for each species recorded in the quadrat.

Site: North Side WRP - Transect 1

Locale: Skokie, IL

Date: September 28, 2004

By: Conservation Design Forum (K Johnson)

Section 1											
	TRANSECT DATA, QUADRAT										
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad	
1	1.6	1.0	3.6	2.8	0.6	1.8	5	8	0.7	1.8	
2	2.0	1.0	4.0	2.8	0.8	1.9	4	8	1.4	2.2	
3	1.0	0.2	1.0	0.4	3.0	3.0	1	6	2.4	2.6	
4	2.0	0.7	3.5	2.0	3.3	2.8	3	9	3.1	2.9	
5	1.0	0.2	1.0	0.4	3.0	3.0	1	5	2.9	2.6	
6	2.3	1.0	4.5	3.0	2.3	2.1	4	9	2.0	2.5	
7	2.5	1.1	5.0	3.3	0.8	2.3	4	9	1.6	2.5	
8	1.7	0.5	2.9	1.5	1.7	3.0	3	11	1.1	2.2	
9	0.2	0.1	0.4	0.4	0.8	1.4	6	8	1.2	2.3	
10	1.5	0.4	2.1	1.1	1.0	2.6	2	8	0.9	2.0	
7110	1 6	0.6	2 0	1 0	1 7	2 4	2 2	0 1			
AVG	1.6	0.6	2.8	1.8	1.7	2.4	3.3	8.1			
STD	0.7	0.4	1.6	1.2	1.1	0.6	1.6	1.7			

	C 0 1 2 3 4 5 6 7 8 9	NUMBER 6 1 0 0 to 2 64.3 2 3 0 4 to 0 35.7 0 0 8 to 1 0 0.0	7 %		14 NATIVE SPECIES 30 TOTAL SPECIES 2.1 NATIVE MEAN C 1.0 W/Adventives 8.0 NATIVE FQI 5.5 W/Adventives 1.7 NATIVE MEAN W 2.4 W/Adventives
Native	14	46.7%	Adventive	16	53.3%
Tree	0	0.0%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	8	26.7%	P-Forb	5	16.7%
B-Forb	0	0.0%	B-Forb	3	10.0%
A-Forb	2	6.7%	A-Forb	4	13.3%
P-Grass	2	6.7%	P-Grass	0	0.0%
A-Grass	2	6.7%	A-Grass	4	13.3%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

PHYSIOGNOMIC RELATIVE IMPORTANCE VALUES PHYSIOGNOMY FRQ COV RFRQ RCOV RIV 31 21.0 25.0 23.0 23 25.9 18.5 22.2 31 17.3 25.0 21.1 31 17 21 Ad P-Forb Nt P-Forb 14 Ad A-Grass 12 13 14.8 10.5 12.6 Ad A-Forb Nt A-Grass 8 15 9.9 12.1 11.0 5 4.8 5.5 Ad B-Forb 6 6.2 2 3 Nt P-Grass *3* 2 2.5 2.4 2.4 2 2.5 1.6 2.0 Nt A-Forb

SECTION 3

SPECIES	RELAT	IVE	IMPOR'	TANCE	VALUES
	С	WET	TNESS	FRQ	COV
	0	FAC	-	1.0	2.2

	DI DCIDO ICDINI.						
SCIENTIFIC NAME	C	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
TRIFOLIUM HYBRIDUM	0	FAC-	10	22	12.3	17.7	15.0
LOLIUM MULTIFLORUM	0	UPL	9	23	11.1	18.5	14.8
Rudbeckia hirta	1	FACU	8	9	9.9	7.3	8.6
Panicum dichotomiflorum	0	FACW-	4	8	4.9	6.5	5.7
Echinochloa crusgalli	0	FACW	4	7	4.9	5.6	5.3
HIBISCUS TRIONUM	0	UPL	5	5	6.2	4.0	5.1
CIRSIUM ARVENSE	0	UPL	4	6	4.9	4.8	4.9
POLYGONUM AVICULARE	0	FAC-	4	4	4.9	3.2	4.1
Aster pilosus	0	FACU+	3	4	3.7	3.2	3.5
Echinacea purpurea	3	UPL	3	3	3.7	2.4	3.1
SETARIA VIRIDIS	0	[FAC-]	2	4	2.5	3.2	2.8
ASTER SUBULATUS	0	[FACU]	2	3	2.5	2.4	2.4
CIRSIUM VULGARE	0	FACU-	2	3	2.5	2.4	2.4
SETARIA FABERI	0	FACU+	2	3	2.5	2.4	2.4
Aster novae-angliae	4	FACW	2	2	2.5	1.6	2.0
Heliopsis helianthoides	5	UPL	2	2	2.5	1.6	2.0
LACTUCA SERRIOLA	0	FAC	2	2	2.5	1.6	2.0
Eragrostis spectabilis	3	UPL	1	2	1.2	1.6	1.4
Andropogon gerardii	5	FAC-	1	1	1.2	0.8	1.0
AVENA SATIVA	0	UPL	1	1	1.2	0.8	1.0
Coreopsis lanceolata	5	FACU	1	1	1.2	0.8	1.0
DAUCUS CAROTA	0	UPL	1	1	1.2	0.8	1.0
Eupatorium serotinum	0	FAC+	1	1	1.2	0.8	1.0
Euphorbia supina	0	FACU-	1	1	1.2	0.8	1.0
PLANTAGO MAJOR	0	FAC+	1	1	1.2	0.8	1.0
Plantago rugelii	0	FAC	1	1	1.2	0.8	1.0
Ratibida pinnata	4	UPL	1	1	1.2	0.8	1.0
SONCHUS OLERACEUS	0	[UPL]	1	1	1.2	0.8	1.0
TARAXACUM OFFICINALE	0	FACU	1	1	1.2	0.8	1.0
TRIFOLIUM PRATENSE	0	UPL	1	1	1.2	0.8	1.0
			81	124			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
ANDGER	5 Andropogon gerardii	1 FAC-	Nt P-Grass	BIG BLUESTEM GRASS
ASTNOV	4 Aster novae-angliae	-3 FACW	Nt P-Forb	NEW ENGLAND ASTER
ASTPIL	0 Aster pilosus	2 FACU+	Nt P-Forb	HAIRY ASTER
ASTSUB	0 ASTER SUBULATUS	3 [FACU]	Ad A-Forb	EXPRESSWAY ASTER
AVESAT	0 AVENA SATIVA	5 UPL	Ad A-Grass	OATS
CIRARV	0 CIRSIUM ARVENSE	5 UPL	Ad P-Forb	FIELD THISTLE
CIRVUL	0 CIRSIUM VULGARE	4 FACU-	Ad B-Forb	BULL THISTLE
CORLAN	5 Coreopsis lanceolata	3 FACU	Nt P-Forb	SAND COREOPSIS
DAUCAR	0 DAUCUS CAROTA	5 UPL	Ad B-Forb	QUEEN ANNE'S LACE
ECHPUR	3 Echinacea purpurea	5 UPL	Nt P-Forb	BROAD-LEAVED PURPLE CONEFLOWER
ECHCRU	0 Echinochloa crusgalli	-3 FACW	Nt A-Grass	BARNYARD GRASS

ERASPE EUPSEM EUPSUP HELHEL HIBTRI LACSER LOLMUL PANDII PLAMAJ PLARUG POLAVI RATPIN RUDHIR SETFAB SETVIV SONOLE TAROFF TRIHYB TRIPRA	3 Eragrostis spectabilis 0 Eupatorium serotinum 0 Euphorbia supina 5 Heliopsis helianthoides 0 HIBISCUS TRIONUM 1 LACTUCA SERRIOLA 1 LOLIUM MULTIFLORUM 0 Panicum dichotomiflorum 10 PLANTAGO MAJOR 11 POLYGONUM AVICULARE 12 Ratibida pinnata 1 Rudbeckia hirta 1 SETARIA FABERI 1 SETARIA VIRIDIS 1 SONCHUS OLERACEUS 1 TARAXACUM OFFICINALE 2 TRIFOLIUM PRATENSE		5 UPL -1 FAC+ 4 FACU- 5 UPL 5 UPL 0 FAC 5 UPL -2 FACW1 FAC+ 0 FAC 1 FAC- 5 UPL 3 FACU 2 FACU+ 1 [FAC-] 5 [UPL] 3 FACU 1 FAC- 5 UPL 5 [UPL] 5 FACU	Nt P-Grass Nt P-Forb Nt A-Forb Ad A-Forb Ad B-Forb Ad A-Grass Nt A-Grass Nt A-Forb Nt A-Forb Nt P-Forb Nt P-Forb Ad A-Grass Ad A-Forb Ad A-Grass Ad A-Grass Ad A-Grass Ad A-Forb Ad A-Forb Ad A-Forb Ad P-Forb Ad P-Forb	FALSE SUNF FLOWER-OF- PRICKLY LE ITALIAN RY KNEE GRASS COMMON PLA RED-STALKE COMMON KNO YELLOW CON BLACK-EYED GIANT FOXT GREEN FOXT	ET EEPING SPURGE LOWER AN-HOUR TTUCE E GRASS NTAIN D PLANTAIN TWEED EFLOWER SUSAN ALL ALL T SOW THISTLE DELION VER
TRANSECT S	STRING	HIBTRI	1		>	
>		LOLMUL	2		QUAD	8
QUAD	1	PLAMAJ	1		ACRONYM	COVER
ACRONYM	COVER	POLAVI	1		CIRARV	1
ANDGER	1	RUDHIR	1		CIRVUL	2
ASTPIL	1	TRIHYB	3		ECHCRU	1
CIRARV	1	>			HIBTRI	1
ECHCRU	2	QUAD	5		LOLMUL	3
ECHPUR	1	ACRONYM	COVER		RATPIN	1
HIBTRI	1	CIRARV	2		RUDHIR	1
PANDII	3	LOLMUL	3		SETFAB	2
TRIHYB	1	POLAVI	1		SETVIV	2
>		RUDHIR	1		TRIHYB	2
QUAD	2	TRIHYB	2		TRIPRA	1
ACRONYM	COVER	>			>	
ASTNOV	1	QUAD	6		QUAD	9
DAUCAR	1	ACRONYM	COVER		ACRONYM	COVER
ECHPUR	1	CORLAN	1		ASTPIL	2
LOLMUL	2	ECHPUR	1		ECHCRU	2
PANDII	2	LACSER	1		EUPSEM	1
POLAVI	1	LOLMUL	3		EUPSUP	1
RUDHIR	1	PANDII	2		LOLMUL	3
TRIHYB	1	RUDHIR	2		PLARUG	1
>		SETVIV	2		RUDHIR	1
QUAD	3	TAROFF	1		TRIHYB	3
ACRONYM	COVER	TRIHYB	2		>	
ASTSUB	1	>			QUAD	10
LOLMUL	2	QUAD	7		ACRONYM	COVER
POLAVI	1	ACRONYM	COVER		ASTSUB	2
RUDHIR	1	ASTNOV	1		AVESAT	1
SONOLE	1	CIRARV	2		ECHCRU	2
TRIHYB	2	HELHEL	1		ERASPE	2
>		HIBTRI	1		HIBTRI	1
QUAD	4	LOLMUL	3		LACSER	1
ACRONYM	COVER	PANDII	1		LOLMUL	2
ASTPIL	1	RUDHIR	1		TRIHYB	3
CIRVUL	1	SETFAB	1			
HELHEL	1	TRIHYB	3			

