

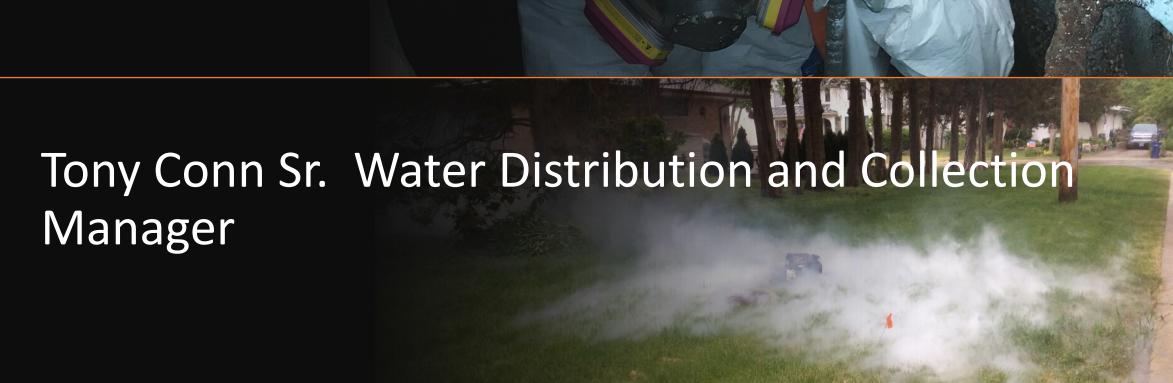
Metropolitan Water Reclamation District of Greater Chicago

Welcome to the July Edition of the 2022

M&R Seminar Series

NOTES FOR SEMINAR ATTENDEES

- All attendees' audio lines have been muted to minimize background noise.
- A question and answer session will follow the presentation.
- Please use the "Chat" feature to ask a question via text to "All Panelists."
- The presentation slides will be posted on the MWRD website after the seminar.
- This seminar is pending approval by the ISPE for one PDH and is pending approval by the IEPA for one TCH. Certificates will only be issued to participants who attend the entire presentation.


TONY CONN SR. WATER DISTRIBUTION AND COLLECTION MANAGER CITY OF NAPERVILLE

Tony Conn, Sr. has been with the City of Naperville for 30 years, serving as Water Distribution and Collection Manager since 2017. Leading a team of 47 employees, he manages the water distribution, water supply, wastewater collection & pumping, and storm water pumping sections. His educational background includes Industrial Maintenance and Electrical Automated Systems. He holds various certifications including IEPA Wastewater Collection Systems operator, IEPA Cross-Connection Control Device Inspector, IEPA Class "C" Water Operator, as well as several NASSCO certifications. He is a member of WEF, IWEA, CSWEA, NFPA, AWWA/ISAWWA, NASSCO and NASTT. He is also a member of the IWEA Golden Manhole Society and serves as an IWEA Collection System Committee Member.

Tony is an avid cyclist, including road, mountain, cyclocross and endurance. He is looking forward to soon meeting his eighth grandchild.

"Infiltration and Inflow Control at the City of Naperville"

Overview of the Naperville Collection System

WASTEWATER:	
Treatment Facility	Springbrook Water Reclamation Center
Capacity - Dry Weather Design (MGD)	26.25 million gallons/day
Capacity - Wet Weather Design (MGD)	55.13 million gallons/day
Average Daily Wastewater Flow (Calendar 2022)	17.278 million gallons/day
Average 3 Low-Flow Months (Calendar 2022)	13.929 million gallons/day
Wastewater Pump Stations (2022) Back Flow Prevention Stations (2022)	23 7
Sanitary Sewers (2022)	566 miles
Manholes (2022)	14,020
Customers - Total (2022)	43,781
Customers - Residential (2022)	40,449
Wastewater Utility Population Served: Naperville Warrenville Total	150,126 <u>13,158</u> 163,284

WASTEWATER:	
Flow Monitors	46 Open Channel 13 Closed Pipe (Lift Station)
SSO Alarms	18
Ground Water Monitoring Wells	14
Rain Gauges	13
Sanitary Main Rehabilitation (CIPP)	637,000
Sanitary Lateral Rehabilitation (CIPP) Sanitary Laterals Grouted	4,636 507
Sanitary Manhole Rehabilitation (Entire) Sanitary Manhole Rehabilitation (Upper Only)	1,020 1,500 (CIPP Chimney Liners)
Manholes Replacement	75
Customer Calls: City responsibility 2021-2022	0
Customer Calls: City responsibility 2021-2022	0
Inverted Siphon Rehabilitation	5 of 8 Siphons

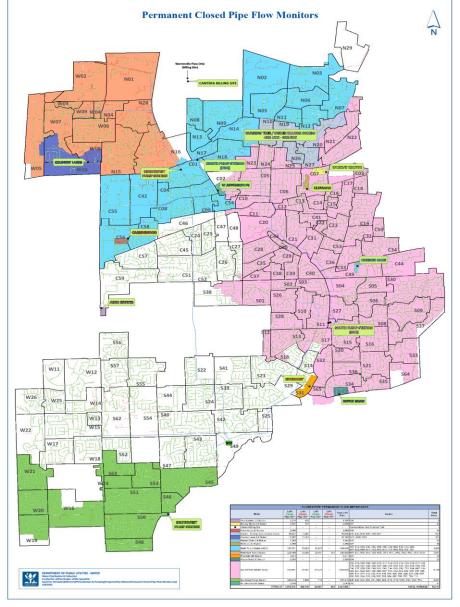
What is Naperville doing to combat I&I?

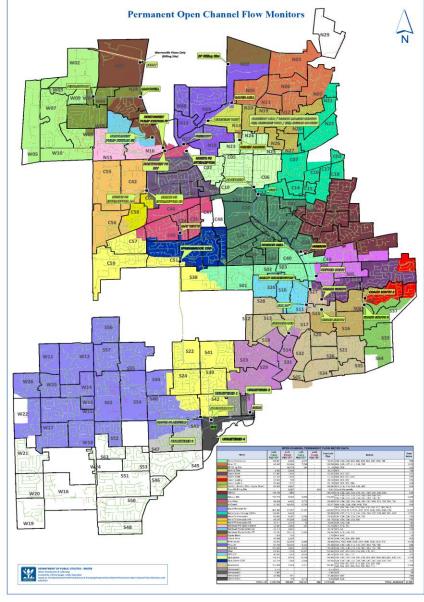
Since the 1990's, Naperville has committed significant resources (more than \$4-5 million annually) towards the goal of reducing I&I using the techniques mentioned above. City staff take a holistic approach when planning and completing rehab projects, taking care to match the proper technique with the existing field conditions and desired outcome. Planning for rehabilitation begins with flow monitoring from I&I studies. These studies help form a general 10-year guide for rehabilitation.

Generally mainline pipes are the first to be rehabilitated, followed by manholes, and finally individual service lines. The number of assets scheduled to be rehabbed per year are prioritized and can vary based on a number of factors including asset condition and budget. Assets in the same geographic area are all rehabbed before moving on to other areas. All assets in a geographic area can be completed in as little as two years or up to several yearstime. Assets that are candidates for grouting typically receive grout prior to any lining in the area.

