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Seminar Series



NOTES FOR SEMINAR ATTENDEES

• Remote attendees’ audio lines have been muted to minimize background noise. For 

attendees in the auditorium, please silence your phones.  

• A question and answer session will follow the presentation.

• For remote attendees, Please use the “Chat” feature to ask a question via text to 

“Host”. For attendees in the auditorium, please raise your hand and wait for the 

microphone to ask a verbal question. 

• The presentation slides will be posted on the MWRD website after the seminar.

• This seminar has been approval by the ISPE for one PDH and has been approved  

by the IEPA for one TCH. Certificates will only be issued to participants who attend 

the entire presentation.
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Objectives

• Define artificial intelligence (AI), machine learning (ML), 

digital twin, and soft sensor

• Explain the process of developing an ML model

• Understand how a machine learning model can be 

deployed, used, and maintained at a water utility



WHAT IS ARTIFICIAL INTELLIGENCE?



What is Artificial Intelligence?
Slide credit: Branko Kerkez



What is Artificial Intelligence? 

“AI” is a computer system that can perform tasks that 

typically require human intelligence (e.g., learning, 

reasoning, perception, decision-making)



What is Artificial Intelligence? 



What is Machine Learning (ML)? 

• “ML” involves an algorithm that can infer how to do a 

specific task without explicit instruction from data

• Supervised → Explicit examples of results
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Data Model

Model Training Process

Machine

Slide credit: Branko Kerkez
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How is ML different?

Let’s determine the treatment dose to remove 
chemical X, for real-time dose control.

1. Relationship between dose and removal 
appears linear → fit linear regression → 
statistical 

Dose

Removal
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How is ML different?

Let’s determine the treatment dose to remove 
chemical X, for real-time dose control.

1. Relationship between dose and removal 
appears linear → fit linear regression → 
statistical 

2. Known relationship between dose, 
removal, and pH → fit equilibrium model 
→ mechanistic

3. Error in statistical and mechanistic models 
is too great for the application… 
Dose + removal + 10 other WQ variables 
→ fit incredibly flexible model → ML



Let’s determine the treatment dose to remove 
chemical X, for real-time dose control.

1. Statistical models = define relationship between 
variables, analytical uncertainty estimates

2. Mechanistic models = define relationship between 
variables, can infer meaning in coefficients

3. ML models = no known relationship between 
variables, experimental uncertainty estimates
• More complex model building process

• Answers different types of questions 

• Great flexibility requires great data!

How is ML different?



MACHINE LEARNING WORKFLOW



ML Workflow



ML Workflow



What types of problems?

• Water Quality and Flow Monitoring

– “Soft sensor” uses an ML model to predict a constituent 

based on other online data. Often used for time-consuming 

laboratory measurements. 

– Early warning systems can detect faults in processes or 

changes in water quality, often before operator-set limits are 

exceeded.

– Flow or load forecasting for early response 

• Optimization

– “Digital Twins”



What is a digital twin?

“Digital twin” is a model of a physical entity with an 

automated, bidirectional live data connection … that 

allows for dynamic updating to maintain an accurate 

description … as it evolves over time 

–Peter Vanrolleghem + Torfs et al., 2022

Real Blower

Live data

Blower Model

Find Best 

ResponseSetpoints



A “good” ML problem

Yishi Zuo, 2021

https://www.yishizuo.com/dont-be-a-hammer-looking-for-a-nail/


A “good” ML problem

• Problem statement is specific to an 
objective

– Example: Objective may be to 
minimize chemical dose, not to 
understand chemical kinetics

• Simpler models cannot capture the 
observed trends (with sufficient 
accuracy for a given application)

• Sufficient, quality historical data is 
available for model development 
and will continue to be available 

Yishi Zuo, 2021

The biggest problem is keeping 
the original problem the problem!

https://www.yishizuo.com/dont-be-a-hammer-looking-for-a-nail/
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ML Workflow
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ML Workflow



Remove Outliers (?)



Remove Irrelevant “Features”

https://sallysbakingaddiction.com/how-to-measure-baking-ingredients/

https://www.apartmenttherapy.com/before-and-after-messy-pantry-gets-realistic-transformation-37200882



ML Workflow



Common Supervised ML Models

pH > 
6.5

Add 
NaOH

Add 
CaCO3

No action

pH > 
7.5

Alkalinity > 
100 mg/L

Alkalinity > 
50 mg/L

Add 
NaOH

Add 
CaCO3

Yes No

Yes No

Yes No Yes No

Neural Networks
ANN, RNN, LSTM

Decision Trees
RF, AdaBoost, XGBoost



ML Workflow



How do I use the model?



How do I use the model?



How do I use the model?



MACHINE LEARNING EXAMPLES



FORECASTING



City of Boulder, CO

Water Resource Recovery Facility

• 25 MGD design, 12 MGD average

• Daily ammonia limits as low as 1.9 mg/L
– High DO operation is trusted control strategy

• Multiple aeration control modes
– Airflow

– Dissolved oxygen (DO)

– Ammonia-based aeration control (ABAC)
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Forecasting Aeration Demand

• Influent ammonia sensor 

was difficult to maintain

• Mid-basin ammonia was 

stable, but led to a 

delayed response

• Replace ammonia in 

control strategy with a 

“forecasting” soft 

sensor
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Forecasting Aeration Demand
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Prevent undertreatment:
Increase air output prior to 

exceeding setpoint

Easy on the blowers:
Reduce sudden changes in 

air blower speed
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FINAL THOUGHTS



Hype Cycle: ML and Utilities



Hype Cycle: ML and Utilities



Hype Cycle: ML and Utilities



Hype Cycle: ML and Utilities
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