Site: North Side WRP - Transect 2

Locale: Skokie, IL

Date: September 28, 2004

By: Conservation Design Forum (K Johnson)

SECTION 1

				TRAN	NSECT DA	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	2.5	1.1	5.0	3.3	1.8	2.3	4	9	2.4	2.9
2	1.0	0.3	1.0	0.5	3.0	3.5	1	4	1.4	2.4
3	0.5	0.3	0.7	0.5	-0.5	1.3	2	4	1.7	2.4
4	0.5	0.2	0.7	0.4	2.5	2.4	2	5	1.3	2.2
5	0.0	0.0	0.0	0.0	2.0	2.8	1	6	2.5	2.7
6	2.5	1.3	3.5	2.5	3.0	3.0	2	4	2.9	3.1
7	2.0	1.0	3.5	2.4	3.7	3.5	3	6	3.4	3.2
8	3.8	1.9	7.5	5.3	3.5	3.3	4	8	3.4	3.2
9	0.0	0.0	0.0	0.0	3.0	3.0	1	5	3.4	3.2
10	0.3	0.2	0.6	0.4	3.7	3.4	3	5	3.3	3.2
AVG	1.3	0.6	2.2	1.5	2.6	2.8	2.3	5.6		
STD	1.3	0.6	2.5	1.8	1.3	0.7	1.2	1.7		

	C 0 1 2 3 4 5 6 7 8 9	NUMBER 4 2 0 0 to 3 0 54.5% 3 2 0 4 to 7 0 45.5% 0 0 8 to 10 0 0.0%			11 NATIVE SPECIES 22 TOTAL SPECIES 2.2 NATIVE MEAN C 1.1 W/Adventives 7.2 NATIVE FQI 5.1 W/Adventives 2.3 NATIVE MEAN W 2.5 W/Adventives
Native	11	50.0%	Adventive	11	50.0%
Tree	0	0.0%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	9	40.9%	P-Forb	4	18.2%
B-Forb	0	0.0%	B-Forb	2	9.1%
A-Forb	2	9.1%	A-Forb	2	9.1%
P-Grass	0	0.0%	P-Grass	1	4.5%
A-Grass	0	0.0%	A-Grass	2	9.1%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

PHYSIOGNOMIC RELATIVE IMPORTANCE VALUES

PHYSIOGNOMY	F'RQ	COV	RFRQ	RCOV	RIV
Ad P-Forb	13	42	23.2	40.8	32.0
Nt P-Forb	20	20	35.7	19.4	27.6
Ad A-Grass	11	27	19.6	26.2	22.9
Ad A-Forb	4	5	7.1	4.9	6.0
Ad B-Forb	4	4	7.1	3.9	5.5
Nt A-Forb	3	3	5.4	2.9	4.1
Ad P-Grass	1	2	1.8	1.9	1.9

SECTION 3

CDECTEC	$PFI.\Delta TTI$	TMPORTANCE	DAITTEC

	DIDCID			. IIII (CL VII				
SCIENTIFIC NAME		С	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
TRIFOLIUM HYBRIDUM		0	FAC-	9	38	16.1	36.9	26.5
LOLIUM MULTIFLORUM		0	UPL	10	26	17.9	25.2	21.5
Rudbeckia hirta		1	FACU	7	7	12.5	6.8	9.6
Aster pilosus		0	FACU+	3	3	5.4	2.9	4.1
ASTER SUBULATUS		0	[FACU]	3	3	5.4	2.9	4.1
CIRSIUM VULGARE		0	FACU-	3	3	5.4	2.9	4.1
Ambrosia artemisiifolia	elatior	0	FACU	2	2	3.6	1.9	2.8
Heliopsis helianthoides		5	UPL	2	2	3.6	1.9	2.8
Monarda fistulosa		4	FACU	2	2	3.6	1.9	2.8
Solidago altissima		1	FACU	2	2	3.6	1.9	2.8
SONCHUS ULIGINOSUS		0	FAC-	2	2	3.6	1.9	2.8
MEDICAGO LUPULINA		0	FAC-	1	2	1.8	1.9	1.9
POA PRATENSIS		0	FAC-	1	2	1.8	1.9	1.9
Aster novae-angliae		4	FACW	1	1	1.8	1.0	1.4
CONVOLVULUS ARVENSIS		0	UPL	1	1	1.8	1.0	1.4
Coreopsis lanceolata		5	FACU	1	1	1.8	1.0	1.4
DAUCUS CAROTA		0	UPL	1	1	1.8	1.0	1.4
Oxalis stricta		0	UPL	1	1	1.8	1.0	1.4
Polygonum pensylvanicum		0	FACW+	1	1	1.8	1.0	1.4
Ratibida pinnata		4	UPL	1	1	1.8	1.0	1.4
SETARIA FABERI		0	FACU+	1	1	1.8	1.0	1.4
TARAXACUM OFFICINALE		0	FACU	1	1	1.8	1.0	1.4
				56	103			

ACRONYM	C SCIENTIFIC NAME	W WETNESS	PHYSIOGNOMY	COMMON NAME
AMBARE	O Ambrosia artemisiifolia elatior	3 FACU	Nt A-Forb	COMMON RAGWEED
ASTNOV	4 Aster novae-angliae	-3 FACW	Nt P-Forb	NEW ENGLAND ASTER
ASTPIL	0 Aster pilosus	2 FACU+	Nt P-Forb	HAIRY ASTER
ASTSUB	0 ASTER SUBULATUS	3 [FACU]	Ad A-Forb	EXPRESSWAY ASTER
CIRVUL	0 CIRSIUM VULGARE	4 FACU-	Ad B-Forb	BULL THISTLE
CONARV	0 CONVOLVULUS ARVENSIS	5 UPL	Ad P-Forb	FIELD BINDWEED
CORLAN	5 Coreopsis lanceolata	3 FACU	Nt P-Forb	SAND COREOPSIS
DAUCAR	0 DAUCUS CAROTA	5 UPL	Ad B-Forb	QUEEN ANNE'S LACE
HELHEL	5 Heliopsis helianthoides	5 UPL	Nt P-Forb	FALSE SUNFLOWER
LOLMUL	0 LOLIUM MULTIFLORUM	5 UPL	Ad A-Grass	ITALIAN RYE GRASS
MEDLUP	0 MEDICAGO LUPULINA	1 FAC-	Ad A-Forb	BLACK MEDICK
MONFIS	4 Monarda fistulosa	3 FACU	Nt P-Forb	WILD BERGAMOT
OXASTR	0 Oxalis stricta	5 UPL	Nt P-Forb	COMMON WOOD SORREL
POAPRA	0 POA PRATENSIS	1 FAC-	Ad P-Grass	KENTUCKY BLUE GRASS
POLPEN	0 Polygonum pensylvanicum	-4 FACW+	Nt A-Forb	PINKWEED
RATPIN	4 Ratibida pinnata	5 UPL	Nt P-Forb	YELLOW CONEFLOWER
RUDHIR	1 Rudbeckia hirta	3 FACU	Nt P-Forb	BLACK-EYED SUSAN
SETFAB	0 SETARIA FABERI	2 FACU+	Ad A-Grass	GIANT FOXTAIL
SOLALT	1 Solidago altissima	3 FACU	Nt P-Forb	TALL GOLDENROD
SONULI	0 SONCHUS ULIGINOSUS	1 FAC-	Ad P-Forb	COMMON SOW THISTLE
TAROFF	0 TARAXACUM OFFICINALE	3 FACU	Ad P-Forb	COMMON DANDELION

TRIHYB	0 TRIFOLIUM HYBRIDUM		1 FAC-	Ad P-Forb	ALSIKE CLO	OVER
TRANSECT S	PED TMC	ASTPIL	1			
TRANSECT S	SIRING	LOLMUL	3		> OUAD	8
	1	MEDLUP	2		ACRONYM	COVER
QUAD	1 COVER	-	1			
ACRONYM	COVER	SOLALT	-		ASTSUB	1
ASTNOV	1	TRIHYB	4		CORLAN	1
ASTPIL	1	>	-		HELHEL	1
ASTSUB	1	QUAD	5		LOLMUL	3
CIRVUL	1	ACRONYM	COVER		MONFIS	1
HELHEL	1	ASTPIL	1		RUDHIR	1
LOLMUL	3	ASTSUB	1		TAROFF	1
RUDHIR	1	CONARV	1		TRIHYB	3
SONULI	1	LOLMUL	3		>	
TRIHYB	4	POAPRA	2		QUAD	9
>		TRIHYB	4		ACRONYM	COVER
QUAD	2	>			AMBARE	1
ACRONYM	COVER	QUAD	6		CIRVUL	1
DAUCAR	1	ACRONYM	COVER		LOLMUL	1
LOLMUL	3	LOLMUL	3		SETFAB	1
RUDHIR	1	MONFIS	1			
TRIHYB	4	RUDHIR	1		TRIHYB	5
>		TRIHYB	4		>	
QUAD	3	>			QUAD	10
ACRONYM	COVER	QUAD	7		ACRONYM	COVER
LOLMUL	2	ACRONYM	COVER		AMBARE	1
POLPEN	1	CIRVUL	1		LOLMUL	3
RUDHIR	1	LOLMUL	2		OXASTR	1
TRIHYB	5	RATPIN	1		RUDHIR	1
>		RUDHIR	1		SONULI	1
QUAD	4	SOLALT	1			
ACRONYM	COVER	TRIHYB	5			

Site: Lemont WRP - Transect 1

Locale: Lemont, IL

Date: September 23, 2004

By: Conservation Design Forum (K Johnson)