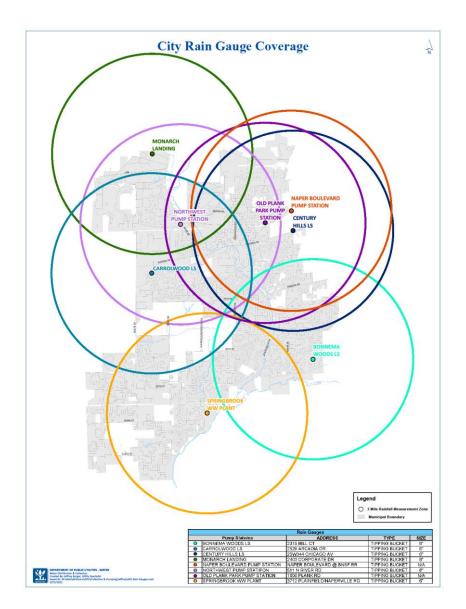
Inflow and Infiltration Investigation Tools

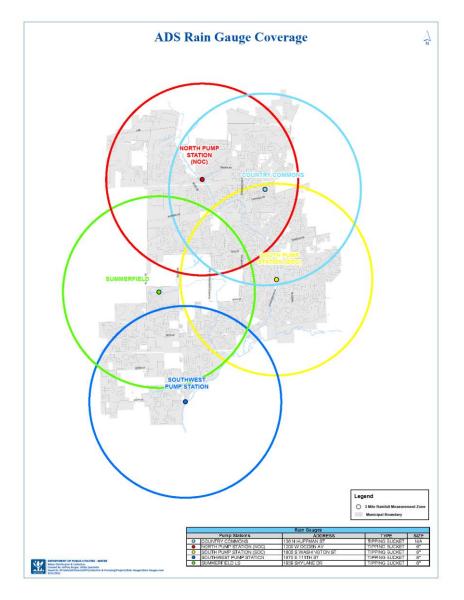
- Flow Monitoring:
 Permanent
 Temporary
 Micro Basin
 RDII Studies
- SCADA Data
- MSI Inspections


- Smoke Testing
- Dye Flooding
- Manhole Inspections
- Manhole Scanning
- Building Inspections
- GIS
- Saturated Ground
 Inspections:
 Mainline CCTV
 Manhole Inspections
 Lateral CCTV


City Of Na		lle Ten-Yea		ıction Plan		
Additional Flow Monitors	Years	Revised 12/30/21 TO Number of Meters	Status	Completion Date	Manholes	
NWPS and North PS Flow Area	2020	4	Complete	April, 2020	T04-009, T03-029, T03-028, N16-091	1
Coach Dr South Flow Basin	2020	3	Complete	April, 2020 April, 2021	S03-001, S09-002, S09-001	1
Sheri and Sunderland Flow Basins	2022	3	Complete	710111, 2021	S17- 007, T02-035A, S29-047	1
Sheri and Sunderland Flow Basins	2023	2			S29-102, C51-110	1
Springbrook Interceptor	2023	2			To1-010, S24-092	1
Springbrook Interceptor	2025	2			C45-025B, T01-041	1
Hobson, Hobson Mill Flow Basins	2026	2			C21-001, C30-003B	+
Hobson, Hobson Mill Flow Basins	2027	1			C33-001	+
TBD	202/	0			C33-001	+
TBD	2020	0				1
Micro-Flow Basin Studies	Years	Number of Meters			Subdivisions	_
Vone	2020	0			None	1
Vone	2020	0			None	+
South Pump Station Phase 1	2022	7			University Heights, Misc.	1
outh Pump Station Phase 2					Farmington, Misc.	+
Downtown Area Re- Monitoring	2023 2024	7			Downtown, College Area.	+-
outh Interceptor Phase 1		7			Old Farm, Misc.	1
	2025				, , , , , , , , , , , , , , , , , , ,	+-
South Interceptor Phase 2	2026	7			Knoch Knolls, Misc.	+
WPS Area Re-Monitoring	2027	10			NWPS Tributary.	+
pringbrook Interceptor Phase 1	2028	7			Buttonwood, Misc.	+
Springbrook Interceptor Phase 2	2029	7			Springbrook Crossing, Misc.	
Oye Water Flooding	Years	Footage	Ob. 1	All condens	Subdivisions	1
Sasin N25	2020	10,330	Started	All work moved to 2022	Old Naperville	4
Sasin N26	2021	9,228	In Planning	All work moved to 2022	Old Naperville	┩—
Sasin Co5	2022	26,492			Downtown, College Area.	4
Sasin Co6	2023	28,456			Downtown, College Area.	-
Sasin N24	2024	11,888			Old Naperville	_
BD	2025	TBD			TBD	_
CBD	2026	TBD			TBD	4
BD	2027	TBD			TBD	
BD	2028	TBD			TBD	
BD	2029	TBD			TBD	
moke Testing	Years	Footage			Subdivisions	
Vone	2020	None			None	
Sasins N19, N10, N11, N12	2021	147,000	Complete	August,2021	SayBrook, Naperville Heights	
Basins C28, C35 ,C37, C40, C29, c43, c30	2022	75,252			West Highlands	Add
Basins So8, So9, S15, S16	2023	89,637			Naper Carriage Hill, Hunters Woods	
Vone	2024	None			None	
Vone	2025	None			None	
Vone	2026	None			None	
Basins So4, So5, So6, S27	2027	50,252			Signal Point, Misc.	
Basins S12, S13, S14, S17, S18, S23	2028	102,406			Old Farm	
SOC area	2029	100,000			SOC area	
Manhole Inspections	Years	Number of Manholes			Area	
Basins C28, C43, C35	2020	138	152	November, 2020	West Highlands	
Basins C ₃₇ , C ₃₈ , C ₂₉ , C ₃₀	2021	100	N/A	Moved to 2022	West Highlands	Ado
Basins, No1, Wo2 Wo3, Wo4, Wo5	2022	265	,		McDowell Tributary	1
Sasins, Wo6, Wo7, Wo8, N28	2023	388			McDowell Tributary	1
asins N15, N16	2024	376			Brookdale	1
asins Co1, Co4	2025	217			Brush Hill, Will-O-Way	1
asins Co8, co9, C54	2026	170			Brush Hill, Will-O-Way	1
Basin So4, So5, So6, S27	2027	293			Coach Drive Flow Basins	1
Basins S15, S16, S37	2028	328			Coach Drive Flow Basins Coach Drive Flow Basins	1
14, S18, S23, S31	2029	290			Old Farm	+
CCTV Saturated Grounds		Footage			Old Fallii	
Basins C28, C43, C35	Years 2020	33,612	15.000	December, 2020	West Highlands	
, 10, 00	2020		15,000 N / A	Moved to 2022	West Highlands West Highlands	+
Basins C37, C38, C29, C30 Basins, No1, Wo2 Wo3, Wo4, Wo5		22,672	N/A	Moved to 2022	McDowell Tributary	+
	2022	59,021			McDowell Tributary McDowell Tributary	+
Basins, Wo6, Wo7, Wo8, N28	2023	40,000*			McDowell Tributary	

