
Welcome to the September 
Edition of the 2023 M&R 

Seminar Series



NOTES FOR SEMINAR ATTENDEES

• Remote attendees’ audio lines have been muted to minimize background noise.  

For attendees in the auditorium, please silence your phones.  

• A question and answer session will follow the presentation.

• For remote attendees, Please use the “Chat” feature to ask a question via text to 

“Host.” For attendees in the auditorium, please raise your hand and wait for the 

microphone to ask a verbal question. 

• The presentation slides will be posted on the MWRD website after the seminar.

• This seminar has been approved the ISPE for one PDH and approved by the IEPA 

for one TCH. Certificates will only be issued to participants who attend the entire 

presentation.
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Big Picture Wastewater Surveillance Project

• WW Surveillance in Illinois is being conducted at WWTPs & sewers in Chicago & Illinois 
and facilities like Cook County Jail and O’Hare Airport

• Non-intrusive monitoring, viral RNA shedding occurs regardless of symptomology
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• Non-intrusive monitoring, viral RNA shedding occurs regardless of symptomology

Big Picture Wastewater Surveillance Project
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Wastewater is complex!

• Toilet, shower, sink, washing machine, etc. water from 
residential & commercial properties.

• Includes industrial waste

• Can be impacted by weather events

Metropolitan  Reclamation Water District of Greater Chicago



Why monitor disease using wastewater?

• Anonymous, inexpensive, & represents an entire community

• Data can be used by public health departments to make 
decisions on where to send resources

• Testing is less accurate for COVID-19 with at-home testing

• Helps fill in the gaps when clinical data is lacking or missing 

(e.g., influenza)

• Helps detect pathogens early before cases show up in hospitals 

(e.g., Polio in NY summer 2022)



Illinois – Largest 
Population Center in 

Each County

Chicagoland – Major 
WWTPs

Illinois Wastewater Surveillance System

Illinois Dept Public Health (IDPH)
State-wide, ~77 WWTPs, 2x weekly sampling

Chicago Dept Public Health (CDPH)
8 neighborhoods, Cook County Jail, O'Hare, long term 

care facility, 1-2x weekly sampling



Surveillance Program stats

• Currently 79 active WWTPs (in 46 counties)

• 8.5+ million people across Illinois
– ~70% of total Illinois residents

• Processed >18,000 samples since 2021

• Goal: Work towards health equity by

 reaching as many people as possible.



Pathogens Tested in Wastewater

• Currently testing for:

• SARS-CoV-2

• Influenza A/B

• RSV

• Broad range of options to
  scale the program (e.g., antimicrobial resistance genes,

  emerging pathogens)

• All testing in our program is at the request of the DPHs/CDC 

guidance

Photo by Alex Garcia



WBE Workflow

Sample 
Collection

Viral RNA 
Quantification

Modeling, 
Analytics, 
& Reporting

Variant 
Sequencing

Photos by Alex Garcia



Dashboard - https://iwss.uillinois.edu/

https://iwss.uillinois.edu/


Variant Sequencing
https://covid.cdc.gov/covid-data-tracker/#variant-proportions

CDC COVID Data Tracker, Midwest Region



Dashboard – Data Analysis

What the data DOES tell us:
• The concentration of viral RNA in a sample

• How trends change over time

 (increasing/decreasing/no change)

What the data DOES NOT tell us:
• How many people are sick

• Differences between sites (can't directly compare concentrations)

• Differences between pathogens at a site (can't directly compare concentrations)

Wastewater data should always be interpreted alongside other reliable public 

health metrics, like hospitalization rates.

Photos by Alex Garcia



Relating RNA in Wastewater to public health

WWTP: Waste Water Treatment Plant

Flow rate
at WWTP
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SARS-Cov2 RNA Data from Wastewater 

Catchment Areas
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October 2020 to December 2021

Egan Kirie

Lemont

Hanover

Smaller Catchments:

December 2020 

to February 2021



Punchline: RNA measurements in wastewater 

correlate with other public health indicators 

Over the course of outbreak dynamics! Specifically in capturing new surges!

Modeling improves these correlations.



Model development and selection pipeline

Thank you CDPH & IDPH for 

working with us on epi-data



Model development and selection pipeline

Dimensional/Physical analysis



Model development and selection pipeline

Dimensional/Physical analysis

Want to estimate terms based on measured: 

Fecal load indicator 
Pepper mild mottle virus 
(PMMoV)

Lab recovery control
attenuated bovine 
coronavirus
(BCoV)

Flow rate
at WWTP

N1 SARS-CoV2 RNA
extracted from 
WW sample



Model development and selection pipeline

≈ Flow rate

N1 recovery  ≈  ൫ ሻBCoV recovery 𝛼
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≈ Flow rate

N1 recovery  ≈  ൫ ሻBCoV recovery 𝛼



Model development and selection pipeline



Model development and selection pipeline
Power-law Models:



Model development and selection pipeline
Power-law Models: Non-Power-law Models:

Set powers
 a,b,c,d = {0, 1}

Similar to commonly 
used normalization



Model development and selection pipeline



Finding parsimonious models: Akaike information criteria



Finding parsimonious models: Akaike information criteria

Relative AIC may 
indicate support for 
more than 1 model



Model ranking and recommendations



Model ranking and recommendations

Always ranked best!

Also better than nothing:

Limited improvement:

Flow rate only PMMoV only



Power-law model

 ranking and lag 

analysis

• Best models are within 
physical lags

• Robust across prevalence 
indicators

• Cases is less reliable



RNA in wastewater correlates with 

hospitalization data

• Power-law model improves 
overall correlation by 4-15%

• Extend to other locations? 



RNA in wastewater correlates with 

hospitalization data



RNA in wastewater detects all major surges 

• 4-week trend analysis
• Hospital admissions
• RNA detected in wastewater

• Likely increase indicates >66% 
confidence of increasing slope

•  Likely increase indicates >66% 
confidence of decreasing slope

• Uncertain is <66% confidence in 
slope change



• Trend analysis identifies 18 
likely increase in RNA 
wastewater measurements

• RNA in wastewater identifies 
all 9 major surges 

RNA in wastewater detects all major surges 



RNA in wastewater detects all major surges 

• Trend analysis identifies 18 
likely increase in RNA 
wastewater measurements

• RNA in wastewater identifies all 
9 major surges 

• 4 other likely increases in RNA 
wastewater correspond to 
increase in other indicators

• 5 unsupported likely increases



Punchline: RNA measurements in wastewater 

correlate with other public health indicators 

Over the course of outbreak dynamics! Specifically in capturing new surges!

Modeling improves these correlations & has been integrated into our public health reporting

Date



Transfer Model to high-throughput data

Low-throughput

• by hand
• qPCR quantification
• lower sensitivity
• Larger sample

High-throughput

• Robots
• dPCR quantification
• higher sensitivity
• Smaller sample



Transfer Model to high-throughput data



Transfer Model to high-throughput data



Transfer Model to high-throughput data

low high

Experimental 
throughput

Model parameters change
PMMoV becomes more 
important!

PMMoV without power-law



Transfer Model to high-throughput data

low high

Experimental 
throughput

Model parameters change
PMMoV becomes more 
important!(PMMoV)

(BCoV)



Current/Future work: improve modeling

Sample 
analyzed & 
reported as 

GC/L

Lab processes

Person is 
tested or 

hospitalized 
& data 

reported to 
DPH

WWTP: Waste Water Treatment Plant

Dependent on 
symptomology & COVID 

attitude

Flow rate
at WWTP

SWMM,

Stochastic particle 

transport models

Behavior Model

Lab process error model



Thank you!
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