By:	Conser	vation Desig	n Forum (K Johi	nson)				
SECTION 1			TTD 7.31	anam i	23 M3 - 01				
OIIND	MC	W/Nd FOT			DATA, QU		тc	MW CEO	W/NA
QUAD 1	MC 0.7	W/Ad FQI 0.6 1.9		MW 2.7	W/Ad 2.5	NS 7	TS 8	MW SEQ 1.7	W/Ad 2.0
2	0.7	0.0 1.9		0.8	1.6	4	5	1.7	2.0
3	0.5	0.2 0.3		0.5	2.2	2	6	1.6	2.1
4	1.5	0.8 3.0		3.5	3.4	4	8	2.1	2.4
5	1.0	0.7 2.4		2.2	2.1	6	9	2.1	2.1
6	1.2	1.0 2.7		0.6	0.7	5	6	1.7	1.8
7	2.4	1.9 6.4		2.4	2.7	7	9	2.2	2.3
8	0.3	0.3 0.5		3.5	3.5	4	4	3.3	3.4
9	2.0	2.0 4.5		4.0	4.0	5	5	2.9	3.1
10	0.3	0.1 0.6		1.3	1.9	3	7	2.7	2.9
	0.5	0.1	0.1		,		•	_,,	,
AVG	1.0	0.8 2.3	2.0	2.1	2.4	4.7	6.7		
STD	0.8	0.7 2.0		1.3	1.0	1.6	1.8		
SECTION 2									
	C	NUMBER				15 NAT			
	0	9				31 TOT.	AL SPE	CIES	
	1	2				.2 NAT	IVE ME	AN C	
	2	0 0 to			0	.6	W/Adve	ntives	
	3	1 80.0	%			.6 NAT			
	4	2					W/Adve		
	5	1				.7 NAT			
	6	0 4 to			2	.3	W/Adve	ntives	
	7	0 20.0	%						
	8	0	0						
	9	0 8 to 1							
	10	0 0.0	8						
Native	15	48.4%	Adventi.		16 5	1.6%			
Tree	1	3.2%	Tree	ve		6.5%			
Shrub	0	0.0%	Shrub			0.0%			
W-Vine	0	0.0%	W-Vine			0.0%			
H-Vine	0	0.0%	W Vine H-Vine			0.0%			
P-Forb	8	25.8%	P-Forb			6.1%			
B-Forb	0	0.0%	B-Forb		3	9.7%			
A-Forb	4	12.9%	A-Forb			2.9%			
P-Grass	1	3.2%	P-Grass		0	0.0%			
A-Grass	1	3.2%	A-Grass		2	6.5%			
P-Sedge	0	0.0%	P-Sedge		0	0.0%			
A-Sedge	0	0.0%	A-Sedge		0	0.0%			
Cryptogam		0.0%	30030		-				
- 11 5 3	_								

PHYSIOGNO	MIC	RELAT	IVE	IMPORTANC	E VALUES
YMC	FF	20	COV	7 RFRO	RCOV

			-		
PHYSIOGNOMY	FRQ	COV	RFRQ	RCOV	RIV
Nt P-Forb	29	50	43.3	38.8	41.0
Nt A-Forb	13	34	19.4	26.4	22.9
Ad A-Forb	7	16	10.4	12.4	11.4
Ad P-Forb	5	7	7.5	5.4	6.4
Nt A-Grass	3	6	4.5	4.7	4.6
Ad B-Forb	3	5	4.5	3.9	4.2
Ad Tree	3	5	4.5	3.9	4.2
Ad A-Grass	2	4	3.0	3.1	3.0
Nt Tree	1	1	1.5	0.8	1.1
Nt P-Grass	1	1	1.5	0.8	1.1

SECTION 3

CDECTEC	DET.ATTI/E	TMDORTANCE	T/AT.TTE'C

SCIENTIFIC NAME	C WETN	IESS FRQ	COV	RFRQ	RCOV	RIV
Rudbeckia hirta	1 FACU	10	20	14.9	15.5	15.2
Solanum americanum	0 FACU	J - 6	17	9.0	13.2	11.1
Oxalis stricta	0 UPL	5	12	7.5	9.3	8.4
Polygonum pensylvanicum	0 FAC	1+ 3	9	4.5	7.0	5.7
CHENOPODIUM ALBUM	0 FAC-	3	8	4.5	6.2	5.3
Heliopsis helianthoides	5 UPL	4	6	6.0	4.7	5.3
Erigeron canadensis	0 FAC-	3	6	4.5	4.7	4.6
Panicum dichotomiflorum	0 FACW	1- 3	6	4.5	4.7	4.6
Monarda fistulosa	4 FACU	1 4	4	6.0	3.1	4.5
AILANTHUS ALTISSIMA	0 UPL	2	4	3.0	3.1	3.0
POLYGONUM PERSICARIA	0 [FAC	!-] 2	4	3.0	3.1	3.0
Aster pilosus	0 FACU	J+ 2	3	3.0	2.3	2.7
Eupatorium serotinum	0 FAC+	. 2	3	3.0	2.3	2.7
AMARANTHUS ALBUS	0 FACU	1	2	1.5	1.6	1.5
AMARANTHUS RETROFLEXUS	0 FACU	J+ 1	2	1.5	1.6	1.5
CERASTIUM VULGATUM	0 FACU	1	2	1.5	1.6	1.5
CIRSIUM VULGARE	0 FACU	J- 1	2	1.5	1.6	1.5
DAUCUS CAROTA	0 UPL	1	2	1.5	1.6	1.5
Euphorbia supina	0 FACU	J - 1	2	1.5	1.6	1.5
SETARIA FABERI	0 FACU	J+ <u>1</u>	2	1.5	1.6	1.5
SETARIA VIRIDIS	0 [FAC	!-] 1	2	1.5	1.6	1.5
TRIFOLIUM PRATENSE	0 UPL	1	2	1.5	1.6	1.5
Acer saccharinum	0 FAC		1	1.5	0.8	1.1
ARCTIUM MINUS	0 UPL	1	1	1.5	0.8	1.1
CIRSIUM ARVENSE	0 UPL	1	1	1.5	0.8	1.1
Echinacea purpurea	3 UPL	1	1	1.5	0.8	1.1
Elymus canadensis	4 FAC-	1	1	1.5	0.8	1.1
MORUS ALBA	0 FAC	1	1	1.5	0.8	1.1
Solidago altissima	1 FACU	1	1	1.5	0.8	1.1
SOLIDAGO SEMPERVIRENS	0 [FAC	:U] 1	1	1.5	0.8	1.1
SONCHUS ULIGINOSUS	0 FAC-	1	1	1.5	0.8	1.1
		67	129			
~ 4						

SECTION 4

ACRONYM	C SCIENTIFIC NAME	W WETNESS PHYSIOGNOMY COMMON NAME
ACESAI	0 Acer saccharinum	-3 FACW Nt Tree SILVER MAPLE
AILALT	0 AILANTHUS ALTISSIMA	5 UPL Ad Tree TREE OF HEAVEN
AMAALB	0 AMARANTHUS ALBUS	3 FACU Ad A-Forb TUMBLEWEED
AMARET	0 AMARANTHUS RETROFLEXUS	2 FACU+ Ad A-Forb ROUGH AMARANTH

FIRST-YEAR MONITORING REPORT – APPENDIX II

 $MWRDGC-North\,Side,\,Lemont,\,\&\,LASMA\,Prairie\,Landscape\,Conversion\,Sites$ Conservation Design Forum (Project No. 03063.00)

ARCMIN	0 ARCTIUM MINUS		5 UPL	Ad B-Forb	COMMON BURDOCK
ASTPIL	0 Aster pilosus		2 FACU+	Nt P-Forb	HAIRY ASTER
CERVUL	0 CERASTIUM VULGATUM		3 FACU	Ad P-Forb	MOUSE-EAR CHICKWEED
CHEALB	0 CHENOPODIUM ALBUM		1 FAC-	Ad A-Forb	LAMB'S QUARTERS
CIRARV	O CIRSIUM ARVENSE		5 UPL	Ad P-Forb	FIELD THISTLE
CIRVUL	0 CIRSIUM VULGARE		4 FACU-	Ad B-Forb	BULL THISTLE
DAUCAR	0 DAUCUS CAROTA		5 UPL	Ad B-Forb	QUEEN ANNE'S LACE
ECHPUR	3 Echinacea purpurea		5 UPL	Nt P-Forb	BROAD-LEAVED PURPLE CONEFLOWER
ELYCAN	4 Elymus canadensis		1 FAC-	Nt P-Grass	CANADA WILD RYE
ERICAN	0 Erigeron canadensis		1 FAC-	Nt A-Forb	HORSEWEED
EUPSEM	0 Eupatorium serotinum		-1 FAC+	Nt P-Forb	LATE BONESET
EUPSUP	0 Euphorbia supina		4 FACU-	Nt A-Forb	SPOTTED CREEPING SPURGE
HELHEL	5 Heliopsis helianthoides		5 UPL	Nt P-Forb	FALSE SUNFLOWER
MONFIS	4 Monarda fistulosa		3 FACU	Nt P-Forb	WILD BERGAMOT
MORALB	0 MORUS ALBA		0 FAC	Ad Tree	WHITE MULBERRY
OXASTR	0 Oxalis stricta		5 UPL	Nt P-Forb	COMMON WOOD SORREL
PANDII	0 Panicum dichotomiflorum		-2 FACW-	Nt A-Grass	KNEE GRASS
POLPEN	0 Polygonum pensylvanicum		-4 FACW+	Nt A-Forb	PINKWEED
POLPER	0 POLYGONUM PERSICARIA		1 [FAC-]	Ad A-Forb	LADY'S THUMB
RUDHIR	1 Rudbeckia hirta		3 FACU	Nt P-Forb	BLACK-EYED SUSAN
SETFAB	O SETARIA FABERI		2 FACU+	Ad A-Grass	
SETVIV	0 SETARIA VIRIDIS		1 [FAC-]	Ad A-Grass	
SOLAME	0 Solanum americanum		4 FACU-	Nt A-Forb	BLACK NIGHTSHADE
SOLALT	1 Solidago altissima		3 FACU	Nt P-Forb	TALL GOLDENROD
SOLSEM	0 SOLIDAGO SEMPERVIRENS		3 [FACU]	Ad P-Forb	SEASIDE GOLDENROD
SONULI	0 SONCHUS ULIGINOSUS		1 FAC-	Ad P-Forb	COMMON SOW THISTLE
TRIPRA	0 TRIFOLIUM PRATENSE		5 UPL	Ad P-Forb	RED CLOVER
IICIIICI	o intitodion intitdivod		3 011	110 1 1010	RED CHOVER
TRANSECT	STRING	CIRARV	1		ECHPUR 1
>	BIRTING	HELHEL	1		ELYCAN 1
QUAD	1	POLPER	2		HELHEL 2
ACRONYM	COVER	RUDHIR	3		MONFIS 1
CHEALB	3	SETFAB	2		POLPEN 2
ERICAN	2	SOLAME	2		RUDHIR 1
EUPSEM	2	TRIPRA	2		SOLAME 2
	2		2		
EUPSUP	1	>	5		OUAD 8
MONFIS		QUAD			~
OXASTR	2	ACRONYM	COVER		ACRONYM COVER
RUDHIR	2	AMARET	2		ASTPIL 2
SOLAME	3	CHEALB	3		OXASTR 2
>		ERICAN	2		RUDHIR 3
QUAD	2	EUPSEM	1		SOLAME 4
ACRONYM	COVER	MONFIS	1		>
ACESAI	1	RUDHIR	2		QUAD 9
AILALT	1	SOLALT	1		ACRONYM COVER
OXASTR	3	SOLAME	2		HELHEL 1
PANDII	2	SOLSEM	1		MONFIS 1
RUDHIR	3	>	_		OXASTR 3
>		QUAD	6		RUDHIR 1
QUAD	3	ACRONYM	COVER		SOLAME 4
ACRONYM	COVER	ERICAN	2		>
AILALT	3	HELHEL	2		QUAD 10
DAUCAR	2	PANDII	2		ACRONYM COVER
PANDII	2	POLPEN	4		AMAALB 2
POLPER	2	RUDHIR	2		ARCMIN 1
RUDHIR	1	SONULI	1		CHEALB 2
SETVIV	2	>			MORALB 1
>		QUAD	7		OXASTR 2
QUAD	4	ACRONYM	COVER		POLPEN 3
ACRONYM	COVER	CERVUL	2		RUDHIR 2
ASTPIL	1	CIRVUL	2		