FLOW MONITORING





RAIN GAUGES

Rain Data from SCADA

Rain Data is Collected in:

- 5-Minute
- Hourly
- Daily

			<u>INA</u>	perville Pump S	tations Dally Ra	<u>III</u>			
		ı	Region:						
erial #:		7	Territory: Naperville						
Date	Springbrook Rain (In.)	SW Pump Rain (In.)	NW Pump Rain (In.)	Monarch Landing Rain (In.)	Century Hills Rair		Bonnema Woods Olo Rain (In.)	d Plank Road Rain (In.)	Naper Boulev
1	0.035	0.000	0.000	0.000	0.000		0.020	0.000	0.
2	0.004	0.100	0.000	0.000	0.000		0.000	0.000	0.
3	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0
4	0.799	4.610	0.370	0.240	0.230		0.400	0.140	0
5	0.063	0.170	0.080	0.110	0.070		0.210	0.060	0
6	0.469	0.070	0.390	0.360	0.330		0.510	0.160	0
7	0.000	0.000	0.000	0.020	0.000		0.000	0.000	0
8	0.189	0.000	0.050	0.040	0.010		0.310	0.020	0
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
11	0.004	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
15	1.185	0.480	0.870	0.920	1.030	0.940	0.970	0.340	0
16	0.047	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0
17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	С
19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	С
21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C
22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C
23	2.512	0.280	1.230	1.270	1.010	1.660	1.700	0.140	C
24	0.673	0.190	0.820	0.980	0.910	0.670	0.760	0.020	(
25	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C
26									
27									
28									
29									
30									
31									
Minimum	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	(
Average	0.239	0.236	0.152	0.158	0.144	0.171	0.195	0.035	C
Maximun	2.512	4.610	1.230	1.270	1.030	1.660	1.700	0.340	0
Tota	I 5.980	5.900	3.810	3.950	3.590	4.280	4.880	0.880	2

SCADA DATA

July 2022 DateTime 1 2 3 4 5 6 7 8 9 10 11	Pump 1 T1 Avg. 3.703 3.725 3.734 3.726 3.749 3.659 3.707 3.702 3.685 3.691	Pump 1 T1 Max. 7.400 7.400 7.500 7.300 7.300 7.300 7.400 7.300	Pump 1 Runtime 0.7 0.6 0.6 0.6 0.7 0.6 0.6	Pump 1 Starts 46 46 46 49 48 49	nan Lift Statio Pump 2 T1 Avg. 7.435 7.440 7.424 7.428 7.403 7.410	Pump 2 T1 Max. 7.500 7.500 7.800 7.600 7.500	Pump 2 Runtime 0.5 0.5 0.5	Pump 2 Starts 45 46 47 48	Territory: I Wetwell Level Min. 1.990 2.030 1.940	Wetwell Level Avg. 2.692 2.730 2.738	Wetwe Level Max. 3.5 3.4 3.5
DateTime 1 2 3 4 5 6 7 8 9	Pump 1 T1 Avg. 3.703 3.725 3.734 3.726 3.749 3.659 3.707 3.702 3.685 3.691	T1 Max. 7.400 7.400 7.600 7.300 7.500 7.300 7.300 7.400 7.300	Runtime 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6	Pump 1 Starts 46 46 46 49 48 49	Pump 2 T1 Avg. 7.435 7.440 7.424 7.428 7.403	Pump 2 T1 Max. 7.500 7.500 7.800 7.600	Runtime 0.5 0.5 0.5	Pump 2 Starts 45 46 47	Wetwell Level Min. 1.990 2.030 1.940	Wetwell Level Avg. 2.692 2.730 2.738	Level Max. 3.5 3.4 3.5
1 2 3 4 5 6 7 8 9	Avg. 3.703 3.725 3.734 3.726 3.749 3.659 3.707 3.702 3.685 3.691	T1 Max. 7.400 7.400 7.600 7.300 7.500 7.300 7.300 7.400 7.300	Runtime 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6	Pump 1 Starts 46 46 46 49 48 49	Pump 2 T1 Avg. 7.435 7.440 7.424 7.428 7.403	Pump 2 T1 Max. 7.500 7.500 7.800 7.600	Runtime 0.5 0.5 0.5	Starts 45 46 47	Level Min. 1.990 2.030 1.940	Level Avg. 2.692 2.730 2.738	Level Max. 3.5 3.4 3.5
1 2 3 4 5 6 7 8 9	Avg. 3.703 3.725 3.734 3.726 3.749 3.659 3.707 3.702 3.685 3.691	T1 Max. 7.400 7.400 7.600 7.300 7.500 7.300 7.300 7.400 7.300	Runtime 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6	Starts 46 46 46 49 48 49 45	Avg. 7.435 7.440 7.424 7.428 7.403	Max. 7.500 7.500 7.800 7.600	Runtime 0.5 0.5 0.5	Starts 45 46 47	Level Min. 1.990 2.030 1.940	Level Avg. 2.692 2.730 2.738	Level Max. 3.5 3.4 3.5
1 2 3 4 5 6 7 8 9	Avg. 3.703 3.725 3.734 3.726 3.749 3.659 3.707 3.702 3.685 3.691	T1 Max. 7.400 7.400 7.600 7.300 7.500 7.300 7.300 7.400 7.300	Runtime 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6	Starts 46 46 46 49 48 49 45	Avg. 7.435 7.440 7.424 7.428 7.403	Max. 7.500 7.500 7.800 7.600	Runtime 0.5 0.5 0.5	Starts 45 46 47	Min. 1.990 2.030 1.940	Level Avg. 2.692 2.730 2.738	Max 3.5 3.4 3.5
1 2 3 4 5 6 7 8 9	3.703 3.725 3.734 3.726 3.749 3.659 3.707 3.702 3.685 3.691	7.400 7.400 7.600 7.300 7.500 7.300 7.300 7.400 7.300	0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6	46 46 46 49 48 49	7.435 7.440 7.424 7.428 7.403	7.500 7.800 7.600	0.5 0.5 0.5	45 46 47	1.990 2.030 1.940	2.692 2.730 2.738	3.4 3.5
2 3 4 5 6 7 8 9	3.725 3.734 3.726 3.749 3.659 3.707 3.702 3.685 3.691	7.400 7.600 7.300 7.500 7.300 7.300 7.400 7.300	0.6 0.6 0.7 0.6 0.6 0.6	46 46 49 48 49 45	7.440 7.424 7.428 7.403	7.500 7.800 7.600	0.5 0.5	46 47	1.940	2.730 2.738	3. 3.
4 5 6 7 8 9	3.726 3.749 3.659 3.707 3.702 3.685 3.691	7.300 7.500 7.300 7.300 7.400 7.300	0.6 0.7 0.6 0.6 0.6	49 48 49 45	7.428 7.403	7.600					
5 6 7 8 9	3.749 3.659 3.707 3.702 3.685 3.691	7.500 7.300 7.300 7.400 7.300	0.7 0.6 0.6 0.6	48 49 45	7.403		0.5	48	1 990		
6 7 8 9 10	3.659 3.707 3.702 3.685 3.691	7.300 7.300 7.400 7.300	0.6 0.6 0.6	49 45		7.500				2.750	3.
7 8 9 10	3.707 3.702 3.685 3.691	7.300 7.400 7.300	0.6 0.6	45	7 410		0.5	48	2.050	2.761	3.
8 9 10	3.702 3.685 3.691	7.400 7.300	0.6			7.600	0.6	50	1.950	2.757	3.
9 10	3.685 3.691	7.300			7.396	7.500	0.5	44	1.930	2.739	3.
10	3.691			44	7.415	7.700	0.4	44	1.970	2.685	3.
			0.6	42	7.401	7.500	0.5	43	1.980	2.673	3.
11	2 601	7.300	0.5	43	7.427	7.700	0.5	42	1.950	2.706	3.
	3.091	7.300	0.6	41	7.407	7.600	0.4	42	1.990	2.742	3.
12	3.715	7.300	0.5	39	7.438	8.100	0.4	36	2.020	2.747	3.
13	3.618	7.300	0.4	32	7.620	7.900	0.3	30	2.040	2.824	3.
14	3.697	7.200	0.1	33	7.894	8.600	0.0	32	2,000		3.
15	3.712	7.300	0.5	36	7.788	8.200	0.4	37	2.040	2.755	3.
16	3.688	7.300	0.5	37	7.398	7.500	0.4	37	1.950		3.
17	3.665	7.300	0.5	34	7.401	7.600	0.4	34	2.000		3.
18	3.719	7.300	0.5	44	7.427	7.900	0.4	43	2.010		3.
19	3.693	7.200	0.5	31	7.408	7.600	0.4	32	1.930		3.
20	3.477	7.200	0.3	31	7.415	7.800	0.2	24	2.090		3.
21	3.670	7.200	0.4	26	7.402	7.900	0.3	27	2.120		3.
22	3.676	7.100	0.3	26	7.428	7.800	0.3	25	1.940		3
23	3.767	7.300	1.1	75	7.392	7.700	0.9	75	1.960		3.
24	3.953	7.300	2.4	151	7.394	7.500	2.2	151	2.030		3.
25	3.834	7.300	1.3	96	7.382	7.500	1.2	96	2.110		3
26	5.05 1	7.500	2.0	50	7.502	7.500		50	2.220	2.750	
27											
28											
29											
30											
31											
32											
32											