Site: Lemont WRP - Transect 2

Locale: Lemont, IL

Date: September 23, 2004

By: Conservation Design Forum (K Johnson)

Section 1										
·				TRAN	SECT D	ATA, QU	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	1.5	0.9	3.7	2.8	0.8	1.6	6	10	2.0	2.4
2	1.2	0.9	2.7	2.3	3.2	3.3	5	7	2.1	2.5
3	0.8	0.5	1.5	1.2	2.3	2.7	4	6	2.9	3.1
4	1.6	1.0	3.6	2.8	3.2	3.4	5	8	2.4	2.8
5	1.0	0.6	2.0	1.5	1.8	2.4	4	7	3.0	3.0
6	0.0	0.0	0.0	0.0	4.0	3.3	2	6	2.5	2.7
7	0.2	0.1	0.4	0.4	1.8	2.3	5	8	3.0	2.7
8	3.4	2.1	7.6	6.0	3.2	2.6	5	8	2.5	2.3
9	3.0	1.0	4.2	2.4	2.5	2.0	2	6	3.2	2.6
10	0.0	0.0	0.0	0.0	4.0	3.1	1	7	3.2	2.6
AVG	1.3	0.7	2.6	1.9	2.7	2.7	3.9	7.3		
STD	1.2	0.6	2.3	1.8	1.0	0.6	1.7	1.3		
SECTION 2										
	С	NUMBEI	З.			:	21 NAT:	IVE SP	ECIES	
	0	12				:	38 TOT	AL SPE	CIES	
	1	2				1	ב אזאים	T170 MC	ANT C	

SECTION 2					
	С	NUMBER			21 NATIVE SPECIES
	0	12			38 TOTAL SPECIES
	1	2			1.5 NATIVE MEAN C
	2	1 0 to	3		0.8 W/Adventives
	3	1 76.2	%		7.0 NATIVE FQI
	4	3			5.2 W/Adventives
	5	1			1.4 NATIVE MEAN W
	6	0 4 to	7		1.8 W/Adventives
	7	0 19.0	%		
	8	1			
	9	0 8 to 1			
	10	0 4.8	%		
Native	21	55.3%	Adventive	17	44.7%
Tree	1	2.6%	Tree	2	5.3%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	10	26.3%	P-Forb	5	13.2%
B-Forb	1	2.6%	B-Forb	2	5.3%
A-Forb	4	10.5%	A-Forb	4	10.5%
P-Grass	1	2.6%	P-Grass	0	0.0%
A-Grass	3	7.9%	A-Grass	4	10.5%
P-Sedge	1	2.6%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

PHYSIOGNOMIC RELATIVE IMPORTANCE VALUES PHYSIOGNOMY FRQ COV RFRQ RCOV RIV 24 37 32.9 Nt P-Forb 31.4 32.1 Ad P-Forb 16 23 21.9 19.5 20.7 Ad A-Forb 7 15 9.6 12.7 11.2 8.2 Nt A-Forb 6 12 10.2 9.2 5 Nt A-Grass 11 6.8 9.3 8.1 8.2 9 Ad A-Grass 7.9 6 7.6 Ad Tree 3 4 3.4 3.7 Ad B-Forb 2 3 2.7 2.5 2.6 1 1 Nt P-Sedge 1.4 0.8 1.1 Nt P-Grass 1 1 1.4 0.8 1.1 1 1 1.4 Nt B-Forb 0.8 1.1 1.4 Nt Tree 1 1 0.8 1.1

SECTION 3

SPECIES	RELATIVE	IMPORT	'ANCE	VALUES
	C WE	TNESS	FRC	COV

COTENETET C NAME		THE THE CO.		2017	DEDO	D.GOTT	D 777
SCIENTIFIC NAME		WETNESS	FRQ	COV	RFRQ	RCOV	RIV
CIRSIUM ARVENSE		UPL	6	10	8.2	8.5	8.3
TARAXACUM OFFICINALE		FACU	7	8	9.6	6.8	8.2
Oxalis stricta		UPL	6	8	8.2	6.8	7.5
Rudbeckia hirta		FACU	5	8	6.8	6.8	6.8
POLYGONUM PERSICARIA	0	[FAC-]	4	9	5.5	7.6	6.6
Solanum americanum		FACU-	3	7	4.1	5.9	5.0
Eupatorium altissimum	0	[FACU]	2	6	2.7	5.1	3.9
Panicum dichotomiflorum		FACW-	2	6	2.7	5.1	3.9
Heliopsis helianthoides		UPL	3	4	4.1	3.4	3.7
Panicum capillare	1	FAC	2	4	2.7	3.4	3.1
AILANTHUS ALTISSIMA	0	UPL	2	3	2.7	2.5	2.6
DIGITARIA ISCHAEMUM	0	FACU	2	3	2.7	2.5	2.6
Echinacea purpurea	3	UPL	2	2	2.7	1.7	2.2
Ratibida pinnata	4	UPL	2	2	2.7	1.7	2.2
SETARIA VERTICILLATA	0	FACU	2	2	2.7	1.7	2.2
AMARANTHUS RETROFLEXUS	0	FACU+	1	3	1.4	2.5	2.0
GLECHOMA HEDERACEA	0	FACU	1	3	1.4	2.5	2.0
Polygonum pensylvanicum	0	FACW+	1	3	1.4	2.5	2.0
Aster pilosus	0	FACU+	1	2	1.4	1.7	1.5
ATRIPLEX PATULA	0	FACW-	1	2	1.4	1.7	1.5
CIRSIUM VULGARE	0	FACU-	1	2	1.4	1.7	1.5
Eupatorium serotinum	0	FAC+	1	2	1.4	1.7	1.5
Monarda fistulosa	4	FACU	1	2	1.4	1.7	1.5
SETARIA FABERI	0	FACU+	1	2	1.4	1.7	1.5
SETARIA VIRIDIS	0	[FAC-]	1	2	1.4	1.7	1.5
ARTEMISIA ANNUA	0	FACU	1	1	1.4	0.8	1.1
Aster novae-angliae	4	FACW	1	1	1.4	0.8	1.1
Bouteloua curtipendula		UPL	1	1	1.4	0.8	1.1
Cyperus esculentus	0	[FAC+]	1	1	1.4	0.8	1.1
Echinochloa crusgalli	0	FACW	1	1	1.4	0.8	1.1
Erigeron canadensis		FAC-	1	1	1.4	0.8	1.1
LACTUCA SALIGNA		FACU	1	1	1.4	0.8	1.1
MORUS ALBA		FAC	1	1	1.4	0.8	1.1
Oenothera biennis		FACU	1	1	1.4	0.8	1.1
Populus deltoides		FAC+	1	1	1.4	0.8	1.1
Potentilla norvegica		FAC	1	1	1.4	0.8	1.1
rocenciiia norvegica	U	I. AC	Τ.		1.4	0.0	т.т

FIRST-YEAR MONITORING REPORT - APPENDIX II

MWRDGC – North Side, Lemont, & LASMA Prairie Landscape Conversion Sites Conservation Design Forum (Project No. 03063.00)

SULIDAGO SEMPERVIRENS			U [FACU]		т т	4 0.0 1.1	•
SONCHUS ULIGINOSUS			0 FAC-	1	1 1	4 0.8 1.1	
				73	118		
				13	110		
SECTION 4	<u> </u>						
ACRONYM	C SCIENTIFIC	NAME		W WETNESS	PHYSIOGNOMY	COMMON NAME	
AILALT	0 AILANTHUS A	LTISSIMA		5 UPL	Ad Tree	TREE OF HEAVEN	
AMARET	0 AMARANTHUS	RETROFLEXUS		2 FACU+	Ad A-Forb	ROUGH AMARANTH	
ARTANN	O ARTEMISIA A	NNUA		3 FACU	Ad A-Forb	SWEET WORMWOOD	
ASTNOV	4 Aster novae-angliae			-3 FACW	Nt P-Forb	NEW ENGLAND ASTER	
ASTPIL	0 Aster pilosus			2 FACU+	Nt P-Forb	HAIRY ASTER	
ATRPAT	0 ATRIPLEX PATULA			-2 FACW-	Ad A-Forb	COMMON ORACH	
BOUCUR	8 Bouteloua curtipendula			5 UPL	Nt P-Grass	SIDE-OATS GRAMA	
CIRARV	0 CIRSIUM ARV	ENSE		5 UPL	Ad P-Forb	FIELD THISTLE	
CIRVUL	0 CIRSIUM VUL	GARE		4 FACU-	Ad B-Forb	BULL THISTLE	
CYPESC	O Cyperus esc	ulentus		-1 [FAC+]	Nt P-Sedge	FIELD NUT SEDGE	
DIGISC	0 DIGITARIA I	SCHAEMUM		3 FACU	Ad A-Grass	SMOOTH CRAB GRASS	
ECHPUR	3 Echinacea purpurea			5 UPL	Nt P-Forb	BROAD-LEAVED PURPLE CONEFLOWER	
ECHCRU	0 Echinochloa	crusgalli		-3 FACW	Nt A-Grass	BARNYARD GRASS	
ERICAN	0 Erigeron canadensis			1 FAC-	Nt A-Forb	HORSEWEED	
EUPALT	0 Eupatorium	altissimum		3 [FACU]	Nt P-Forb	TALL BONESET	
EUPSEM	0 Eupatorium	serotinum		-1 FAC+	Nt P-Forb	LATE BONESET	
GLEHED	0 GLECHOMA HEDERACEA			3 FACU	Ad P-Forb	CREEPING CHARLIE	
HELHEL	5 Heliopsis helianthoides			5 UPL	Nt P-Forb	FALSE SUNFLOWER	
LACSAL	0 LACTUCA SALIGNA			3 FACU	Ad B-Forb	WILLOW LETTUCE	
MONFIS	4 Monarda fis	tulosa		3 FACU	Nt P-Forb	WILD BERGAMOT	
MORALB	0 MORUS ALBA			0 FAC	Ad Tree	WHITE MULBERRY	
OENBIE	0 Oenothera b			3 FACU	Nt B-Forb	COMMON EVENING PRIM	IROSE
OXASTR	0 Oxalis stri			5 UPL	Nt P-Forb	COMMON WOOD SORREL	
PANCAP	1 Panicum cap			0 FAC	Nt A-Grass	OLD WITCH GRASS	
PANDII	0 Panicum dic			-2 FACW-	Nt A-Grass	KNEE GRASS	
POLPEN	0 Polygonum pensylvanicum			-4 FACW+	Nt A-Forb	PINKWEED	
POLPER	0 POLYGONUM PERSICARIA			1 [FAC-]	Ad A-Forb	LADY'S THUMB	
POPDEL	2 Populus del			-1 FAC+	Nt Tree	EASTERN COTTONWOOD	
POTNOR	0 Potentilla			0 FAC	Nt A-Forb	NORWAY CINQUEFOIL	
RATPIN	4 Ratibida pi			5 UPL	Nt P-Forb	YELLOW CONEFLOWER	
RUDHIR	1 Rudbeckia h			3 FACU	Nt P-Forb	BLACK-EYED SUSAN	
SETFAB	0 SETARIA FAB			2 FACU+	Ad A-Grass	GIANT FOXTAIL	
SETVER	0 SETARIA VERTICILLATA			3 FACU	Ad A-Grass	BRISTLY FOXTAIL	
SETVIV	0 SETARIA VIRIDIS			1 [FAC-] 4 FACU-	Ad A-Grass	GREEN FOXTAIL	
SOLAME		0 Solanum americanum			Nt A-Forb	BLACK NIGHTSHADE	
SOLSEM	0 SOLIDAGO SEI			3 [FACU]	Ad P-Forb	SEASIDE GOLDENROD	
SONULI	0 SONCHUS ULI			1 FAC-	Ad P-Forb	COMMON SOW THISTLE	
TAROFF	0 TARAXACUM O	F.F.T.C.INALE		3 FACU	Ad P-Forb	COMMON DANDELION	
TO AMOROT	CTD TMC	OTIAD	3	OVACTED	2	OTIAD	8
TRANSECT	SIKING	QUAD		OXASTR	3	QUAD	
> QUAD	1	ACRONYM CIRVUL	COVER 2	PANCAP POPDEL	1	ACRONYM BOUCUR	COVER 1
	COVER		1		1		1
ACRONYM	3	ECHPUR	3	RUDHIR >	1	DIGISC	1
AMARET ASTNOV	1	EUPALT OXASTR	3 1	> QUA	D 6	ECHCRU HELHEL	2
DIGISC	2	POLPEN	3	ACRONYM	COVER		4
EUPSEM	2	TAROFF	1	CIRARV	COVER 2	POLPER RATPIN	1
MONFIS	2	TARUFF >	Τ		3		3
MONFIS OENBIE	1	QUAD	4	EUPALT OXASTR	1	SOLAME SONULI	1
OFNETE	1	A CD ON YM	COVED	DOLDED	7	PONOTI	1

0 [FACU]

1

1

1.4

0.8

1.1

First-year Monitoring Report — Appendix II

MWRDGC — North Side, Lemont, & LASMA Prairie Landscape Conversion Sites

Conservation Design Forum (Project No. 03063.00)

ACRONYM

CIRARV

ECHPUR

LACSAL

OXASTR

PANDII

RATPIN

RUDHIR

TAROFF

ACRONYM

AILALT

CIRARV

MORALB

QUAD

COVER

1

1

1

2

3

1

2

1

5

1 2

COVER

POLPER

SOLSEM

TAROFF

ACRONYM

CIRARV

CYPESC

OXASTR

PANDII

POLPER

RUDHIR

SOLAME

TAROFF

QUAD

2

1

7

1

1

1

1

1

2

1

COVER

9

2

3

1

1

2

10

2

1

2

COVER

COVER

QUAD

QUAD

ACRONYM

ATRPAT

GLEHED

HELHEL

PANCAP

SETVER

TAROFF

ACRONYM

AILALT

ARTANN

CIRARV

SOLIDAGO SEMPERVIRENS

POTNOR

RUDHIR

SETVER

TAROFF

ACRONYM

ASTPIL

CIRARV

ERICAN

HELHEL

OXASTR

RUDHIR

SETFAB

QUAD

2

1

2

2

2

1

1

2

2

COVER

POLPER 2 SETVIV 2 SOLAME 2 TAROFF 1

Site: LASMA Berm - Transect 1

Locale: Willow Springs, IL Date: September 23, 2004

By: Conservation Design Forum (K Johnson)

SECTION	Τ

DECITOR I										
				TRAI	NSECT D	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	0.0	0.0	0.0	0.0	-3.0	2.8	1	4	-1.7	1.2
2	0.0	0.0	0.0	0.0	-0.3	-0.3	3	3	-1.9	0.8
3	0.0	0.0	0.0	0.0	-2.5	0.0	2	3	-1.9	0.7
4	0.0	0.0	0.0	0.0	-3.0	2.3	1	3	-2.2	0.6
5	0.0	0.0	0.0	0.0	-1.0	-0.5	3	4	-2.0	1.1
6	1.0	0.5	1.4	1.0	-2.0	1.5	2	4	-1.5	0.4
7	1.0	0.4	1.4	0.9	-1.5	0.2	2	5	-1.7	0.8
AVG	0.3	0.1	0.4	0.3	-1.9	0.9	2.0	3.7		
STD	0.5	0.2	0.7	0.5	1.0	1.3	0.8	0.8		

SECTION 2

	C 0 1 2 3 4 5 6 7 8 9	NUMBER 4 0 1 0 to 0 100.0 0 0 0 4 to 0 0.0 0 0 8 to 1 0 0.0	0% 7 0% 10		5 NATIVE SPECIES 11 TOTAL SPECIES 0.4 NATIVE MEAN C 0.2 W/Adventives 0.9 NATIVE FQI 0.6 W/Adventives -1.2 NATIVE MEAN W 0.7 W/Adventives
Native	5	45.5%	Adventive	6	54.5%
Tree	1	9.1%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	0	0.0%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	2	18.2%	A-Forb	3	27.3%
P-Grass	0	0.0%	P-Grass	0	0.0%
A-Grass	2	18.2%	A-Grass	3	27.3%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

PHYSTOG	NOMIC RELATIVI	TMPORT	ANCE VALI	IES				
PHYSIOGNOMY		OV RFI			IV			
Nt A-Grass	~	27 34	~	5.0 39				
Ad A-Grass		19 34		L.7 33				
Ad A-Forb	3	6 11		0.0 10				
Nt A-Forb	3	5 11			.9			
Nt Tree	2				.3			
NC IICC	2	5 /	• /	0	• 3			
SECTION 3								
<u></u>	SPECIES	S RELATIV	VE IMPORT	TANCE VA	LUES			
SCIENTIFIC NAME		C I	WETNESS	FRQ	COV	RFRQ	RCOV	RIV
Echinochloa crusg	alli	0 1	FACW	6	21	$21.\overline{4}$	32.8	27.1
LOLIUM MULTIFLORU		0 1	UPL	5	12	17.9	18.8	18.3
Panicum dichotomi	florum	0 1	FACW-	3	6	10.7	9.4	10.0
AVENA SATIVA		0 1	UPL	3	5	10.7	7.8	9.3
SOIL		0		2	4	7.1	6.3	6.7
Solanum americanu	m		FACU-	2	4	7.1	6.3	6.7
Populus deltoides			FAC+	2	3	7.1	4.7	5.9
ACNIDA TAMARISCIN			FACW	1	2	3.6	3.1	3.3
CHENOPODIUM ALBUM			FAC-	1	2	3.6	3.1	3.3
KOCHIA SCOPARIA			FACU-	1	2	3.6	3.1	3.3
SETARIA FABERI			FACU+	1	2	3.6	3.1	3.3
Polygonum pensylv	ani aum		FACW+	1	1	3.6	1.6	2.6
Polygonam pensylv	anicum	0 1	FACWT	28	64	3.0	1.0	۷.0
SECTION 4				20	O-I			
ACRONYM C SCIENTIF	T.O. NIAME		,	W WETNESS	DIMATOA	TOMY COMM	ON NAME	
ACRONYM C SCIENTIF ACNTAM 0 ACNIDA T.				W WEINESS 3 FACW	Ad A-Foi		ON NAME ERN WATI	CR HEMP
AVESAT 0 AVENA SA				5 UPL	Ad A-Gra			
CHEALB 0 CHENOPOD	IUM ALBUM			1 FAC-	Ad A-For	rb LAMB	'S QUART	TERS
	loa crusgalli			3 FACW	Nt A-Gra		YARD GRA	
KOCSCO 0 KOCHIA S				4 FACU-	Ad A-For		ING BUSH	
LOLMUL 0 LOLIUM M PANDII 0 Panicum	dichotomiflorum			5 UPL 2 FACW-	Ad A-Gra		IAN RYE GRASS	GRASS
	m pensylvanicum			4 FACW+	Nt A-For			
POPDEL 2 Populus	deltoides		=:	1 FAC+	Nt Tree	EAST	ERN COTT	CONMOOD
SETFAB 0 SETARIA	FABERI			2 FACU+	Ad A-Gra		T FOXTA	ΙL
SOIL 0 SOIL SOLAME 0 Solanum	ameri danum			0 nil 4 FACU-	nil Nt A-Fo	SOIL	K NIGHTS	בת א טוב
SOLAME 0 SOLATION	allier realiulli			4 FACU-	NC A-FOI	D BLAC	K NIGHIS	DIADE
TRANSECT STRING		ACRONYM	COVER			SOLAM	E	2
>		ECHCRU	4			>		_
QUAD 1		LOLMUL	2 2			Q		6
ACRONYM COVER AVESAT 1		PANDII >	2			ACRON AVESA		COVER 2
ECHCRU 2		QUAD	4			ECHCR		4
KOCSCO 2		ACRONYM	COVER			LOLMU	L	4
LOLMUL 1		AVESAT	2			POPDE	L	2
SOIL 2		ECHCRU	3			>	113 D	7
> QUAD 2		LOLMUL SOIL	1 2			Q ACRON	UAD YM	7 COVER
ACRONYM COVER		>	2			ACNTA		2
ECHCRU 4		QUAD	5			LOLMU		4
PANDII 2		ACRONYM	COVER			PANDI		2
SOLAME 2		CHEALB	2			POPDE	L	1

QUAD

3

ECHCRU

POLPEN

SETFAB

2

Site: LASMA Berm - Transect 2

Locale: Willow Springs, IL Date: September 23, 2004

By: Conservation Design Forum (K Johnson)