		Pump Station Flo	w, Ground Water	& Rain				
		Site:	Huffman Pump Station					
		970 F.M. Version 1.19		Region:				
Serial #:		Site ID:	Territory: Naperville					
						Wetwell		Wetwell
	Discharge Flow				Rainfall	Level	Wetwell	Level
Date	(MG)				(In.)	Min.	Level Avg.	Max.
1	0.219				0.000	2.0	2.7	3.5
2	0.219				0.000	2.0	2.7	3.5
3	0.224				0.000	1.9	2.7	3.5
4	0.235				0.530	2.0	2.7	3.5
5	0.232				0.020	2.0	2.8	3.5
6	0.234				0.390	2.0	2.8	3.5
7	0.212				0.000	1.9	2.7	3.5
8	0.211				0.060	2.0	2.7	3.5
9	0.207				0.000	2.0	2.7	3.4
10	0.206				0.000	2.0	2.7	3.5
11	0.201				0.000	2.0	2.7	3.5
12	0.179				0.000	2.0	2.7	3.5
13	0.141				0.000	2.0	2.8	3.5
14	0.169				0.000	2.0	2.7	3.5
15	0.179				0.940	2.0	2.8	3.5
16	0.178				0.010	2.0	2.7	3.5
17	0.162				0.000	2.0	2.7	3.4
18	0.212				0.000	2.0	2.7	3.4
19	0.149				0.000	1.9	2.7	3.5
20	0.121				0.000	2.1	2.8	3.5
21	0.123				0.000	2.1	2.8	3.5
22	0.119				0.000	1.9	2.7	3.5
23	0.387				1.660	2.0	2.7	3.5
24	0.962				0.670	2.0	2.9	3.7
25	0.508				0.000	2.1	2.8	3.5
26								
27								
28								
29								
30								
31								
Minimum	0.119				0.000	1.9		
iviiiiiiuii	0.113				0.000	1.5		
Average	0.240				0.171	2.7		
Maximum					1.660	3.7		
Tota					4.280	J.,		
Tota	. 5.565				4.200			

Smoke Testing

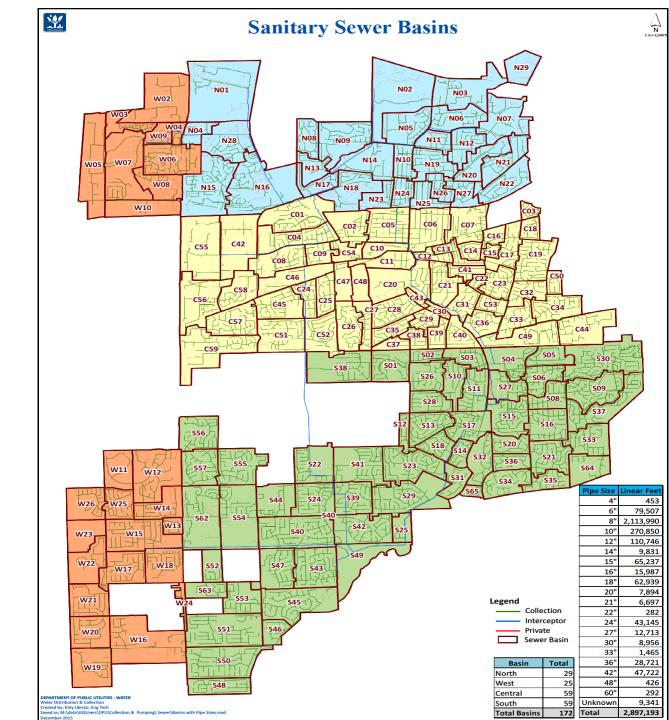
- Smoke testing in three-year intervals
- Defects repaired over three-years
- 2021 Smoke Testing Project: 146,657 LF with 586 defects.
- 2022 Smoke Testing Project: 85,000 LF of 153,821 LF scheduled.

Manhole Inspections

- Visual Inspection During Sewer Cleaning
- 3D Manhole Scanning
- Basin Manhole Inspections
- Saturated Ground Inspection
- Total of 1854 Manhole inspected in 2021

Saturated Ground Inspections:

- Rain Gauge Data
- Mainline CCTV Inspections
- Manhole Inspections


What's Working in Naperville and Why it Continues

Entire Flow Basin

- Mainline Lining
- Lateral Lining
- Manhole Rehabilitation
- Mainline Grouting
- Lateral Grouting

Water Migration

Using just one method of Sanitary Sewer Rehabilitation doesn't eliminate Infiltration and Inflow.

Water moves to the next defective area.

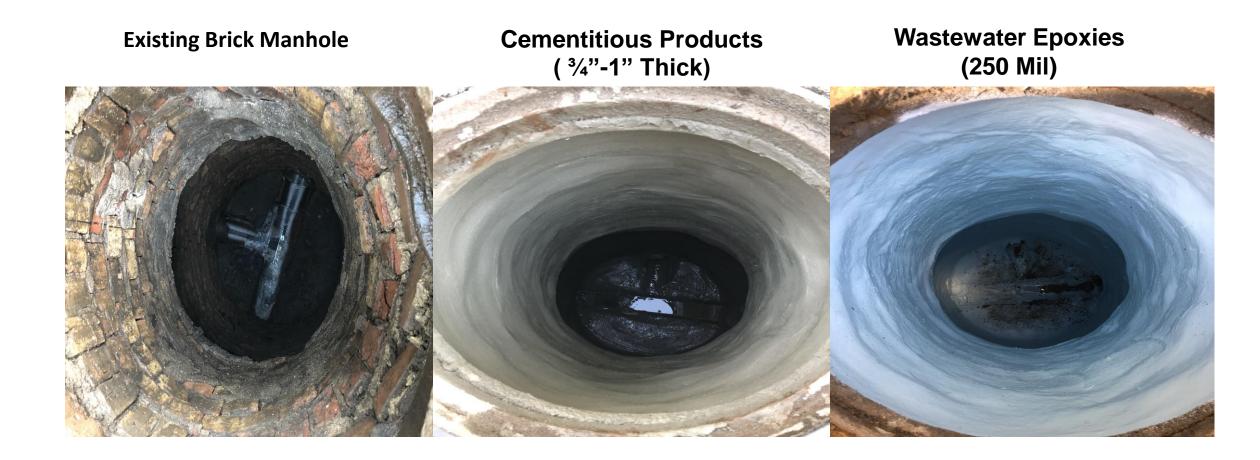
Manhole Rehabilitation

Before After

What's Working?

- Any new manhole rehabilitation product must go through two freeze/thaw cycles with no defects to be considered for a Naperville "Manhole Rehabilitation Project".
- Currently only three products are approved for the "Manhole Rehabilitation Program".
- 3-Year Warranty for all rehabbed manholes.

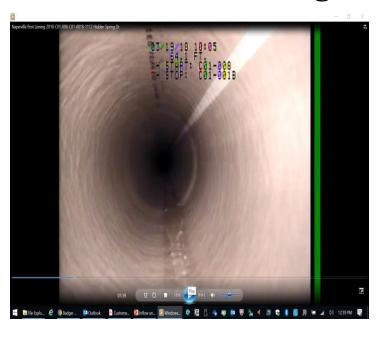
Raven 405 250 Mils



SpecrtaShield

Manhole Rehabilitation

Main Line Lining


Before CIPP Lining

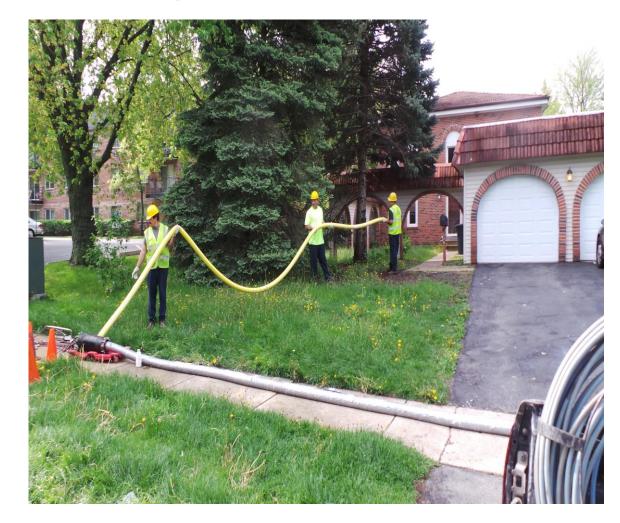
CIPP Lining

After CIPP Lining

- *Cured-In-Place-Pipe* (CIPP) lining is primarily performed on sanitary sewer pipe constructed of Clay, ACP or Truss.
- The minimum allowable thickness for the finished product shall be 6 mm (Small diameter CIPP 6"-23").

Lateral Lining CIPP

Lateral Lining CIPP



Mainline Lateral Grouting

Lateral Grouting

Lateral Grouting Process

- Locate Service Lateral
- Install Outside Cleanout
- Clean Lateral
- Grout Mainline Connection with Mainline Lateral Packer
- Grout Lateral from Cleanout to Foundation with a Push Packer
- Grout Lateral from Cleanout to Main with a Push Packer
- Warranty Testing

Manhole Rehabilitation Inspections

- Manhole Cleaning and Preparation Inspection
- Equipment Inspection
- Grouting
- Wet Film Thickness Inspections
- Visual Inspection
- Spark Testing
- Adhesion Testing

NAPERVILLE - DPU-WATER

Date: WO#

Manhole Rehabilitation Inspection Form

Bid # 22-010			Contrac	t#2180			Loca	ation			
Address			Contrac	tor <u>Spect</u>	raTech_		Арр	licator			
Weather		-	Temp _								
Manhole #		1	Manhol	le Diameter	·		Mar	nhole D	epth		
Block, Brick,	Preparations Preparations Preparations		<u>ow</u> ntrol		rement		ual		sions		oark
Concrete, Renew F	Pass Fail	YES	NO	250 MILS	500MILS	Pass	Fail	Pass	Fail	Pass	Fa
Adhesion tester if Adhesion tester if Adhesion test Da	Recommended	PSI									
Spark test manuf	actureA	BQ In	dustria	l							
Spark test recom	mended voltag	ge	9 – 10 v	K							
Number of spark	test defects _										
Spark test defect	s date of corre	ction _									
Reviewed Perfor			•	,	NO						
COMMENTS:											

Manhole Rehabilitation Inspections.

Wet File Thickness Test

- a. The minimum installed thickness of manhole coatings shall be:
 - i. 250 mils (1/4") for Raven 405
 - ii. 250 mils (1/4") for Spraywall

a. For Raven and Spraywall, City of Naperville staff shall test coating thickness during the "wet" phase of installation to verify compliance with minimum thickness requirements. The Contractor shall schedule all work so as to enable timely testing by City staff.

SPARK TEST (HOLIDAY DETECTION)

- Every manhole in this bid specifications is to be Spark tested.
- Every Spark Test is to be witnessed by a City Representative.
- Spark testing refer to ATSM D-4787 and NACE SP0188-2006
- Testing Procedures and Voltage Requirements shall be done as per Manufacturer recommendations.
- All defects are to be clearly marked and the count of defects per manhole shall be given to the City Representative.
- All defects are to be repaired per Manufacturer recommendations.
- 10% of repaired manholes are to be Re-Spark tested at no additional charge to the City of Naperville.
- City Representative will select the 10% of the manholes to be retested.

ADHESION (PULL-OFF) TEST

- An Adhesion test shall be done to 10% of the manholes in this bid specification.
- City Representative will select the 10% of the manholes to be retested.
- Three Adhesion Tests will be done on each manhole. Bench, Cone, Barrel sections or areas selected by the City Representative.
- Testing Procedures shall be done as per Manufacturer recommendations.
- All areas tested are to be repaired per Manufacturer recommendations. This cost shall be considered incidental and not charged to the City of Naperville.
- If 50% of the 10% tested fail, an additional 20% of the manholes in this bid specification shall be tested. This cost shall be considered incidental and not charged to the City of Naperville.