SECTION 1

				TRAI	NSECT D	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	0.0	0.0	0.0	0.0	-3.0	1.0	1	2	-2.2	0.8
2	1.0	0.7	1.4	1.2	-1.5	0.7	2	3	-1.9	0.6
3	1.3	1.0	2.3	2.0	-1.3	0.3	3	4	0.1	1.4
4	4.0	1.3	4.0	2.3	3.0	3.3	1	3	-0.4	1.5
5	4.0	2.0	4.0	2.8	-3.0	1.0	1	2	-1.0	1.9
6	0.0	0.0	0.0	0.0	-3.0	1.3	1	3	-2.0	1.8
7	0.0	0.0	0.0	0.0	0.0	3.0	0	2	-1.5	2.2
AVG	1.5	0.7	1.7	1.2	-1.3	1.5	1.3	2.7		
STD	1.8	0.8	1.8	1.2	2.2	1.2	1.0	0.8		
SECTION 2										

SECTION 2

	C 0 1 2 3 4 5 6 7 8 9	NUMBER 2 0 1 0 to 0 50.0 3 0 4 to 0 50.0 0 0 8 to 1 0 0.0	7 %		6 NATIVE SPECIES 9 TOTAL SPECIES 2.3 NATIVE MEAN C 1.6 W/Adventives 5.7 NATIVE FQI 4.7 W/Adventives -0.8 NATIVE MEAN W 0.3 W/Adventives
Native	6	66.7%	Adventive	3	33.3%
Tree	1	11.1%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	2	22.2%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	0	0.0%	A-Forb	0	0.0%
P-Grass	1	11.1%	P-Grass	0	0.0%
A-Grass	2	22.2%	A-Grass	3	33.3%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

	PHYSIOGNOMI	C RELATIVE	IMPO	RTANC	E VAL	UES					
PHYSIOGNO	YMC	FRQ CC	V	RFRQ	R	COV	RI	IV			
Ad A-Gras		10 2	9	52.6	6	3.0	57.	. 8			
Nt A-Gras	SS			26.3		8.3		. 3			
Nt P-Forl				10.5		4.3					
Nt Tree	O		1	5.3		2.2					
Nt P-Gras	~ ~	1	1	5.3		2.2					
NC P-Gra	55	Τ.	_	5.5		۷.۷	٥.	. /			
Section 3		SPECIES	י דים מי	TT77	TMDOD	א א ידי	CE 1771	TIEC			
COTENUTE:	T C NIAME	SPECIES							וים כו		7 RIV
SCIENTIF				C WET			FRQ	COV	RFI	~	
	ULTIFLORUM			0 UPL			7	26	36		
	loa crusgalli			0 FAC			3	6	15		
Panicum o	dichotomiflor	rum		0 FAC	W –		2	7	10		
SETARIA 1	FABERI			0 FAC	U+		2	2	10	.5 4.3	7.4
Aster no	vae-angliae			4 FAC	W		1	1	5	.3 2.2	3.7
Elymus ca	anadensis			4 FAC	_		1	1	5	.3 2.2	3.7
Monarda :	fistulosa			4 FAC	U		1	1	5	.3 2.2	3.7
	deltoides			2 FAC	+		1	1	5	.3 2.2	3.7
SETARIA V				0 [FA			1	1	5	.3 2.2	3.7
	-			•			19	46			
SECTION 4											
BECTION 1											
ACRONYM	C SCIENTIFIC NA	ME				W WE	ETNESS	PHYSIOG	NOMY	COMMON NAM	ΙE
ASTNOV	4 Aster novae-a	ngliae			_	-3 F <i>F</i>	ACW	Nt P-Fc	rb	NEW ENGLAN	D ASTER
ECHCRU	0 Echinochloa c					3 F		Nt A-Gr	ass	BARNYARD G	RASS
ELYCAN	4 Elymus canade					1 FF		Nt P-Gr		CANADA WIL	
LOLMUL	0 LOLIUM MULTIF 4 Monarda fistu					5 UE		Ad A-Gr		ITALIAN RY	
MONFIS PANDII	0 Panicum dicho				_	3 FA	ACU ACW-	Nt P-Fo		WILD BERGA KNEE GRASS	
POPDEL	2 Populus delto					-1 F		Nt Tree		EASTERN CC	
SETFAB	O SETARIA FABER						ACU+	Ad A-Gr		GIANT FOXT	
SETVIV	O SETARIA VIRID	IS				1 [E	FAC-]	Ad A-Gr	ass	GREEN FOXT	'AIL
TRANSECT ST	TRING		ACRON		COVER					ASTNOV	1
>			ECHCR		2					LOLMUL	4
QUAD ACRONYM	1 COVER		ELYCA		1				;	> OII 7 D	6
ECHCRU	3		LOLMU PANDI		3				7	QUAD ACRONYM	COVER
LOLMUL	3		>	_	J	,				ECHCRU	1
>				UAD	4	Į				LOLMUL	4
QUAD	2		ACRON	ΥM	COVER	2			S	SETFAB	1
ACRONYM	COVER		LOLMU		5				:	>	
LOLMUL	2		MONFI		1					QUAD	7
PANDII	4		SETFA	.В	1	-				ACRONYM	COVER
POPDEL >	1		>	UAD	5	;				LOLMUL SETVIV	5 1
01170	2		A CROM		COTTED					1 N T N	Τ.

ACRONYM

COVER

QUAD

Site: LASMA Berm - Transect 3

Locale: Willow Springs, IL Date: September 23, 2004

By: Conservation Design Forum (K Johnson)

SECTION 1

				TRAI	NSECT D	ATA, QUA	ADRAT			
QUAD	MC	W/Ad	FQI	W/Ad	MW	W/Ad	NS	TS	MW SEQ	W/Ad
1	1.3	1.0	2.3	2.0	-2.0	-0.2	3	4	-2.5	-1.6
2	0.0	0.0	0.0	0.0	-3.0	-3.0	1	1	-2.7	-1.2
3	0.0	0.0	0.0	0.0	-3.0	-0.5	1	2	-1.0	-0.3
4	1.0	0.5	1.0	0.7	3.0	2.5	1	2	-0.8	-0.2
5	0.0	0.0	0.0	0.0	-2.5	-2.5	2	2	-0.2	0.7
6	2.0	0.7	2.0	1.2	-1.0	2.0	1	3	0.5	1.2
7	5.0	1.7	5.0	2.9	5.0	4.0	1	3	2.0	3.0
AVG	1.3	0.5	1.5	1.0	-0.5	0.3	1.4	2.4		
STD	1.8	0.6	1.8	1.1	3.2	2.6	0.8	1.0		

SECTION 2

	C 0 1 2 3 4 5 6 7 8 9	NUMBER 3 1 1 0 to 0 71.4 1 1 0 4 to 0 28.6 0 0 8 to 1 0 0.0	% 7 % 0		7 NATIVE SPECIES 9 TOTAL SPECIES 1.7 NATIVE MEAN C 1.3 W/Adventives 4.5 NATIVE FQI 4.0 W/Adventives -0.1 NATIVE MEAN W 0.7 W/Adventives
Native	7	77.8%	Adventive	2	22.2%
Tree	1	11.1%	Tree	0	0.0%
Shrub	0	0.0%	Shrub	0	0.0%
W-Vine	0	0.0%	W-Vine	0	0.0%
H-Vine	0	0.0%	H-Vine	0	0.0%
P-Forb	2	22.2%	P-Forb	0	0.0%
B-Forb	0	0.0%	B-Forb	0	0.0%
A-Forb	1	11.1%	A-Forb	0	0.0%
P-Grass	1	11.1%	P-Grass	0	0.0%
A-Grass	2	22.2%	A-Grass	2	22.2%
P-Sedge	0	0.0%	P-Sedge	0	0.0%
A-Sedge	0	0.0%	A-Sedge	0	0.0%
Cryptogam	0	0.0%			

PHYSIO	GNOMIC RELATIV	E IMPORTAN	ICE VALUE	ES				
PHYSIOGNOMY	FRQ C	OV RFRQ) RCC	OV R	IV			
Ad A-Grass	$\tilde{7}$	13 41.2	-	6 40	. 9			
Nt A-Grass	5	13 29.4						
Nt P-Forb	2	2 11.8			.0			
Nt A-Forb	1	2 5.9			.1			
					.5			
Nt Tree	1							
Nt P-Grass	1	1 5.9	3.	.1 4	.5			
SECTION 3								
	SPECIE	S RELATIVE	: IMPORTA	ANCE VA	LUES			
SCIENTIFIC NAME		C WE	TNESS	FRO	COV	RFRO	RCOV	RIV
SOIL		0		6	18	26.1	36.0	31.0
Echinochloa crus	ralli	0 FA	CW	4	10	17.4	20.0	18.7
LOLIUM MULTIFLOR		0 UF		3	8	13.0	16.0	14.5
SETARIA FABERI	J1 v 1	0 FA		4	5	17.4		13.7
	' C]						10.0	
Panicum dichotom		0 FA		1	3	4.3	6.0	5.2
Polygonum lapath:		0 FA		1	2	4.3	4.0	4.2
Elymus canadensis		4 FA	rC-	1	1	4.3	2.0	3.2
Heliopsis heliant	thoides	5 UP)L	1	1	4.3	2.0	3.2
Populus deltoides	3	2 FA	C+	1	1	4.3	2.0	3.2
Rudbeckia hirta		1 FA	CU	1	1	4.3	2.0	3.2
				23	50			
SECTION 4								
ACRONYM C SCIENTIE	FIC NAME		W	WETNESS	PHYSIOGN	OMY COMMO	N NAME	
ECHCRU 0 Echinoch	nloa crusgalli		-3	FACW	Nt A-Gra	ss BARNY	ARD GRA	ASS
	canadensis			FAC-		ss CANAI		
_	is helianthoides			UPL	Nt P-For		SUNFLO	
	MULTIFLORUM dichotomiflorum			UPL FACW-	Ad A-Gra Nt A-Gra		AN RYE	GRASS
	um lapathifolium			FACW+	Nt A-Gra		SEASE	
	deltoides			FAC+	Nt Tree		RN COTT	CONWOOD
RUDHIR 1 Rudbecki			3	FACU	Nt P-For	b BLACK	-EYED S	SUSAN
SETFAB 0 SETARIA	FABERI			FACU+	Ad A-Gra	ss GIANT	FOXTA	IL
SOIL 0 SOIL			0	nil	nil	SOIL		
TRANSECT STRING		QUAD	3			PANDII	-	3
>		ACRONYM	COVER			SOIL		3
QUAD 1		ECHCRU	3			>		_
ACRONYM COVER		SETFAB	1				JAD	6
ECHCRU 3		SOIL	3			ACRONY LOLMUI		COVER
ELYCAN 1 LOLMUL 2		> QUAD	4			POPDEL	_	2 1
POLLAP 2		ACRONYM	COVER			SETFAE		1
SOIL 1		RUDHIR	1			SOIL	-	4
>		SETFAB	2			>		
QUAD 2		SOIL	3			QU	JAD	7
ACRONYM COVER		>				ACRONY		COVER
ECHCRU 2		QUAD	5			HELHEI		1
SOIL 4		ACRONYM	COVER			LOLMUI		4