Main Line CIPP Inspections Wet-Out Facility Visit **Traffic Control** Site Inspection **By-Pass Pumping**

- Visual Liner Inspection
- **Curing Reports**
- **Curing Temperatures**
- Samples
- Video Inspections of Cured Liner Before Service Reinstatement
- Service Lateral Reinstatement

Main Line CIPP Inspections

Tateral□

City of Naperville Water Utilities **CIPP Inspection Form** Type of CIPP Installation Water Cure CIPP Stream Cure CIPP 1 UV GR CIPP□ Date Main Line Set Work Order # Contractor 1. Site condition (Before work) Fail⊡ Traffic Control Pass□ Fail□ N/AII By-Pass Pumping Passi Fail N/AF No□ 4. Property Owner Notification Yes□ N/A 🗆 1. Preinstallation Inspection Fail(2. Visual liner inspection (Before Install) Faill PassL 3. Received a copy of Wet-Out Report Yes□ No□ 4. Reviewed Wet-Out Report Pass□ Fail 🔟 5. Witness End Seal Installation NoF 6. Termination Points Sealed Yes□ No⊟ 7. Leaking Between Host Pipe and Liner No⊟ CIPP Installation Inspection Operator MH to MH # Pipe Size (in) Taken Water Tube Tube Temp Therma Thermo Heater/Stream Pressure #1 Temp #2 Temp Pressure (psi) (psi) Sample Taken by Contractor Nc□ 2. Sample Witnessed and Approved Yes⊟ NoL UV GR CIPP Inspection Foreman Operator MH to M∃# Weather Curing # of SC Sample (în) Leagth Taken [ft] Curing speed Inner air source pressure working wattage **Chemical Grouting** Host Pipe/Liner Manhole# Grout Manufacturer # of tubes

City of Naperville Water Utilities CIPP Inspection Form That to MH# Grout Manufacture* # Joints failed # of Gallons

Lateral□

	H to MH#	Grout Type	Manufacturer	# Joints failed	# of Gallons Pumped	Sealed	
ommentş:-		.,,,,,,			rampeo		+
Omments:-							_
omments:-							
	ments:-						
		7					
							_

Grouting Inspections

- **Equipment Inspection**
- Cup Test
- Barrell Test
- Air Testing
- Grouting Process
- Finished Product
- 11-Month Warranty test

Grouting Inspections

- Pre-Cleaning
- Set-Up
- Service Lateral Connection
- Cleanout to Main
- Cleanout to Foundation

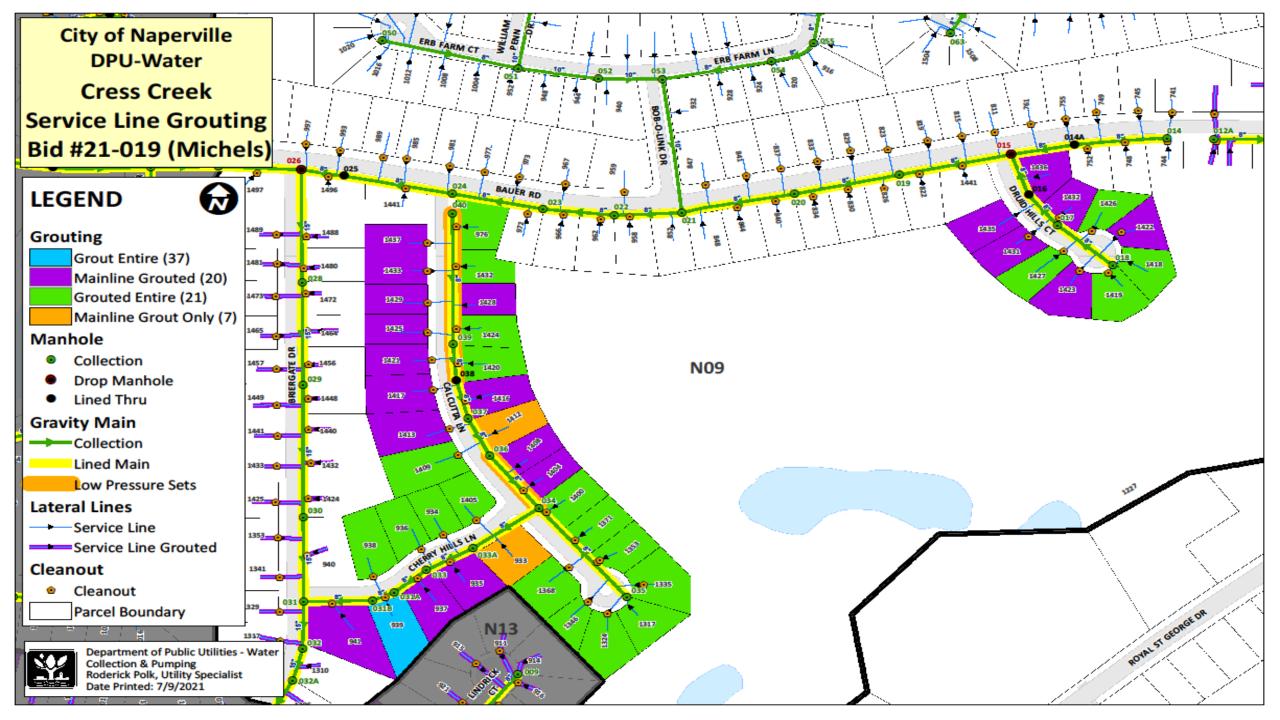
Grouting of Sanitary Sewer Service Connections and Service Laterals
Cress Creek Phase 8
22-017
Cleanout to Main Test & Seal Report Service Lateral Address:
Service Exterior Address.
Pipe Diameter:
Distance from cleanout to main:
Distance between pipe joints:
Numer of joints tested:
Test pressure :
Duration of test:
Number of joints passing:
Numer of joints failing:
Number of joints grouted:
Gallons of grout used after initial test:
Numer of joints re-tested after grouting:
Number of joints failing re-test:
Number of joints grouted after re-test: Operator Name:
Date:
Time started:
Time ended:
Operator Comments:

Lateral Lining Inspections

City of Naperville Water Utilities Lateral CIPP Inspection Form

Type of CIP	P Installation	n Wa	ter Cure (CIPP	Stream	Cure	CIPP⊠	UV GR CIPP□			
Date 5/4/2022 Inspector Emily E			ly E.	Contractor PPI			Work Order # 232312				
Site condition (Before work)					Pass ⊠		F	Fail 🗆			
2. Tra	ffic Control				Pass 🗵		1	Fail 🗆	N/A□		
3. By-	Pass Pumpir	g			Pass 🗆		F	Fail 🗆	N/A⊠		
4. Property Owner Notification				Yes⊠			No□	N/A□			
CIPP Inspection Address 209 N Julian											
1. Preinstallation Inspection				Pass 🗵			Fail 🗆				
2. Visual Liner Inspection (Before Install)					Pass⊠		1	Fail□			
3. Witness End Seal Installation					Yes⊠			No□			
4. Termination Points Sealed				Yes⊠			No□				
5. Leaking Between Host Pipe and Liner				Yes□			No⊠				
CIPP Installation Inspection					Forem	Foreman Jeremy O. Op			erator Dylan		
Upstrm MH Dwnstrm MH M		Main	Liner Dimensions		П	Weather	Temp	Curing			
			Size					(F)	Log (y/n)		
C07-020 C07-019 8"		8" x 6" x 30' T		\perp	Dry	45 '	yes				
Resin Resin Temp Steam W		Water Heater/Stream		m	Cook Start	Cook	Cool				
Impregnate (F) Temp		Temp.	Pressure (psi)			Finish	Down				
Time	_		(F)						Complete		
9:07 ar	9:07 am 30 ° 270 °		270°	6-7			10:00 am	10:30 am	10:52 am		

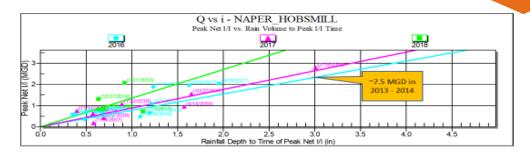
Comments:

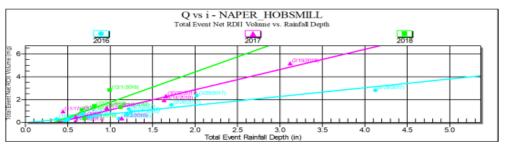

COMMUNICATIONS

Public

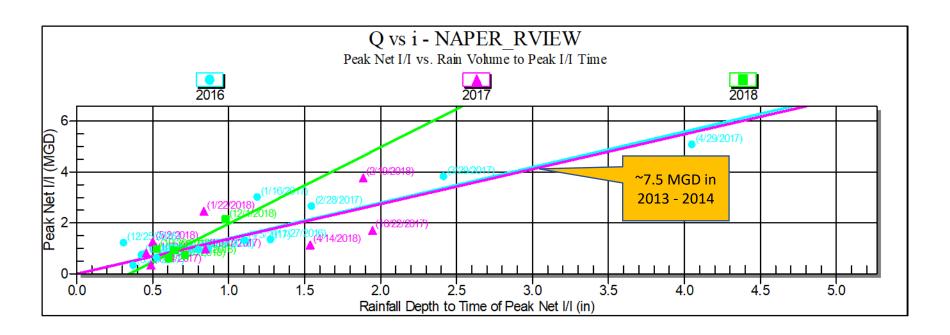
- Letters sent to property owners in all affected areas
- Sign are posted in affect areas
- Projects are posted on City's Website
- HOA are notified of work
- A City representative talks to each homeowner

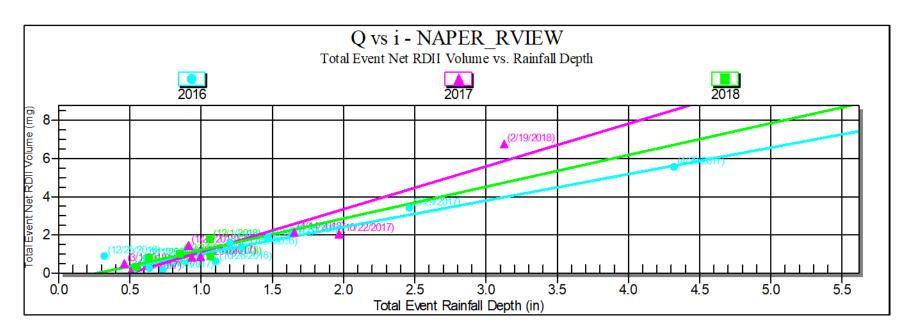
Management/Council

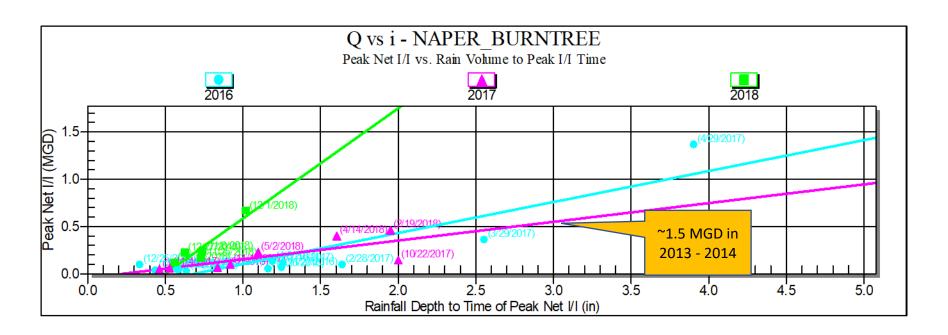


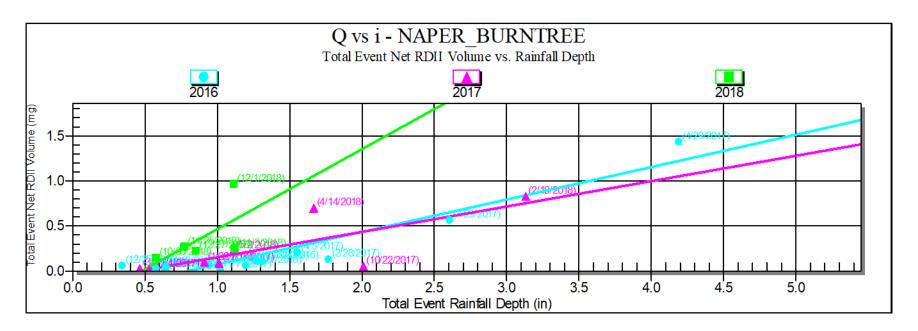

What's Working in Naperville and Why

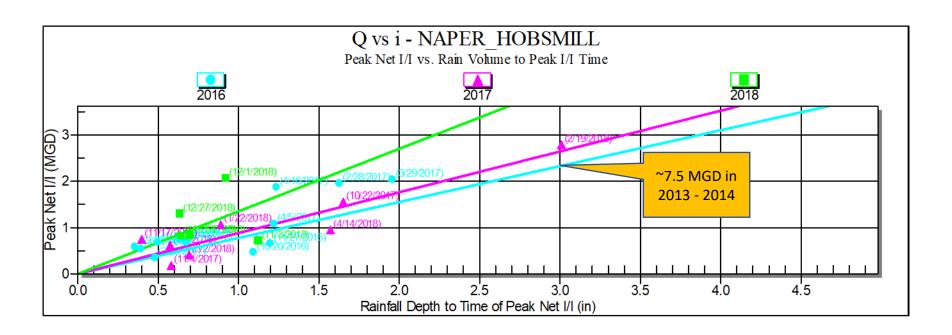
	Estimated I&I	Estimated I&I	Estimated I&I				
Area	from Main Line	from Lateral	from Manhole	2013 Peak I&I	2017 Peak I&I		
Burning Tree	20%	70%	10%	1.3 MGD	.06 MGD	53.8% Reduction	
Hobson Mill	25%	65%	10%	7 MGD	2.3 MGD	67.1% Reduction	
Prescott	20%	70%	10%	2.75 MGD	2 MGD	27.3% Reduction	
Riverview	30%	60%	10%	8 MGD	4 MGD	50% reduction	
* Based on a 3" rain fall							