ECHCRU

1

SETFAB

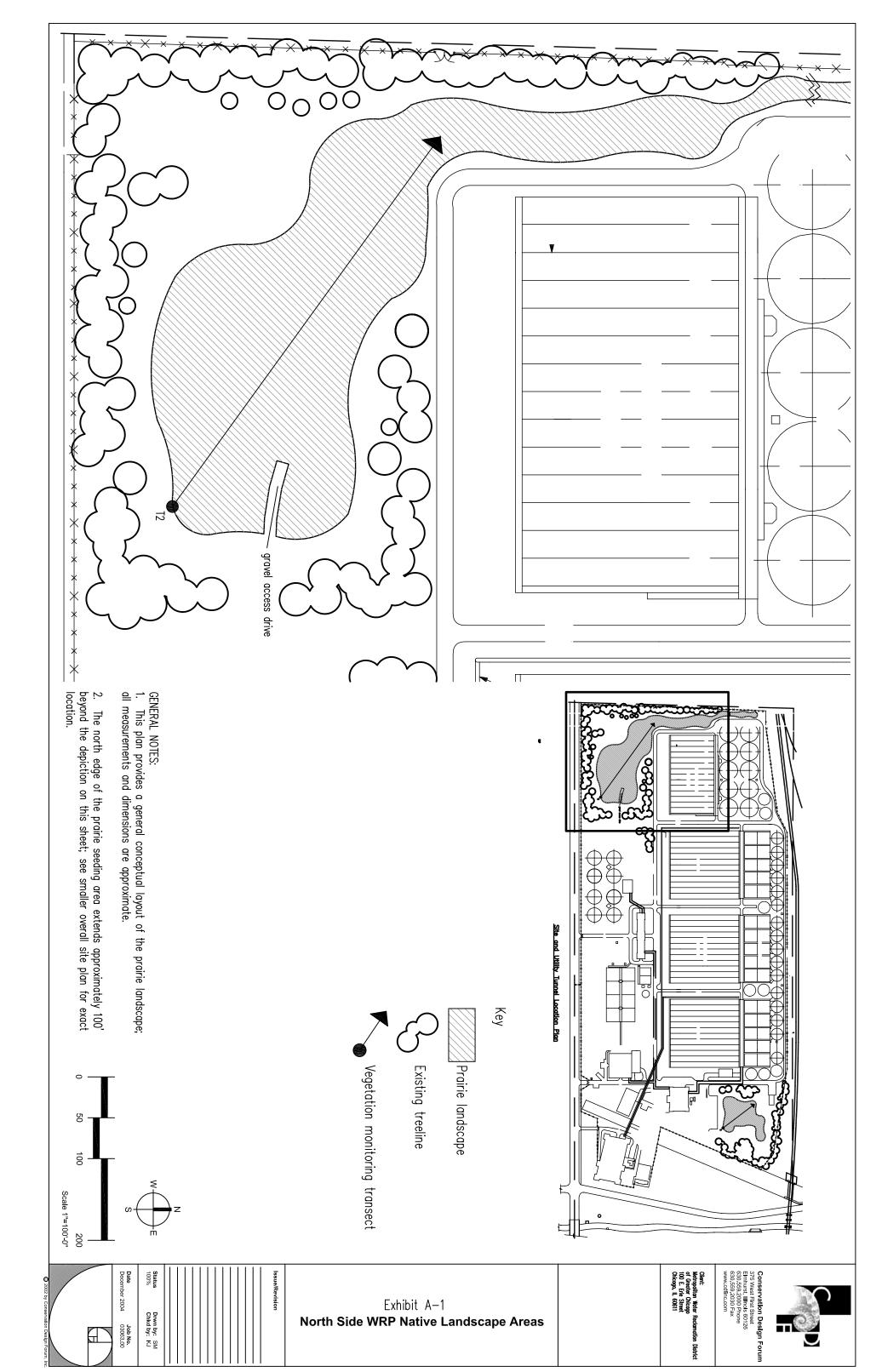
APPENDIX III

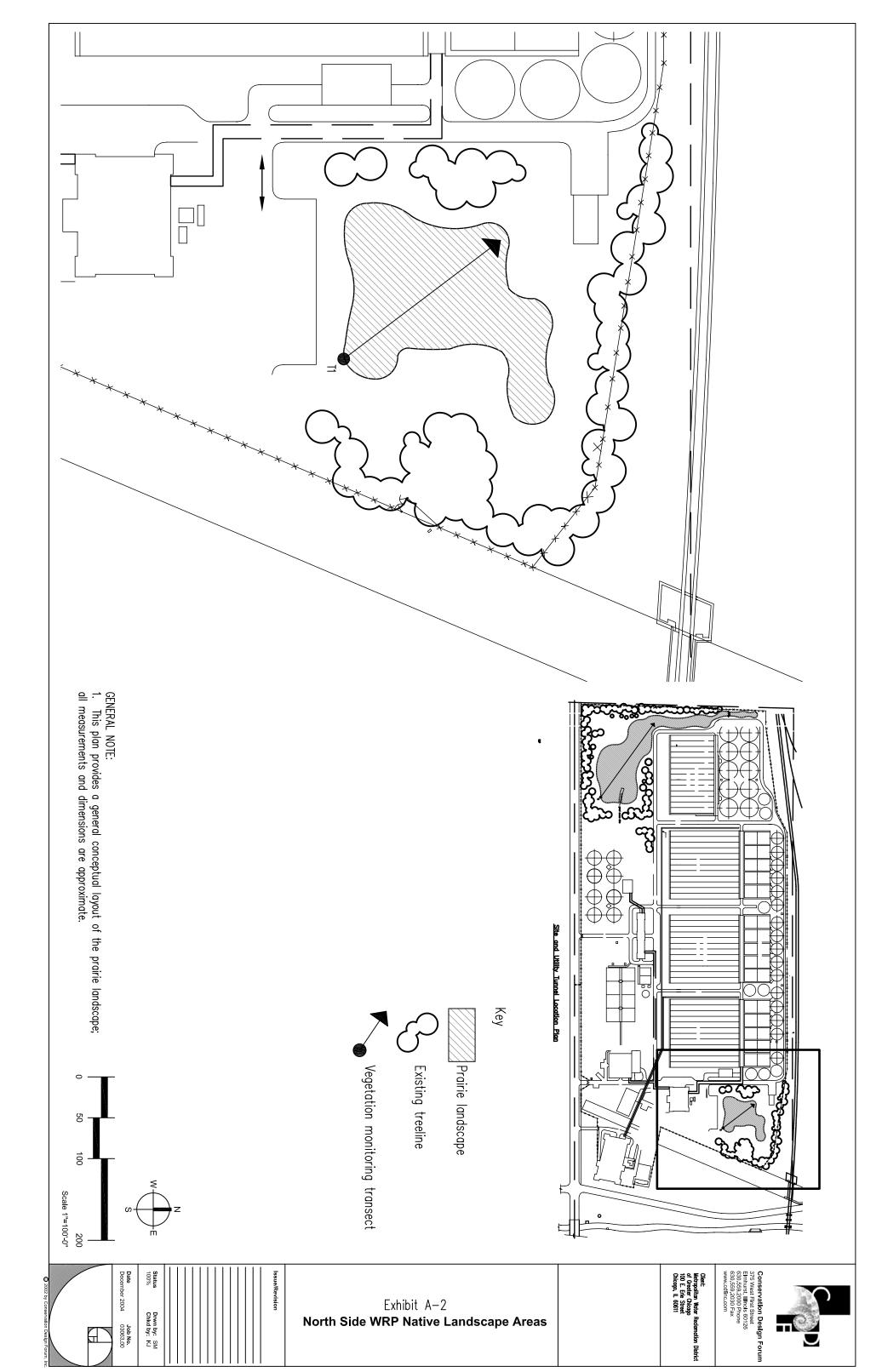
SEEDED SPECIES RECRUITMENT

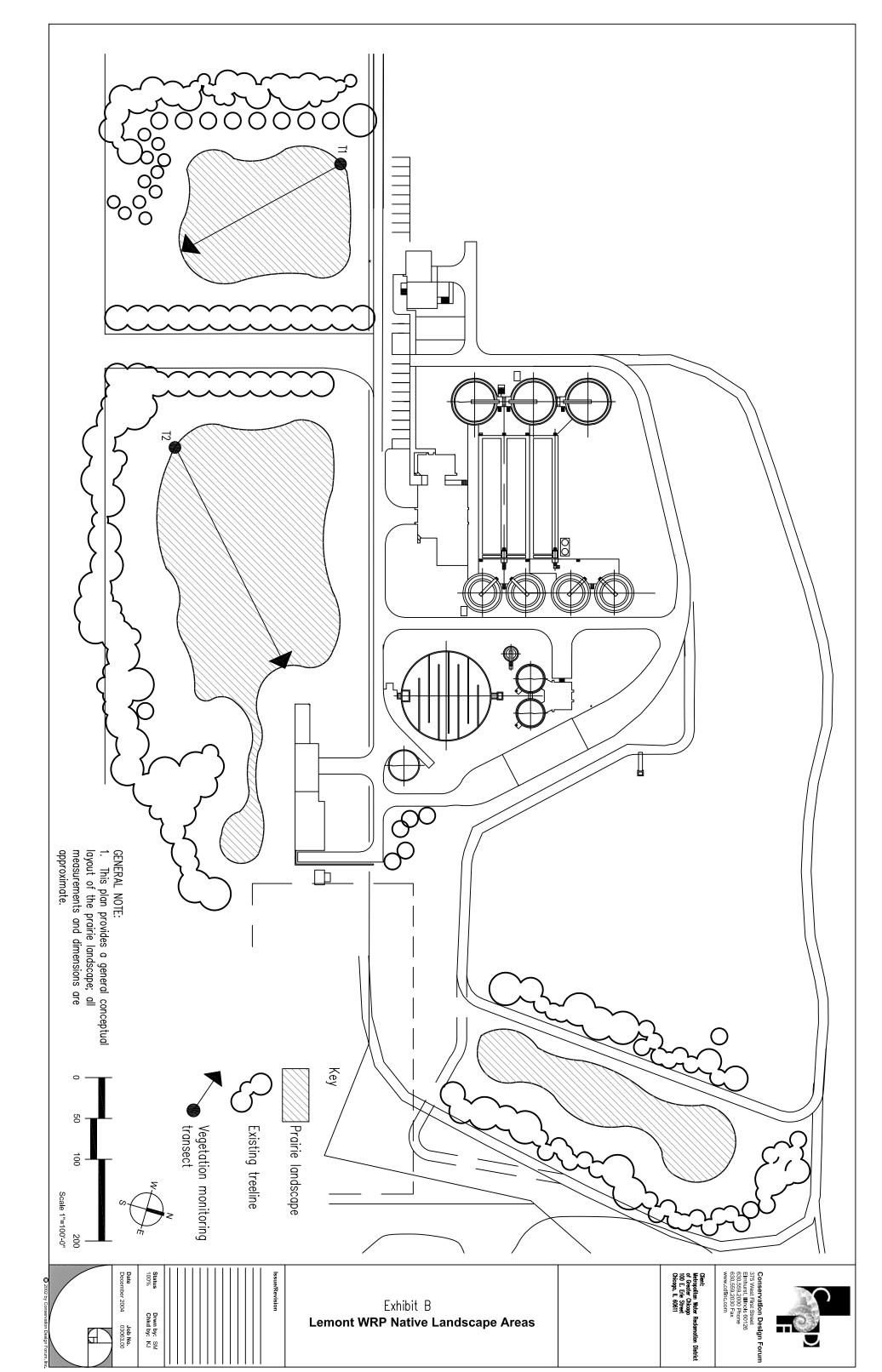
Each of the three tables on the following pages represents an alphabetical list of the native species that were seeded as part of the prairie landscape installation in April of 2004. Each species is listed along with its C value (in parenthesis). If the species was recorded from the site during the 2004-monitoring event in September it is indicated with a "Y", and if not it is indicated with an "N"; the columns to the right summarize the RIV of each species if recorded during the transect sampling.