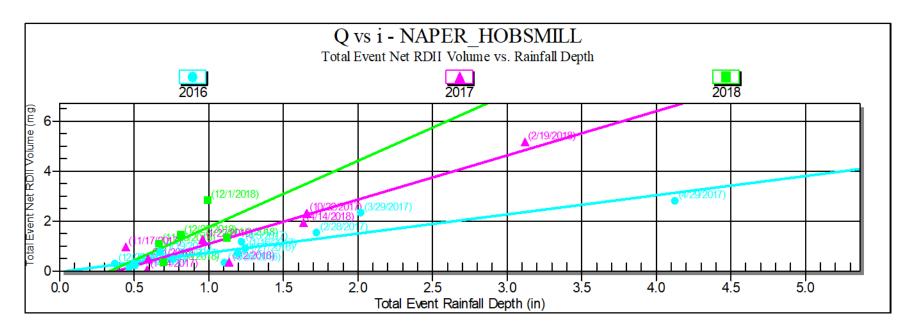

"The improvements may be the best I have seen for basins this size."

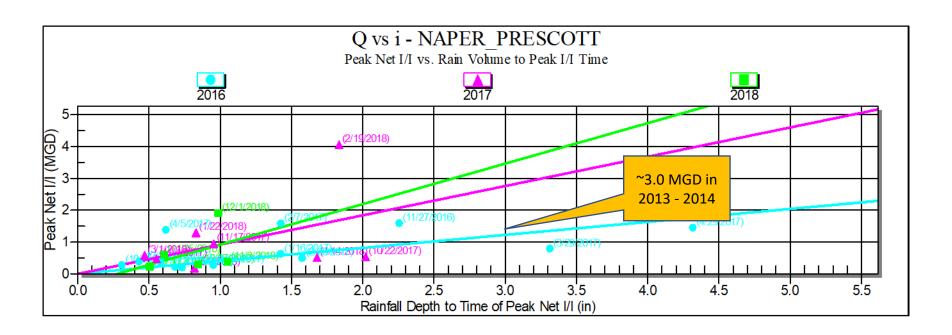

City of Naperville Flow Meter Service Provider.

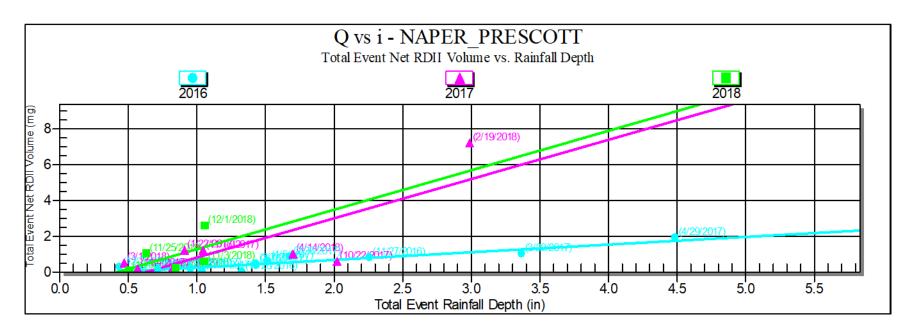


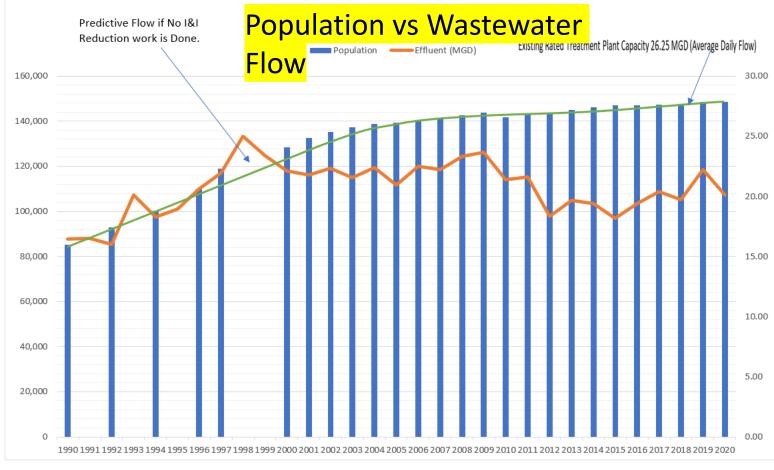



I assembled a quick comparison of wet weather performance of 4 of your sewer shed and the improvements have been impressive. The improvements may be the best I have seen for basins this size.







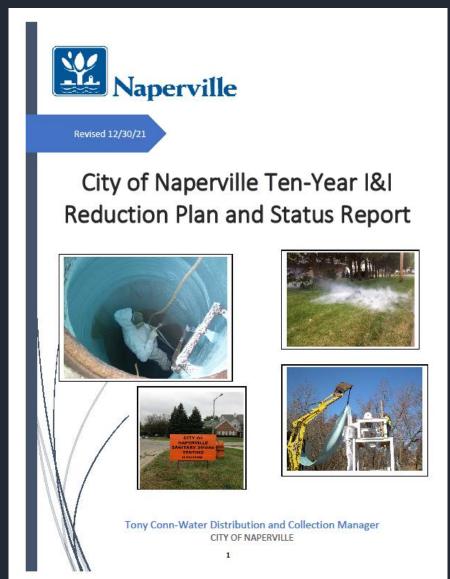


Positive Impact

Naperville's proactive approach to combating I&I has yielded positive results. Since 1998 the population of Naperville has increased by roughly 30,000 people or about 20%. Yet when looking at the average amount of water treated at the SWRC flows have decreased by roughly 30% over the same period.

RESULTS

- Reduced Customer Service Calls 2007: Responded to 600 Calls. 2019: Responded to 295 Calls. Yearly Saving Of \$61,000
- Less Time on Customer Service means crews can spend more time on I/I work which reduces the chance of main line Back-ups.
- Reduced Sewer Maintenance Cost Yearly Root Cutting is now Jet Flushing only every four years. \$64,513 Yearly Savings
- Reduced Chance Of Injuries Priceless
- Reduced Pumping Cost Reduces the cost of operating a wastewater pump station.
- Reduced Electric Cost
- Reduced Maintenance Required
- Reduced By-Pass Pumping needed due to high flows
- <u>Treatment Plant Flow</u> Current flow Is 19.75 MGD. Plant capacity is 26.75 MGD.
- Current I&I program contributed to delay in plant expansion
- Plant expansion cost in 1998 estimated at \$9 MILLION.



CITY OF NAPERVILLE WATER UTILITIES

CAPACITY, MANAGEMENT, OPERATIONS AND MAINTENANCE (CMOM) PROGRAM

Tony Conn Sr. | Water Distribution and Collection Manager Katy Librizzi | Collection and Pumping Supervisor Rev. 12/2019

Questions?