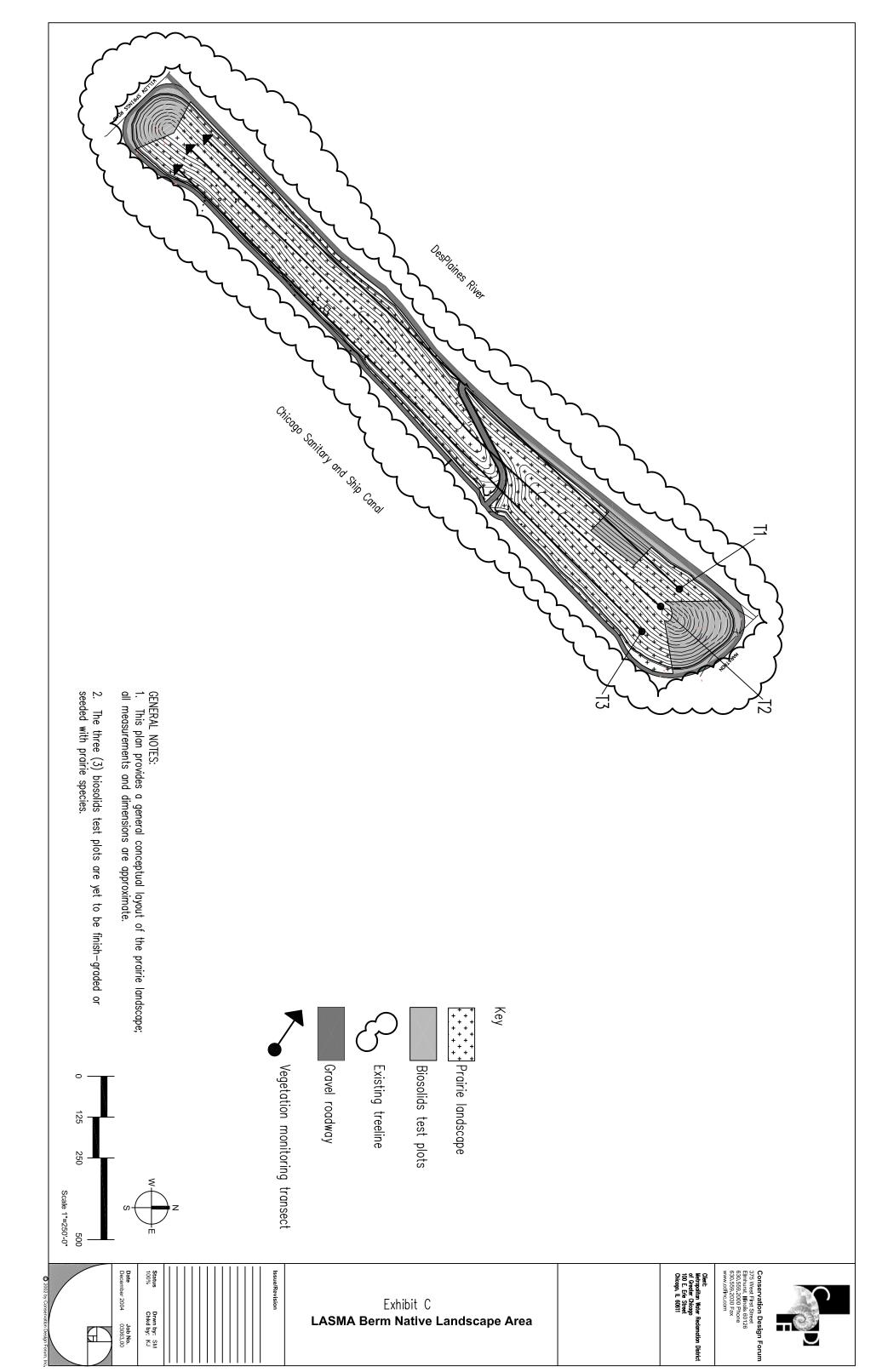
The North Side WRP seed list is identical to that of Lemont WRP. Six (6) common prairie grasses and seventeen (17) common prairie forbs were seeded at these two sites. The same six prairie grasses were used at the LASMA Berm; however, only eleven (11) forbs were included in the seed mix. See the report for more information.

TABLE A. NORTH SIDE WRP SEEDED SPECIES


SPECIES (C VALUE)	RELA	RELATIVE IMPORTANCE VALUE (RIV)						
	Tran	SECT 1	TRANS	SECT 2				
	2004	2005	2004	2005				
Andropogon gerardii (5)Y	1.0		-					
Andropogon scoparius (5)N	-		-					
Aster novae-angliae (4)Y	2.0		1.4					
Astragalus canadensis (10)N	-		-					
Bouteloua curtipendula (8)Y	-		-					
Coreopsis lanceolata (5)Y	1.0		1.4					
Desmodium canadense (4)N	-		-					
Echinacea purpurea (3)Y	3.1		-					
Elymus canadensis (4)Y	-		-					
Eryngium yuccifolium (9)N	-		-					
Heliopsis helianthoides (5)Y	2.0		2.8					
Lespedeza capitata (4)N	-		-					
Monarda fistulosa (4)Y	-		2.8					
Panicum virgatum (5)N	-		-					
Penstemon digitalis (4)N	-		-					
Petalostemum purpureum (9)N	-		-					
Pycnanthemum virginianum (5)N	-		-					
Ratibida pinnata (4)Y	1.0		1.4					
Rudbeckia hirta (1)Y	8.6		9.6					
Silphium integrifolium (5)N	-		-					
Sorghastrum nutans (5)Y	-		-					
Veronicastrum virginianum (7)N	-		-					
Zizia aurea (7)N	-		-					


TABLE B. LEMONT WRP SEEDED SPECIES


Species (C Value)	RELATIVE IMPORTANCE VALUE (RIV)						
	Trans	SECT 1	Trans	SECT 2			
	2004	2005	2004	2005			
Andropogon gerardii (5)N	ı		-				
Andropogon scoparius (5)N	ı		-				
Aster novae-angliae (4)Y	-		1.1				
Astragalus canadensis (10)N	ı		-				
Bouteloua curtipendula (8)Y	-		1.1				
Coreopsis lanceolata (5)N	ı		-				
Desmodium canadense (4)N	ı		-				
Echinacea purpurea (3)Y	1.1		2.2				
Elymus canadensis (4)Y	1.1		-				
Eryngium yuccifolium (9)N	-		-				
Heliopsis helianthoides (5)Y	5.3		3.7				
Lespedeza capitata (4)N	-		-				
Monarda fistulosa (4)Y	4.5		1.5				
Panicum virgatum (5)Y	ı		-				
Penstemon digitalis (4)N	ı		-				
Petalostemum purpureum (9)N	ı		-				
Pycnanthemum virginianum (5)N	ı		-				
Ratibida pinnata (4)Y	ı		2.2				
Rudbeckia hirta (1)Y	15.2		6.8	-			
Silphium integrifolium (5)N	-		-				
Sorghastrum nutans (5)N	-		-				
Veronicastrum virginianum (7)N	-		-				
Zizia aurea (7)N	_		-				


TABLE C. LASMA BERM SEEDED SPECIES

SPECIES (C VALUE)	RELATIVE IMPORTANCE VALUE (RIV)					
	Transect 1		Transect 2		Transect 3	
	2004	2005	2004	2005	2004	2005
Andropogon gerardii (5)Y	-		-		-	
Andropogon scoparius (5)N	-		-		-	
Aster novae-angliae (4)Y	-		3.7		-	
Astragalus canadensis (10)N	-		-		-	
Bouteloua curtipendula (8)Y	-		-		-	
Desmodium canadense (4)N	-		-		-	
Echinacea purpurea (3)N	-		-		-	
Elymus canadensis (4)Y	-		3.7		3.2	
Heliopsis helianthoides (5)Y	-		-		3.2	
Lespedeza capitata (4)N	-		-		-	
Monarda fistulosa (4)Y	-		3.7		-	
Panicum virgatum (5)Y	-		-		-	
Ratibida pinnata (4)Y	-		-		-	
Rudbeckia hirta (1)Y	-		-		3.2	
Silphium integrifolium (5)N	-		-		-	
Solidago graminifolia (4)N	-		-		-	
Sorghastrum nutans (5)Y	-		-		_	

May 19, 2004

May 19, 2004

Above Bare spot on berm.

Below Surface rill formations evident at the berm.

May 19, 2004

June 9, 2004

Above Cover crop germination.

Below Mowing on slopes with tractor.

June 16, 2004

September 23, 2004

Above Mowing on steep slopes.

Below Transect 2.

May 20, 2004

July 8, 2004

Above Drill-seeding furrows and initial germination.

Below Distrubed area in southwestern portion of site.

July 8, 2004

July 27, 2004

Above Spot herbicide appplication.

Below Results of spot herbicide activity.

September 28, 2004

September 28, 2004

Above Transect 1.

Below Transect 2.

May 19, 2004

June 23, 2004

Above Cover crop and initial germination.

Below Nodding Thistle (undesireable weed - adjacent to prairie conversion site).

June 24, 2004

August 25, 2004

Above First mowing.

Below Results of herbiciding the Cut-leaved Teasel.

September 23, 2004

September 23, 2004

Above Transect 1.

Below Transect 2.